
The Selex Design Pattern: Decomposing State Machines
Cluttered by Message Multiplexing

Frank Roessler

Avaya Labs
Basking Ridge, NJ

USA
+1-908-696-5127

roessler@avaya.com

Birgit Geppert
Avaya Labs

Basking Ridge, NJ
USA

+1-908-696-5116

bgeppert@avaya.com

ABSTRACT
State machine specifications and their implementations are often
complex because they have many responsibilities mixed together.
A potential cause for responsibility clutter is message multi-
plexing, which means that one or more incoming and/or outgoing
messages of the state machine contain data that belongs to
different concerns. The Selex pattern untangles responsibility
clutter due to message multiplexing without changing the external
behavior of the state machine.

Categories and Subject Descriptors
D.2.11 [Software Architectures]: Patterns, Information hiding,
Domain-specific architectures; D.2.2 [Design Tools and
Techniques]: State diagrams, Modules and interfaces

General Terms
Design.

Keywords
Design pattern, Communication protocol, State machine,
Composition, Message multiplexing.

1. INTENT
Decompose a state machine cluttered by message multiplexing
into a set of component state machines with clearly separated
responsibilities. The externally visible behavior of the composite
is kept unchanged.

What is message multiplexing? In the field of telecommuni-
cations, message multiplexing means transmitting messages from
multiple sources over a single channel. Here, we use message
multiplexing as a software engineering term, meaning that a single
message contains data from separate concerns.

2. MOTIVATION
Consider the SIP [5] registration protocol. It has two
responsibilities: a) authenticating the registering user agent
(authentication) and b) submitting user locations to a location
service (address binding). Figure 1(a) illustrates the four-way
handshake for successfully registering a user agent. You could
model and eventually implement the SIP registrar as shown in
Figure 1(b). The state machine looks fairly simple. After all it has
just one transition. The problem is that SIP puts data for
authentication as well as address binding into the same incoming
message RegisterRequest and therefore the single transition
must handle both responsibilities. If you wanted to add many
more responsibilities (by extending RegisterRequest) this
approach would not scale very well.

Preliminary versions of these papers were workshopped at Pattern
Languages of Programming (PLoP) ’07 September 5-8, 2007,
Monticello, IL, USA. Permission to make digital or hard copies of all or
part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on the
first page. To copy otherwise, to republish, to post on servers or to
redistribute to lists, requires prior specific permission. Copyright is held
by the authors. ISBN: 978-1-60558-411-9.

RegisterRequest
w/o credentials

RegisterResponse
“Unauthorized”

SIP Registrar User Agent

x
RegisterRequest
with credentials

RegisterResponse
“OK”

x x

RegisterRequest
w/o credentials

RegisterResponse
“Unauthorized”

SIP Registrar User Agent

x
RegisterRequest
with credentials

RegisterResponse
“OK”

x x
(a) Message flow (success path)

idle

registered failed

RegisterRequest/-

-/RegisterResponse -/RegisterResponse

register transition
idle

registered failed

RegisterRequest/-

-/RegisterResponse -/RegisterResponse

idle

registered failed

RegisterRequest/-

-/RegisterResponse -/RegisterResponse

register transition

(b) SIP registrar - authentication mixed with address binding

Figure 1. SIP registration.

Rather than following the approach of Figure 1(b), you could first
de-multiplex RegisterRequest into an authentication and
address binding part (Figure 2(c)) and then feed these micro
messages into separate component state machines - one
responsible for authentication (Figure 2(a)) and another one
responsible for address binding (Figure 2(b)). While processing
their micro messages, the component state machines create new
outbound micro messages. Once they are all ready, you can
multiplex them to the outgoing RegisterResponse and send the
composite message over the network (Figure 2(c)).

The component state machines are simple, so a straightforward
flag-and-switch approach will suffice for their implementation.
You need one class for authentication, another one for address
binding, and implement each transition as a separate method
(Figure 3).

To de-multiplex a RegisterRequest you can define a separate
interface for each of the two responsibilities. Authentication
and AddressBinding get a reference to the composite message,
but will only see the part relevant to them (Figure 3). You have to
make a decision on how to sequence transition invocations. For
instance, you can only submit an address binding to the location
service, if the registering user agent has been successfully
authenticated. You can express such causal dependencies as
conditional statements on the control state of component state
machines (cf. register() method in Figure 3).

