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ABSTRACT
People who design their own pool of worker threads [33,
pp 290–298] or processes have to consider how to shut down
the workers again or how to dynamically adapt the num-
ber of workers to varying load. Especially with regard to
application termination you may have the choice between an
immediate destruction of the pool and a more graceful shut-
down. The pattern proposed helps to portably implement
such termination and load adaptation mechanisms that as-
sume you voted for the second choice. The main area of
application are the internals of active objects [40] and
similar designs that delegate work to a pool of threads or
processes to execute service requests asynchronously from
their actual invocation.

For the pattern proposed we identified usage examples in
popular existing applications or libraries.

Both a real world example and sample code accompany
the pattern presentation. This sample code is in C++.

The presentation of the pattern follows the style
well known from [11] and [44]. This pattern is based upon
other patterns. Typographic conventions for references to
other patterns are similar to [3]. A Glossary provides thumb-
nails of many of these patterns.

Categories and Subject Descriptors
D.1.3 [Programming Techniques]: Concurrent Program-
ming—Parallel programming ; D.3.3 [Programming Lan-
guages]: Language Constructs and Features—Dynamic stor-
age management ; D.2.11 [Software Engineering]: Soft-
ware Architectures—Patterns; D.2.4 [Software Engineer-
ing]: Software/Program Verification—Programming by con-
tract ; D.2.7 [Software Engineering]: Distribution, Main-
tenance, and Enhancement—Portability; D.4.0 [Operating
Systems]: General—Microsoft Windows NT, UNIX
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Sir, my need is sore.
Spirits that I’ve cited
My commands ignore.

Johann Wolfgang von Goethe: The Sorcerer’s
Apprentice [23]

1. INTENT
Safely shut down pools of worker threads [33, pp 290–

298] or processes without resource leakages and premature
rollback of transactions. The design proposed aims at
portability.

2. EXAMPLE
Consider order processing in a restaurant. The customer

places his or her order with the waiter, the face of the restau-
rant to its guests.1 At the interface between the dining area
and the kitchen, which is also the interface between the wait-
ers and the kitchen staff, an orders holder is located. Figure
1 shows a nice example. The waiter attaches the order notice
to one of the spring holders, and the next free member of the
kitchen staff takes one of the notices queued and prepares
the meal.

Now do not look at the whole order processing—instead
let us focus on the following two scenarios only:

Cancellation What happens when the restaurant is about
to close? Is the orders holder operated differently than
during normal service hours? Customers who success-
fully placed their orders and perhaps waited for some
period of time expect to get their food and drinks even
though the waiters reject new orders now. When can
the kitchen staff leave off work?

Adaptation to Decreasing Load What happens when
the noon rush is over? There are fewer customers
around now, and they order less demanding food and
drinks than for lunch. So some of the cooks can take

1This seems to be a common example for active object
[40]. One of several sources is [35, p 20].



Figure 1: An orders bar at a restaurant interfaces between waiters and kitchen staff. Note that the capacity is bounded by
the finite number of spring holders. Photograph: Thomas Hoof Produkt GmbH [56]

a break and probably take their own lunch now. Is
the orders holder operated differently than during the
rush? When can some members of the kitchen staff
finally take a break or leave off work? Do customers
notice the reduced capacity of the kitchen?

This pattern addresses these scenarios and proposes a gen-
eral solution to both. It investigates similarities and differ-
ences between them.

3. CONTEXT
You manually implement a pool of worker threads or

processes instead of using a ready–made building block pro-
vided by some library. This pool is going to be used as
an implementation detail in an active object. Active
objects decouple the invocation of services from their ac-
tual execution. Active objects manage their own pool of
Units of Execution [34, pp 217–221], and the actual execu-
tion of the services requested is carried out by these Units.
All Units run the same code, it’s the data that differs. An
example of an active object is a webserver. More sophis-
ticated examples, that also fulfill real–time constraints, are
reactive systems.

The code executed by the Units of Execution basically
consists of an infinite loop that contains a blocking system
call to temporarily yield execution of a Unit until a client
asynchronously requests another service from the
active object. Monitor objects [43] and reactors [52,
50, 45] represent these blocking system calls to the Units of
Execution within active objects.

Your product should fulfill certain reliability constraints:
For example, the application you build probably requires
long uptimes.

