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ABSTRACT 
State machine specifications and their implementations are often 
complex because they have many responsibilities mixed together. 
A potential cause for responsibility clutter is message multi-
plexing, which means that one or more incoming and/or outgoing 
messages of the state machine contain data that belongs to 
different concerns. The Selex pattern untangles responsibility 
clutter due to message multiplexing without changing the external 
behavior of the state machine. 

Categories and Subject Descriptors 
D.2.11 [Software Architectures]: Patterns, Information hiding, 
Domain-specific architectures; D.2.2 [Design Tools and 
Techniques]: State diagrams, Modules and interfaces 

General Terms 
Design. 

Keywords 
Design pattern, Communication protocol, State machine, 
Composition, Message multiplexing. 

1. INTENT 
Decompose a state machine cluttered by message multiplexing 
into a set of component state machines with clearly separated 
responsibilities. The externally visible behavior of the composite 
is kept unchanged. 

What is message multiplexing? In the field of telecommuni-
cations, message multiplexing means transmitting messages from 
multiple sources over a single channel. Here, we use message 
multiplexing as a software engineering term, meaning that a single 
message contains data from separate concerns. 

2. MOTIVATION 
Consider the SIP [5] registration protocol. It has two 
responsibilities: a) authenticating the registering user agent 
(authentication) and b) submitting user locations to a location 
service (address binding). Figure 1(a) illustrates the four-way 
handshake for successfully registering a user agent. You could 
model and eventually implement the SIP registrar as shown in 
Figure 1(b). The state machine looks fairly simple. After all it has 
just one transition. The problem is that SIP puts data for 
authentication as well as address binding into the same incoming 
message RegisterRequest and therefore the single transition 
must handle both responsibilities. If you wanted to add many 
more responsibilities (by extending RegisterRequest) this 
approach would not scale very well. 
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(b) SIP registrar - authentication mixed with address binding 

 

Figure 1. SIP registration. 



Rather than following the approach of Figure 1(b), you could first 
de-multiplex RegisterRequest into an authentication and 
address binding part (Figure 2(c)) and then feed these micro 
messages into separate component state machines - one 
responsible for authentication (Figure 2(a)) and another one 
responsible for address binding (Figure 2(b)). While processing 
their micro messages, the component state machines create new 
outbound micro messages. Once they are all ready, you can 
multiplex them to the outgoing RegisterResponse and send the 
composite message over the network (Figure 2(c)). 

The component state machines are simple, so a straightforward 
flag-and-switch approach will suffice for their implementation. 
You need one class for authentication, another one for address 
binding, and implement each transition as a separate method 
(Figure 3). 

To de-multiplex a RegisterRequest you can define a separate 
interface for each of the two responsibilities. Authentication 
and AddressBinding get a reference to the composite message, 
but will only see the part relevant to them (Figure 3). You have to 
make a decision on how to sequence transition invocations. For 
instance, you can only submit an address binding to the location 
service, if the registering user agent has been successfully 
authenticated. You can express such causal dependencies as 
conditional statements on the control state of component state 
machines (cf. register() method in Figure 3). 

For decoupling of responsibilities the component state machines 
should not call each other and should not know about each other. 
Still, they have to contribute jointly to the external Register-
Response message. You therefore need another object (Mes-
sageCreator) that coordinates creation of outgoing messages 
(cf. Section 9). 

3. APPLICABILITY 
Use the Selex pattern when: 

1. An incoming and/or outgoing message of a state machine 
carries data that belongs to different concerns and you want 
to decompose the state machine into single responsibilities. 

2. Changing externally visible behavior of the state machine is 
not possible.  
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(c) Part of glue code 

 
 
 

Figure 2. SIP registrar - 
authentication separated from address binding. 
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Figure 3. SIP registrar - Selex design. 



4. STRUCTURE 

5. PARTICIPANTS 
• AbstractComponentStateMachine 

(ComponentStateMachine) 
o Implements common behavior of Component-

StateMachines. By calling isControlState(), 
transitions of CompositeStateMachine can 
determine in what control state a Component-
StateMachine currently is. 

• ComponentStateMachine (Authentication, 
AddressBinding) 

o ComponentStateMachine is a state machine 
implementing a well separated responsibility. For 
each concern that is multiplexed on incoming 
and/or outgoing messages of CompositeState-
Machine there is one ComponentStateMachine. 

o An incoming/outgoing message of Component-
StateMachine is called inbound/outbound micro 
message. Micro messages are not individually 
transmitted over the network. Micro messages are 
bundled into composite messages and then sent 
over the network. 

o A micro message can be represented by a micro 
message interface on composite messages, 
restricting access to only the relevant fields of a 
composite message. 

o ComponentStateMachine creates outbound 
micro messages only through the Message-
Creator. 