For decoupling of responsibilities the component state machines
should not call each other and should not know about each other.
Still, they have to contribute jointly to the external Register-
Response message. You therefore need another object (Mes-
sageCreator) that coordinates creation of outgoing messages
(cf. Section 9).

3. APPLICABILITY
Use the Selex pattern when:

1. An incoming and/or outgoing message of a state machine
carries data that belongs to different concerns and you want
to decompose the state machine into single responsibilities.

2. Changing externally visible behavior of the state machine is
not possible.

idle

authenticated

AuthRequest/-

-/AuthResponse-/AuthResponse

failed

authenticate transition
idle

authenticated

AuthRequest/-

-/AuthResponse-/AuthResponse

failed

authenticate transition

 (a) Component state machine Authentication

idle

bound

BindRequest/-

-/BindResponse-/BindResponse

failed aborted

BindRequest/BindResponse

bind transition

abort transition
idle

bound

BindRequest/-

-/BindResponse-/BindResponse

failed aborted

BindRequest/BindResponse

bind transition

abort transition

 (b) Component state machine AddressBinding

AuthRequest

BindRequest

RegisterRequest

Message
De-Multiplexing

AuthRequest

BindRequest

RegisterRequest

Message
De-Multiplexing

RegisterResponse

AuthResponse

BindResponse

Message
Multiplexing

RegisterResponse

AuthResponse

BindResponse

Message
Multiplexing

(c) Part of glue code

Figure 2. SIP registrar -
authentication separated from address binding.

AddressBinding

isControlState()

bind(IBindRequest, MessageCreator)
abort(IBindRequest, MessageCreator)

Authentication

authenticate(IAuthRequest, MessageCreator)

ComponentStateMachine

Registrar

register(RegisterRequest incMsg)

MessageCreator mc = new MessageCreator();
Authentication authStm = new Authentication();
AddressBinding bindStm = new AddressBinding();
authStm.authenticate(incMsg, mc);
if (authStm.isControlState(Authentication.AUTHENTICATED))
bindStm.bind(incMsg, mc);

else if (authStm.isControlState(Authentication.FAILED))
bindStm.abort(incMsg, mc);

mc.sendRegisterResponse();

AddressBinding

isControlState()

bind(IBindRequest, MessageCreator)
abort(IBindRequest, MessageCreator)

Authentication

authenticate(IAuthRequest, MessageCreator)

ComponentStateMachine

Registrar

register(RegisterRequest incMsg)

MessageCreator mc = new MessageCreator();
Authentication authStm = new Authentication();
AddressBinding bindStm = new AddressBinding();
authStm.authenticate(incMsg, mc);
if (authStm.isControlState(Authentication.AUTHENTICATED))
bindStm.bind(incMsg, mc);

else if (authStm.isControlState(Authentication.FAILED))
bindStm.abort(incMsg, mc);

mc.sendRegisterResponse();

Figure 3. SIP registrar - Selex design.

4. STRUCTURE

5. PARTICIPANTS
• AbstractComponentStateMachine

(ComponentStateMachine)
o Implements common behavior of Component-

StateMachines. By calling isControlState(),
transitions of CompositeStateMachine can
determine in what control state a Component-
StateMachine currently is.

• ComponentStateMachine (Authentication,
AddressBinding)

o ComponentStateMachine is a state machine
implementing a well separated responsibility. For
each concern that is multiplexed on incoming
and/or outgoing messages of CompositeState-
Machine there is one ComponentStateMachine.

o An incoming/outgoing message of Component-
StateMachine is called inbound/outbound micro
message. Micro messages are not individually
transmitted over the network. Micro messages are
bundled into composite messages and then sent
over the network.

o A micro message can be represented by a micro
message interface on composite messages,
restricting access to only the relevant fields of a
composite message.

o ComponentStateMachine creates outbound
micro messages only through the Message-
Creator.

• CompositeStateMachine (Registrar)
o CompositeStateMachine is a state machine

responsible for composing ComponentState-
Machines.

o An incoming/outgoing message of Composite-
StateMachine is called incoming/outgoing
composite message. Composite messages are sent
over the network and consist of one or more micro
messages generated/processed by Component-
StateMachines.

o CompositeStateMachine has one transition for
each incoming composite message, which handles
de-multiplexing and sequencing of the message as
well as triggering the transmission of outgoing
composite messages over the network.

o Message sequencing means calling transitions of
ComponentStateMachines in the right order, so
that causal dependencies among Component-
StateMachines are met.

o Message de-multiplexing means splitting an
incoming composite message into its constituent
micro messages and passing the micro messages to
the right transitions of the right Component-
StateMachines. Splitting composite messages
into micro messages can be implemented by micro
message interfaces on composite messages, so that
a ComponentStateMachine receives a reference
to a composite message, but has only limited
access to its fields.