4. PROBLEM
How to implement destruction of active objects?
Active objects need to be shut down when the applica-

tion receives a termination request. On construction active
objects create a pool of Units of Execution. These Units
actually make active objects active. But how to recall
the Units again once unleashed? Different from e.g. pools of
Units of Execution in certain parallel numerical applications,
that loop through a number of timesteps known in advance
and only may need some coordination with each other, the
Units in active objects receive their work from the out-
side, and the amount of work is not known a priori. In some
parallel numerical applications the Units can terminate on
their own, in active objects they need to be commanded
to do so.

The Units of Execution fulfill useful purposes during their
lifetime, and the fulfillment of their respective duties takes
some time. Some Units may find themselves in the middle
of the execution of a transaction, when they receive the re-
call. Some Units may have acquired expensive resources like
memory or even more expensive ones like mutual exclusion
locks when they are commanded to terminate. The creation
of files is also a form of resource acquisition. Some applica-
tions create files for locking purposes for example and write
their process identifier into the file. The creation of files ex-
ternalizes the resource state [22], however, and an abrupt
termination of the Units may leave such files dangling, which
gives a false impression of the state of the application then.

On the other hand, some state is virtually expected to
be externalized just before termination of an application to
allow active objects to seamlessly resume work when they
start again. So how to give the Units supposed to terminate
an opportunity to still write their state to disk?

Active objects may have a backlog of work—should this



backlog be simply discarded on destruction of the respective
active object? In case you implement the destruction in
this way you may need to solve another problem: How do
the clients that produced this backlog notice this situation
to actually become able to recover from it?

Additionally there might be the need to dynamically adapt
the degree of concurrency within the active object to
varying load, which means both increasing and decreasing
the number of Units of Execution, the latter being a similar
case to application termination. As the application is sup-
posed to run uninterruptedly for long periods of time, you
do not want resource leaks to emerge from these adaptation
mechanisms.

Some programming languages and operating systems as-
sist with the solution of the problem more than others (see
e.g. Sections 10.3 and 10.4). Some do not even provide sys-
tem calls to assist with the solution of these problems. So
particularly it is a challenge to portably destroy active ob-
jects.

5. FORCES

• Resource leaks are evil at runtime, because they ac-
cumulate. They are still ugly at termination, consider
dangling lockfiles, files with the id of the (now gone)
process, or still open connections to other systems, for
example.

• Application termination needs to be at least as reliable
as startup.

• Application termination is expected to happen quickly
once demanded.

• The higher the level of abstraction, the better the
portability.

• The way its termination is implemented and the con-
tracts between an active object and its clients [37,
pp 331–438] agreed upon on accepting the respective
service requests must match.

• While blocking in a system call a Unit of Execution
can not even terminate.

• Especially Units of Execution blocking in certain sys-
tem calls are good candidates to cancel.

Simply unplugging the computer reliably and quickly ter-
minates your active object—but what if it has written a
file that is going to be interpreted as a vital sign by the ac-
tive object the next time it is about to startup, so it finally
refuses to start because it assumes there is already another
one? An application developer could also be tempted to let
the Units simply check a flag whether to process new work or
quit—but what happens in a low load situation when there
is no new work? The check passed hours ago and the Unit
blocks waiting for new work.

6. SOLUTION
Add a special exception class to your code. Identify those

calls the concurrent Units of Execution may infinitely block
in. Change the implementation of these calls as follows: Let
producers throw an instance of the exception class on calling

Figure 2: Activity diagram illustrating active object with
deferred cancellation. For the sake of readability the
concurrency inside was limited to one Unit of Execution.

a respective function if and only if a certain flag is set. Let
consumers throw on calling a respective function if and only
if both the same flag is set and the backlog is empty. On
termination set this flag and unblock the Units of Execution,
both within the same thread safe interface [47] member
function.

This solution can be adapted to also apply for the problem
of adaptation of the number of Units of Execution to varying
load: In this case do not notify producers and let a finite
number of consumers throw on calling a respective function
if and only if a certain flag is set, but do not take the backlog
into account in this test.

A first sketch of the solution is shown in Table 1. Figure 2
sketches the activity of active objects and their destruc-
tion. The design of the life cycle phases prior to destruction
is not discussed in this pattern, so there are no activities
related to these phases in the diagram. Section 11 refers to
patterns that are concerned with such activities.