• CompositeStateMachine (Registrar) 
o CompositeStateMachine is a state machine 

responsible for composing ComponentState-
Machines. 

o An incoming/outgoing message of Composite-
StateMachine is called incoming/outgoing 
composite message. Composite messages are sent 
over the network and consist of one or more micro 
messages generated/processed by Component-
StateMachines. 

o CompositeStateMachine has one transition for 
each incoming composite message, which handles 
de-multiplexing and sequencing of the message as 
well as triggering the transmission of outgoing 
composite messages over the network. 

o Message sequencing means calling transitions of 
ComponentStateMachines in the right order, so 
that causal dependencies among Component-
StateMachines are met. 

o Message de-multiplexing means splitting an 
incoming composite message into its constituent 
micro messages and passing the micro messages to 
the right transitions of the right Component-
StateMachines. Splitting composite messages 
into micro messages can be implemented by micro 
message interfaces on composite messages, so that 
a ComponentStateMachine receives a reference 
to a composite message, but has only limited 
access to its fields. 

 MessageCreator 
o Creates and destroys outgoing composite 

messages. 
o Provides a point of access to outgoing composite 

messages for ComponentStateMachines. 
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CompositeStateMachine

transition1(CompositeMessage2 incMsg)
…

MessageCreator mc =new MessageCreator();
ComponentStateMachineA stm = new ComponentStateMachineA();
…

CompositeMessage2 incMsg
…

this.incMsg = incMsg;
//Message processing differs depending on current control state of
//CompositeStateMachine, which is the Cartesian product of control
//states of all ComponentStateMachines.
if (stm.isControlState(...) && ...) {

//Call a ComponentStateMachine transition that is currently enabled.
stm.transition1(this.incMsg, mc);
//Further message processing differs depending on the change in
//control state of CompositeStateMachine.
if (stm.isControlState(…)) {

…
//Trigger sending of a response when ComponentStateMachines
//have generated all constituent micro messages.
mc.sendCompositeMessage1();
…

} else if (stm.isControlState(...))
…

…
} else if (stm.isControlState(…) && ...)

…
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…

MessageCreator mc =new MessageCreator();
ComponentStateMachineA stm = new ComponentStateMachineA();
…

CompositeMessage2 incMsg
…

this.incMsg = incMsg;
//Message processing differs depending on current control state of
//CompositeStateMachine, which is the Cartesian product of control
//states of all ComponentStateMachines.
if (stm.isControlState(...) && ...) {

//Call a ComponentStateMachine transition that is currently enabled.
stm.transition1(this.incMsg, mc);
//Further message processing differs depending on the change in
//control state of CompositeStateMachine.
if (stm.isControlState(…)) {

…
//Trigger sending of a response when ComponentStateMachines
//have generated all constituent micro messages.
mc.sendCompositeMessage1();
…

} else if (stm.isControlState(...))
…

…
} else if (stm.isControlState(…) && ...)

…
 



o Makes sure that ComponentStateMachines 
contribute to the right instances of outgoing 
composite messages, i.e., it implements multi-
plexing of outbound micro messages to outgoing 
composite messages. 

o Reduces dependencies among ComponentState-
Machines. Each ComponentStateMachine 
operates on micro messages (represented by inter-
faces on composite messages) instead of composite 
messages. You can change multiplexing of 
outbound micro messages to composite messages 
without affecting ComponentStateMachines as 
long as they implement the same micro message 
interfaces. 

6. COLLABORATIONS 
o After an incoming composite message of type Com-

positeMessage is received and decoded, processing of 
the message starts with calling the transition on 
CompositeStateMachine that processes messages of 
type CompositeMessage. 

o This transition then calls transitions on Component-
StateMachines that are responsible for the concerns 
multiplexed on the incoming message (de-multi-
plexing). It must call transitions in the right order, so 
that causal dependencies are met (sequencing), and it 
must trigger the sending of outgoing composite 
messages as soon as ComponentStateMachines have 
generated all constituent outbound micro messages. 

o Transitions of ComponentStateMachines use the 
MessageCreator to gain access to the right outgoing 
composite messages for which they have data ready 
(message multiplexing). Through proper micro message 
interfaces they should only have access to the fields of 
composite messages that are relevant to them. 