 MessageCreator
o Creates and destroys outgoing composite

messages.
o Provides a point of access to outgoing composite

messages for ComponentStateMachines.

isControlState()

ComponentStateMachineA

transition1(IMicroMessage1, MessageCreator)
…

AbstractComponentStateMachine

MessageCreator

createMicroMessage2()
…
sendCompositeMessage1()
…

…

isControlState()

ComponentStateMachineA

transition1(IMicroMessage1, MessageCreator)
…

AbstractComponentStateMachine

MessageCreator

createMicroMessage2()
…
sendCompositeMessage1()
…

…

CompositeStateMachine

transition1(CompositeMessage2 incMsg)
…

MessageCreator mc =new MessageCreator();
ComponentStateMachineA stm = new ComponentStateMachineA();
…

CompositeMessage2 incMsg
…

this.incMsg = incMsg;
//Message processing differs depending on current control state of
//CompositeStateMachine, which is the Cartesian product of control
//states of all ComponentStateMachines.
if (stm.isControlState(...) && ...) {

//Call a ComponentStateMachine transition that is currently enabled.
stm.transition1(this.incMsg, mc);
//Further message processing differs depending on the change in
//control state of CompositeStateMachine.
if (stm.isControlState(…)) {

…
//Trigger sending of a response when ComponentStateMachines
//have generated all constituent micro messages.
mc.sendCompositeMessage1();
…

} else if (stm.isControlState(...))
…

…
} else if (stm.isControlState(…) && ...)

…

CompositeStateMachine

transition1(CompositeMessage2 incMsg)
…

MessageCreator mc =new MessageCreator();
ComponentStateMachineA stm = new ComponentStateMachineA();
…

CompositeMessage2 incMsg
…

this.incMsg = incMsg;
//Message processing differs depending on current control state of
//CompositeStateMachine, which is the Cartesian product of control
//states of all ComponentStateMachines.
if (stm.isControlState(...) && ...) {

//Call a ComponentStateMachine transition that is currently enabled.
stm.transition1(this.incMsg, mc);
//Further message processing differs depending on the change in
//control state of CompositeStateMachine.
if (stm.isControlState(…)) {

…
//Trigger sending of a response when ComponentStateMachines
//have generated all constituent micro messages.
mc.sendCompositeMessage1();
…

} else if (stm.isControlState(...))
…

…
} else if (stm.isControlState(…) && ...)

…

o Makes sure that ComponentStateMachines
contribute to the right instances of outgoing
composite messages, i.e., it implements multi-
plexing of outbound micro messages to outgoing
composite messages.

o Reduces dependencies among ComponentState-
Machines. Each ComponentStateMachine
operates on micro messages (represented by inter-
faces on composite messages) instead of composite
messages. You can change multiplexing of
outbound micro messages to composite messages
without affecting ComponentStateMachines as
long as they implement the same micro message
interfaces.

6. COLLABORATIONS
o After an incoming composite message of type Com-

positeMessage is received and decoded, processing of
the message starts with calling the transition on
CompositeStateMachine that processes messages of
type CompositeMessage.

o This transition then calls transitions on Component-
StateMachines that are responsible for the concerns
multiplexed on the incoming message (de-multi-
plexing). It must call transitions in the right order, so
that causal dependencies are met (sequencing), and it
must trigger the sending of outgoing composite
messages as soon as ComponentStateMachines have
generated all constituent outbound micro messages.

o Transitions of ComponentStateMachines use the
MessageCreator to gain access to the right outgoing
composite messages for which they have data ready
(message multiplexing). Through proper micro message
interfaces they should only have access to the fields of
composite messages that are relevant to them.

7. CONSEQUENCES
The Selex pattern has the following benefits and liabilities:
1. ComponentStateMachines separate responsibilities. In

distributed systems design, we often try to get by with a
minimum set of messages, meaning that a few messages
cover many responsibilities. De-multiplexing and sequencing
of incoming messages as well as multiplexing to outgoing
messages allow reversing the cluttering effects of such
optimizations on the internal design. ComponentState-
Machines can be developed and tested independently since
they do not call each other and micro message interfaces can
shield them from protocol composition.