6.1 Participants

ActivationList Queues service requests to ActiveObject
until there is a Unit of Execution from PoolOfUnit-
sOfExecution ready to finally execute the call. Acti-
vationList implements the monitor object pattern,
because it is shared among the Units of Execution of
LocalClient and PoolOfUnitsOfExecution, and it uses
synchronization depending on its state. Note that
this participant does need to be explicit in case of
active object and some half–sync / half–async
server designs [51, 41], but can be left implicit in case of
leader / followers designs [42], [53, pp 754–756].
ActivationLists can be disabled and indicate this by
means of an ActivationListDisabled exception.

ActivationListDisabled Exception indicating not to ex-
pect any services from ActivationList.



Table 1: Class–Responsibility–Collaboration Cards

ActivationList
Hands service requests
from

ActiveObject

over to PoolOfUnitsOfExecu-
tion

First unblocks. . . RemoteClient and
members of PoolOf-
UnitsOfExecution

. . . then throws ActivationListDis-
abled

(a) Activation List

ActivationListDisabled
Thrown by ActivationList

(b) Activation List Disabled

ActiveObject
Creates all members of PoolOf-

UnitsOfExecution
Delegates service re-
quests from

RemoteClients

to PoolOfUnitsOfExecu-
tion

by means of ActivationList
Disables ActivationList
Joins all members of PoolOf-

UnitsOfExecution

(c) Active Object

LocalClient
Creates ActiveObject
Destroys ActiveObject

(d) Local Client

PoolOfUnitsOfExecution
Takes service requests
from

ActivationList

and executes them.
Reacts upon ActivationListDis-

abled

(e) Pool of Units of Execution

RemoteClients
Request services from ActiveObject
React upon ActivationListDis-

abled

(f) Remote Clients



ActiveObject Decouples a service request from its actual
execution. So service requests are handled asynchro-
nously. ActiveObjects delegate work to a PoolOfU-
nitsOfExecution it owns.2 It indirectly hands work
over to the pool by means of the intermediate Activa-
tionList. ActiveObject may implement a non–trivial
scheduling policy. On destruction ActiveObject first
disables ActivationList and then joins the members of
PoolOfUnitsOfExecution.

LocalClient The LocalClient owns ActiveObject. First it
creates an ActiveObject, and later destroys it.

PoolOfUnitsOfExecution Each Unit takes member func-
tion requests out of ActivationList to execute them on
behalf of the ActiveObject. The Units handle Activa-
tionListDisabled exceptions. A Unit is called Servant
in the original active object pattern.

RemoteClients RemoteClients request services from Ac-
tiveObject.

Figure 3 sketches the participants and their relations to each
other.

6.2 Dynamics
At startup LocalClient creates ActiveObject, which in

turn creates ActivationList and PoolOfUnitsOfExecution.
The details were described in [40, p 425] and [6, pp 24–25].

This mechanism can be adapted to the case that by means
of some metric LocalClient gets forced to increase the size
of PoolOfUnitsOfExecution.

During the lifetime of ActiveObject RemoteClients send
service requests to ActiveObject. ActiveObject reifies the
requests as commands [19] and hands the commands over
to ActivationList, its command processor [9]. This also
was described in detail before. Here the patterns active
object, half–sync / half–async, and leader / fol-
lowers differ from each other.

The termination of ActiveObject starts with a person or a
parent process sending a termination signal to LocalClient.
LocalClient in turn disables ActivationList. ActivationList
sets a flag and wakes up all Units from PoolOfUnitsOfExe-
cution blocking in a member function of ActivationList to
receive new work. Before returning from the member func-
tion each Unit checks the flag set by the LocalClient Unit
of Execution before. Because it is set, the member function
is left now by means of throwing ActivationListDisabled.
Each Unit is given the chance to release resources and then
terminates. LocalClient then joins the Units of Execution,
i.e. it waits for all of them to terminate. Now LocalClient
releases its own resources including resources shared among
PoolOfUnitsOfExecution and terminates.

The latter mechanism can be adapted to the case that by
means of some metric LocalClient gets forced to reduce the
size of PoolOfUnitsOfExecution.

The dynamics of deferred cancellation is shown in
Figure 4.

2For the sake of this paper ActiveObjects include implemen-
tations of the half–sync / half–async and the leader /
followers pattern, because regarding to cancellation all
three are very similar to each other. For simplicity reasons
we merged the participants Proxy (a proxy [21, 12]) and
Scheduler of the original active object pattern here.