7. CONSEQUENCES 
The Selex pattern has the following benefits and liabilities: 
1. ComponentStateMachines separate responsibilities. In 

distributed systems design, we often try to get by with a 
minimum set of messages, meaning that a few messages 
cover many responsibilities. De-multiplexing and sequencing 
of incoming messages as well as multiplexing to outgoing 
messages allow reversing the cluttering effects of such 
optimizations on the internal design. ComponentState-
Machines can be developed and tested independently since 
they do not call each other and micro message interfaces can 
shield them from protocol composition. 

2. ComponentStateMachines are potential units of reuse. 
SIP uses the authentication protocol from Section 2 not just 
for RegisterRequests. Every SIP request could be 
authenticated this way. If you apply the Selex pattern, you 
can reuse the Authentication ComponentStateMachine 
for a completely different CompositeStateMachine that is 
handling other SIP requests. You must make sure, though, 
that the other SIP request and response implement the 
expected micro message interfaces. The transition for the 
other SIP request on the new CompositeStateMachine 
will handle the differences in sequencing and de-

multiplexing the request. [3] and [4] report on an industrial 
project where legacy code was refactored towards a Selex 
design resulting in 20 ComponentStateMachines, which 
were reused in more than 10 different protocol variants. 

3. Collaborations encapsulate behavior across agent 
boundaries. If there are multiple state machines 
communicating with each other, such as the registrar and the 
registering user agent from the earlier SIP example, you can 
apply the Selex pattern to all communicating state machines. 
In that case, ComponentStateMachines can be viewed as 
various roles that a CompositeStateMachine (call it agent 
in this context) plays during execution of the communication 
protocol. For SIP registration, we have two agents, the 
registrar and the registering user agent, where both contain 
an authentication role as well as a role for address binding. 
Together, the roles of one responsibility form a collaboration 
that provides a distinct service to its environment. The 
collaboration-based view makes it much easier to understand 
end-to-end behavior of distributed systems, since it promotes 
separate reasoning about collaborations, collaboration 
composition, and eventually the entire system behavior. 
Note, however, that you do not have to apply Selex to all of 
the agents, if you are not interested in end-to-end behavior. 

4. CompositeStateMachine can be automatically generated. 
Most of the inherent complexity of a Selex design resides in 
CompositeStateMachine. However, there are tools that 
allow specifying component state machines, causal 
dependencies between them, as well as multiplexing of 
messages. These specifications are amenable to validation 
and code generation, so that CompositeStateMachine can 
be automatically generated from a declarative specification 
of message sequencing and multiplexing plus a model of 
each component state machine. 

5. Supporting new ComponentStateMachines is difficult. 
When it is necessary to add a new ComponentState-
Machine to the composite, many transitions of Composite-
StateMachine might be due for a complete review. The 
encoded causal dependencies can be arranged in subtle ways 
and they need to be rechecked, so that new causal 
dependencies do not break old ones. This is why a code 
generation approach in combination with validation tools is 
so powerful in this context. 

8. IMPLEMENTATION 
Consider the following issues when implementing the Selex 
pattern: 
1. Alternative implementation of ComponentStateMachines. 

Previous sections made the assumption that component state 
machines are simple enough so that you can implement them 
with a straightforward flag-and-switch approach. You can 
also use another design, in particular, if a component state 
machine becomes more complex. Possible alternatives to 
flag-and-switch are the many other state machine design 
patterns ([1] gives an overview). However, make sure that 
complexity of the component state machine does not arise 
from message multiplexing. In that case, first try to further 
decompose the state machine with the Selex pattern. 

2. Multiple instances of CompositeStateMachine. So far, we 
have not considered that multiple instances of Composite-
StateMachine may run concurrently. In that case, you need 



a facility for message correlation, i.e., a way to map an 
incoming composite message to the right instance of 
CompositeStateMachine. Message correlation will be 
determined based on certain fields of an incoming message, 
where different messages might use different fields as input 
to the mapping function. For some messages the Com-
positeStateMachine must be initially created.  

3. Non-multiplexed incoming and outgoing messages. Many 
incoming/outgoing messages of a CompositeState-
Machine might actually belong to just one concern. You can 
treat those messages as multiplexed messages containing just 
one micro message and they will fit right into the Selex 
design. 