2. ComponentStateMachines are potential units of reuse.
SIP uses the authentication protocol from Section 2 not just
for RegisterRequests. Every SIP request could be
authenticated this way. If you apply the Selex pattern, you
can reuse the Authentication ComponentStateMachine
for a completely different CompositeStateMachine that is
handling other SIP requests. You must make sure, though,
that the other SIP request and response implement the
expected micro message interfaces. The transition for the
other SIP request on the new CompositeStateMachine
will handle the differences in sequencing and de-

multiplexing the request. [3] and [4] report on an industrial
project where legacy code was refactored towards a Selex
design resulting in 20 ComponentStateMachines, which
were reused in more than 10 different protocol variants.

3. Collaborations encapsulate behavior across agent
boundaries. If there are multiple state machines
communicating with each other, such as the registrar and the
registering user agent from the earlier SIP example, you can
apply the Selex pattern to all communicating state machines.
In that case, ComponentStateMachines can be viewed as
various roles that a CompositeStateMachine (call it agent
in this context) plays during execution of the communication
protocol. For SIP registration, we have two agents, the
registrar and the registering user agent, where both contain
an authentication role as well as a role for address binding.
Together, the roles of one responsibility form a collaboration
that provides a distinct service to its environment. The
collaboration-based view makes it much easier to understand
end-to-end behavior of distributed systems, since it promotes
separate reasoning about collaborations, collaboration
composition, and eventually the entire system behavior.
Note, however, that you do not have to apply Selex to all of
the agents, if you are not interested in end-to-end behavior.

4. CompositeStateMachine can be automatically generated.
Most of the inherent complexity of a Selex design resides in
CompositeStateMachine. However, there are tools that
allow specifying component state machines, causal
dependencies between them, as well as multiplexing of
messages. These specifications are amenable to validation
and code generation, so that CompositeStateMachine can
be automatically generated from a declarative specification
of message sequencing and multiplexing plus a model of
each component state machine.

5. Supporting new ComponentStateMachines is difficult.
When it is necessary to add a new ComponentState-
Machine to the composite, many transitions of Composite-
StateMachine might be due for a complete review. The
encoded causal dependencies can be arranged in subtle ways
and they need to be rechecked, so that new causal
dependencies do not break old ones. This is why a code
generation approach in combination with validation tools is
so powerful in this context.

8. IMPLEMENTATION
Consider the following issues when implementing the Selex
pattern:
1. Alternative implementation of ComponentStateMachines.

Previous sections made the assumption that component state
machines are simple enough so that you can implement them
with a straightforward flag-and-switch approach. You can
also use another design, in particular, if a component state
machine becomes more complex. Possible alternatives to
flag-and-switch are the many other state machine design
patterns ([1] gives an overview). However, make sure that
complexity of the component state machine does not arise
from message multiplexing. In that case, first try to further
decompose the state machine with the Selex pattern.

2. Multiple instances of CompositeStateMachine. So far, we
have not considered that multiple instances of Composite-
StateMachine may run concurrently. In that case, you need

a facility for message correlation, i.e., a way to map an
incoming composite message to the right instance of
CompositeStateMachine. Message correlation will be
determined based on certain fields of an incoming message,
where different messages might use different fields as input
to the mapping function. For some messages the Com-
positeStateMachine must be initially created.

3. Non-multiplexed incoming and outgoing messages. Many
incoming/outgoing messages of a CompositeState-
Machine might actually belong to just one concern. You can
treat those messages as multiplexed messages containing just
one micro message and they will fit right into the Selex
design.

4. Standard implementation of CompositeStateMachine.
Code for message sequencing represents most of the
complexity of CompositeStateMachine, but you can
always follow a similar code structure for Composite-
StateMachine transitions (cf. sample code in Section 4): at
the top level, use an if/else-statement differentiating behavior
according to the current state of the CompositeState-
Machine, where composite state is the Cartesian product of
control states of all ComponentStateMachines. Depending
on the current composite state you might want to process an
incoming composite message differently. If/else-clauses for
the different composite states contain nested conditional
statements (if/else or while). At the beginning of each level
you call a ComponentStateMachine transition that is
enabled in the current composite state. The transition call is
followed by an if/else statement differentiating behavior
according to the possible target control states resulting from
the transition execution. The new target control state changes
the composite state and may then enable transitions from
other ComponentStateMachines which might then be
called and further change composite state, etc. Note that a
CompositeStateMachine transition contains only the
message sequencing logic, calls to ComponentState-
Machine transitions, and calls to send methods of
MessageCreator. MessageCreator is called when an
outgoing composite message is ready to be sent, i.e., when
ComponentStateMachines have generated all constituent
micro messages.