6.3 Rationale
This pattern is about controlled cancellation of Units of

Execution by another Unit of Execution.
On cancellation the ActivationList treats producers and

consumers differently: While producers are immediately sent
an exception, cancellation of consumers is deferred until
the list is empty—which surely happens because production
stops. The rationale behind this is to respect the contract
between producers that once successfully placed a service
request with ActiveObject and the ActiveObject that the
request gets eventually executed at all. Here a first deferral
happens. On adaptation to varying load, however, producers
never get notified. Therefore the backlog will not necessarily
clear. So for the desired number of consumers to terminate
they must be notified unconditionally instead.

The solution proposed provides for well defined cancella-
tion points: Upon disabling the member functions of Activa-
tionList are going to be unblocked and signal this special sit-
uation by throwing an exception. So the Units from PoolO-
fUnitsOfExecution receive this exception only if they call a
member function on the shared ActivationList. It is impor-
tant to understand, that therefore any transaction that does
not involve calls to ActivationList is never affected by pre-
mature rollback. Furthermore, even after catching such an
exception the Unit is given the chance to clean up. More gen-
erally, resources that are both acquired and again released
between calls to ActivationList by a Unit from PoolOfUnits-
OfExecution do not need special consideration regarding to
cancellation; all other resources acquired by a Unit from the
pool can be released in a finally block (dispose pattern [5,
pp 228–230], [38], [1]) or using the Resource Acquisition is
Initialization technique [55, pp 388–393], [54, pp 495–497],
also known as the execute–around object design pattern
[25, pp 4–7].

Each Unit from PoolOfUnitsOfExecution is not simply
being forced to immediately die. It is given the chance to
release resources. Here a second deferral can take place.

The suggested design consists of joinable Units of Execu-
tion, not of detached ones. So LocalClient can wait until the
last Unit from PoolOfUnitsOfExecution has terminated, be-
fore resources shared among the Units and itself are going
to be released. If you go for detached Units of Execution
instead, combine thread safe interface with one of the
following smart pointer patterns: counted or detached
counted body idiom [16, pp 173–179], [32, pp 429–434],
[55, pp 841–845] or shared ownership [15] to protect Ac-
tivationList and other shared resources from premature re-
lease (see Section 8.2.2 for an example).

Note that the call to ActivationList to disable its oper-
ations is asynchronous, too. LocalClient can continue to
work with virtually no delay. Later it can rendezvous [40,
pp 417,428–430] with the exit statuses of the Units by join-
ing them.

7. RESULTING CONTEXT
Blocking calls in PoolOfUnitsOfExecution were identified.

There is a mechanism in place to transmit cancellation re-
quests from LocalClient to the members of PoolOfUnitsOfEx-
ecution. All Units of Execution implement means to react
upon cancellation requests by releasing resources and finally
quitting.



Figure 3: Class diagram illustrating deferred cancellation

Figure 4: Sequence diagram illustrating deferred cancellation

7.1 Pros and Cons
The deferred cancellation pattern has the following

benefits:

1. Well–defined cancellation points. The control flows
of the working Units of Execution get interrupted at
clearly defined calls.

2. Opportunity granted to release resources. After receiv-
ing a cancellation request the workers can release re-
sources acquired before, be it memory, be it open files,
be it any other resource.

3. Portability. This pattern works on all platforms that
allow for handcrafting the monitor object pattern,
the core of ActivationList.

4. Cooperation. As pointed out by Anthony Williams,
one of the authors of the current Boost.Thread imple-
mentation, using exceptions to force termination gives
Units from PoolOfUnitsOfExecution great flexibility
to react upon such requests [59].

The deferred cancellation pattern has the following
liabilities:

1. Cooperation. Benefit 4 can also turn into a liabil-
ity. Each Unit from PoolOfUnitsOfExecution can re-
act upon ActivationListDisabled by ignoring it. As
LocalClient only terminates after all Units have termi-
nated, a malicious Unit has the power to veto against
termination.

2. Shutdown can take quite some time. Even if all Units
cooperate, the shutdown of the application takes the

time it takes to first shutdown all Units from PoolO-
fUnitsOfExecution and then shutdown the main Unit.
So especially if you can tolerate resource leakages, the
application of this pattern might be too much of a good
thing.

Additionally to these general pros and cons we identified
the following implementation specific ones.