4. Standard implementation of CompositeStateMachine. 
Code for message sequencing represents most of the 
complexity of CompositeStateMachine, but you can 
always follow a similar code structure for Composite-
StateMachine transitions (cf. sample code in Section 4): at 
the top level, use an if/else-statement differentiating behavior 
according to the current state of the CompositeState-
Machine, where composite state is the Cartesian product of 
control states of all ComponentStateMachines. Depending 
on the current composite state you might want to process an 
incoming composite message differently. If/else-clauses for 
the different composite states contain nested conditional 
statements (if/else or while). At the beginning of each level 
you call a ComponentStateMachine transition that is 
enabled in the current composite state. The transition call is 
followed by an if/else statement differentiating behavior 
according to the possible target control states resulting from 
the transition execution. The new target control state changes 
the composite state and may then enable transitions from 
other ComponentStateMachines which might then be 
called and further change composite state, etc. Note that a 
CompositeStateMachine transition contains only the 
message sequencing logic, calls to ComponentState-
Machine transitions, and calls to send methods of 
MessageCreator. MessageCreator is called when an 
outgoing composite message is ready to be sent, i.e., when 
ComponentStateMachines have generated all constituent 
micro messages. 

5. Alternative implementation of CompositeStateMachine. 
The logic for composing ComponentStateMachines is 
hidden within CompositeStateMachine, which is itself 
another state machine. The problem with the standard 
implementation of CompositeStateMachine transitions is 
potential duplication of code. It is possible that the outer 
conditional logic that differentiates behavior according to 
composite state at message arrival is the same for most of the 
incoming messages. It is also possible that code segments 
within the outer if/else-clauses are duplicated. You can 
resolve code duplication by refactoring CompositeState-
Machine towards the State pattern [2] or one of its 
derivatives. 

9. SAMPLE CODE 
We illustrate the missing pieces for the SIP registrar example 
from Section 2. SIP registration is a stateless protocol, meaning 
that the registrar does not keep any protocol state once a 

RegisterRequest has been processed. As a consequence, we do 
not bother with multiple instances of CompositeState-
Machine (Section 8). 
For this example a straightforward flag-and-switch approach for 
implementing ComponentStateMachines will suffice. Sym-
bolic constants denote different control states, and the current 
control state is held in a protected field of ComponentState-
Machine. 
 
public abstract class ComponentStateMachine { 
   protected static final int AUTH_OFFSET = 0; 
   protected static final int BIND_OFFSET = 10; 
   protected int controlState; 

 
   public boolean isControlState(int controlState) { 
      return (this.controlState == controlState); 
   } 
} 

 
 
public class Authentication extends ComponentStateMachine 
{ 
   public static final int IDLE = AUTH_OFFSET + 0;  
   public static final int AUTHENTICATED=AUTH_OFFSET + 1; 
   public static final int FAILED=AUTH_OFFSET + 2; 
  
   public Authentication(){ 
      controlState = IDLE; 
   } 
  
   public void authenticate(IAuthRequest inboundMicroMsg, 

           MessageCreator msgCreator) { 
          IAuthResponse response =   
                        msgCreator.createAuthResponse(); 
         //1. Use data from inboundMicroMsg to do   
         //   authentication.  
         //2. Set proper values in response. 
         //3. Depending on authentication result 
         //   switch to new target control state. 
   } 
} 

 
SIP registration uses only one outgoing composite message 
namely RegisterResponse. It is guaranteed that there exists at 
most one instance of RegisterResponse at all times, so that 
MessageCreator can manage it much like a Singleton [2]. The 
constructor of RegisterResponse has package scope to prevent 
ComponentStateMachines from creating instances directly. An 
instance will be abandoned after it has been sent. Note that the 
createX() methods encapsulate the downcast for Component-
StateMachines. 
 

public class MessageCreator { 
   private RegisterResponse _instance = null; 
 
   private RegisterResponse instance() { 
      if (_instance == null) 
         _instance = new RegisterResponse(); 
      return _instance; 
   } 
 
   public IAuthResponse createAuthResponse() { 
      return instance(); 
   } 
 



   public IBindResponse createBindResponse() { 
      return instance(); 
   } 
  
   public void sendRegisterResponse(){ 
      assert (_instance.isComplete()); 
      //encode and send message 
      _instance = null; 
   } 
} 

10. KNOWN USES 
Multiple projects at Avaya Labs have used the Selex pattern. 
Among them are registration, gateway, and conferencing 
applications. Experience reports on one project are publicly 
available [3], [4]. 

11. RELATED PATTERNS 
ComponentStateMachines as well as CompositeState-
Machine can be implemented according to the State pattern [2] or 
other state machine patterns ([1] gives an overview). 
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