5. Alternative implementation of CompositeStateMachine.
The logic for composing ComponentStateMachines is
hidden within CompositeStateMachine, which is itself
another state machine. The problem with the standard
implementation of CompositeStateMachine transitions is
potential duplication of code. It is possible that the outer
conditional logic that differentiates behavior according to
composite state at message arrival is the same for most of the
incoming messages. It is also possible that code segments
within the outer if/else-clauses are duplicated. You can
resolve code duplication by refactoring CompositeState-
Machine towards the State pattern [2] or one of its
derivatives.

9. SAMPLE CODE
We illustrate the missing pieces for the SIP registrar example
from Section 2. SIP registration is a stateless protocol, meaning
that the registrar does not keep any protocol state once a

RegisterRequest has been processed. As a consequence, we do
not bother with multiple instances of CompositeState-
Machine (Section 8).
For this example a straightforward flag-and-switch approach for
implementing ComponentStateMachines will suffice. Sym-
bolic constants denote different control states, and the current
control state is held in a protected field of ComponentState-
Machine.

public abstract class ComponentStateMachine {
 protected static final int AUTH_OFFSET = 0;
 protected static final int BIND_OFFSET = 10;
 protected int controlState;

 public boolean isControlState(int controlState) {
 return (this.controlState == controlState);
 }
}

public class Authentication extends ComponentStateMachine
{
 public static final int IDLE = AUTH_OFFSET + 0;
 public static final int AUTHENTICATED=AUTH_OFFSET + 1;
 public static final int FAILED=AUTH_OFFSET + 2;

 public Authentication(){
 controlState = IDLE;
 }

 public void authenticate(IAuthRequest inboundMicroMsg,

 MessageCreator msgCreator) {
 IAuthResponse response =
 msgCreator.createAuthResponse();
 //1. Use data from inboundMicroMsg to do
 // authentication.
 //2. Set proper values in response.
 //3. Depending on authentication result
 // switch to new target control state.
 }
}

SIP registration uses only one outgoing composite message
namely RegisterResponse. It is guaranteed that there exists at
most one instance of RegisterResponse at all times, so that
MessageCreator can manage it much like a Singleton [2]. The
constructor of RegisterResponse has package scope to prevent
ComponentStateMachines from creating instances directly. An
instance will be abandoned after it has been sent. Note that the
createX() methods encapsulate the downcast for Component-
StateMachines.

public class MessageCreator {
 private RegisterResponse _instance = null;

 private RegisterResponse instance() {
 if (_instance == null)
 _instance = new RegisterResponse();
 return _instance;
 }

 public IAuthResponse createAuthResponse() {
 return instance();
 }

 public IBindResponse createBindResponse() {
 return instance();
 }

 public void sendRegisterResponse(){
 assert (_instance.isComplete());
 //encode and send message
 _instance = null;
 }
}

10. KNOWN USES
Multiple projects at Avaya Labs have used the Selex pattern.
Among them are registration, gateway, and conferencing
applications. Experience reports on one project are publicly
available [3], [4].

11. RELATED PATTERNS
ComponentStateMachines as well as CompositeState-
Machine can be implemented according to the State pattern [2] or
other state machine patterns ([1] gives an overview).

12. ACKNOWLEDGMENTS
The authors would like to thank their PLoP shepherd, Paul
Adamczyk, for his suggestions during the revision of this paper
and for helping to improve the presentation.

13. REFERENCES
[1] Adamczyk, P. 2003 Anthology of Finite State Machine

Design Patterns. PLoP
[2] Gamma, E., Helm, R., Johnson, R., and Vlissides, J. 1995

Design Patterns. Addison-Wesley
[3] Geppert, B. and Roessler, F. 2004 Effects of Refactoring

Legacy Protocol Implementations: A Case Study. Metrics
Symposium

[4] Geppert, B., Mockus, A., and Roessler, F. 2005 Refactoring
for Changeability: A way to go? Metrics Symposium

[5] Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston, A.,
Peterson, J., Sparks, R., Handley, M., and Schooler, E. 2002
SIP: Session Initiation Protocol. RFC 3261