The implementation technique of the deferred cancel-
lation pattern shown has the following liability:

3. There might be too few cancellation points. In case
of some half–sync / half–async or all leader /
followers server designs the blocking system calls
are select() (a reactor) or accept(), which you
have less control over than regarding to the condition
variables aggregated by monitor objects, the core of
ActivationList. A workaround is as follows: The con-
trolling Unit of Execution sends a network packet to
the port the application listens to. This unblocks the
leader. Then both the leader and the followers
may be treated as described above.

8. IMPLEMENTATION
We present two examples in this section. First the restau-

rant example from Section 2 gets resolved. Then we gener-
alize from the special example and present code that sup-
plements the code shown in the active object pattern.

8.1 Example Resolved
This example focuses on two scenarios. We present a so-

lution for each of these scenarios:

Cancellation The waiters will let the customers know that
the restaurant will close soon. They reject any new



orders, so no new notes get attached to the orders
holder. Any orders accepted will still be processed by
the kitchen staff, until the orders holder is empty. Af-
ter serving the meals to the customers there is time for
a final clean up of the kitchen to make it ready for the
next day to come. The worker who leaves last turns
off the lights and locks the door.

Adaptation to Decreasing Load The capacity of the
kitchen can be adapted to the lesser amount of or-
ders than during the noon rush. Those members of
the kitchen staff that are supposed to take a break
or leave off work do not simply drop everything. In-
stead they hand over their operations to their remain-
ing colleagues. This case is similar to the closing of
the restaurant in that the concurrency present in the
kitchen gets reduced, but it is different from this sce-
nario in that at best the customers do not notice any-
thing of the now decreased capacity of the kitchen.
They can order as usual. The orders holder gets op-
erated by both the waiters and the kitchen staff as
during the noon rush, only the throughput is different.

In both scenarios a certain kind of deferral takes place:
The employees involved do not simply go home when the
clock strikes, but some clean up or handover takes place be-
fore. This ordered phase out makes these scenarios quite
different from really catastrophic emergencies like the col-
lapse of the restaurant building.

8.2 Sample Code
Depending on the platforms the application is required to

work on an implementation might rely on features of the op-
erating system to shut down (see Section 10). If this is not
possible, you need a way to intercept blocking calls. The fol-
lowing two Sections conform to the description of the pattern
in that it steps into blocking calls not at wrapper facades
[49] of condition variables, the lowest possible layer [10] of
abstraction, but at the higher–level monitor object.

The code is presented as self–contained as possible. There-
fore we had to decide on the nature of the Units of Execution:
Here we consider threads. To allow for a quick identification
of the core of this pattern the most important entities have
been underlined, and a comparison between code artifacts
and the participants is given in Section 8.3.

8.2.1 Cancellation
The code in Listing 1 shows a very simple active object

taken from [40, p 425] without sophisticated scheduling: Ev-
ery service request gets executed as soon as there is a free
Unit of Execution available. Only the cancellation aspect is
shown in detail. Other aspects are discussed in [40, p 425].

Listing 1: Cancellability added to scheduler of active ob-
ject

extern "C" {
void *svc_run(void *);

}

struct Method_Request {
virtual ~Method_Request ();
virtual void call() =0;

};

struct Message_Queue_Disabled {};

class Message_Queue {
...
std:: size_t max_messages_;
mutable Thread_Mutex monitor_lock_;
Thread_Condition not_empty_ ;
Thread_Condition not_full_ ;
volatile bool isActive_ ;
Method_Request *get_i ();
void put_i(Method_Request *);

public:
enum { MAX_MESSAGES = ... };
explicit Message_Queue(std:: size_t

max_messages =MAX_MESSAGES
) : max_messages_(max_messages),

not_empty_ (monitor_lock_),
not_full_ (monitor_lock_),
isActive_ (true ),... {

...
}
Message_Queue(const Message_Queue &rhs)

: // Condition variables cannot
// be copied:
not_empty_ (monitor_lock_),
not_full_ (monitor_lock_),
isActive_ (rhs.isActive ),... {

...
}
...
bool empty_i () const;
bool emptyAndEnabled_i () const {

return empty_i () && isActive_ ;
}
bool full_i() const;
bool fullAndEnabled_i () const {

return full_i () && isActive_ ;
}
void disable () {

Thread_Mutex_Guard
guard(monitor_lock_ );

isActive_ =false;
not_full_ .notify_all ();
not_empty_ .notify_all ();

}
// Transfers ownership
Method_Request *get() {

Method_Request *result =0;
{

Thread_Mutex_Guard
guard(std::move(

not_empty_ .wait_if(
boost ::bind(

&Message_Queue
:: emptyAndEnabled_i ,

this ,
_1

)
)));

// Note the difference to put ().
if(empty_i ())

throw Message_Queue_Disabled ;
const bool wasFull(full_i ());
result=get_i ();
if(wasFull)

not_full_ .notify_all ();
}
return result;

}
// Transfers ownership
void put(Method_Request *msg) {

Thread_Mutex_Guard
guard(std::move(not_full_ .wait_if(

boost :: bind(



&Message_Queue
:: fullAndEnabled_i ,

this ,
_1

)
)));

// Note the difference to get ().
if(! isActive_ )

throw Message_Queue_Disabled ;
const bool wasEmpty (empty_i ());
put_i(msg);
if(wasEmpty )

not_empty_ .notify_all ();
}

};

class MQ_Scheduler {
typedef std::vector < thread_type >

pool_type ;
Message_Queue act_queue_ ;
pool_type pool_;
void joinPool_ () {

for(pool_type :: reverse_iterator
in(pool_.rbegin ());

pool_.rend ()!=in;
++in)

joinThread (*in);
}

public:
MQ_Scheduler(std:: size_t high_water_mark ,

std:: size_t
number_of_threads )

: act_queue_ (high_water_mark ) {
pool_.reserve( number_of_threads );
try {

for(std:: size_t i(0);
number_of_threads >i;
++i)

pool_.push_back (
createThread(svc_run ,& act_queue_ )

);
}
catch (...) {

act_queue_ .disable ();
joinPool_ ();
throw;

}
}
~MQ_Scheduler () {

act_queue_ .disable ();
joinPool_ ();

}
// Transfers ownership
void insert(Method_Request *

method_request) {
act_queue_ .put(method_request );

}
};

void *svc_run(void *arg) {
// Set all signals blocked in the
// current thread’s signal mask
...
assert(arg);
Message_Queue *act_queue

=static_cast < Message_Queue * >(arg);
while(true)

try {
// Block until the queue is
// not empty
std::auto_ptr < Method_Request >

mr(act_queue ->get ());
mr ->call ();

}
catch(const Message_Queue_Disabled &) {

break;
}
catch (...) {
}

return 0;
}

Note some details of this implementation:

• MQ_Scheduler::insert() acts asynchronously. Here
it does not associate a call to it with a Future [40,
pp 413, 417,423–430,435–436] that would allow the
client to check whether the request has been executed
or is still pending. Therefore on cancellation all re-
quests stored in Message_Queue still get processed be-
fore the pool of worker threads gets destroyed.

• Message_Queue::disable() uses scoped locking [46]
to acquire and unconditionally release the lock again,
an application of Resource Acquisition is Initialization
and the execute–around object design pattern.

• Thread_Condition and Thread_Mutex are wrapper
facades that turn operating system specific imper-
ative interfaces into object oriented ones without im-
pacting performance. Wrapper facades still give the
compiler the opportunity to inline the respective mem-
ber functions.

• Message_Queue::{get(),put()} make use of condi-
tion variables equipped with move semantics proposed
for future revisions of the C++ standard [27] to be-
come able to return scoped locking guards by value
from Thread_Condition::wait_if<>(), a conveni-
ence method [28] similar to what Boost.Thread of-
fers. Move semantics can be implemented today with
help of the change of authority idiom [6].

• MQ_Scheduler::joinPool_() is incomplete in that it
does not call pool_.
clear(). It is an implementation helper only and is
therefore declared private.

• The templated constructor calls std::vector<>::re-

serve() to prevent std::vector<>::push_back() to
throw an std::bad_alloc exception. If thread_type
is a plain old data type in the sense of the C++ stan-
dard [4, 3.9.10, 12.8.6], then its built–in copy construc-
tor will never throw. In this case std::vector<>::

push_back() throws no exception at all.

• thread_type, createThread(), and joinThread()

wrap the respective operating system specific types
and functions. createThread() translates error codes
into exceptions.

From a design point of view thread_type is a Fu-
ture type, and the role of the Rendezvous function is
taken by joinThread(). MQ_Scheduler::pool_ is an
instance of a Future container, MQ_Scheduler::join-
Pool_() being its Rendezvous function.

• The main loop of the threads in svc_run() is in fact
a simple example of the leader / followers design
pattern: The threads line up to become a leader,
i.e. they are followers. Only one thread at any



one time can take new work out of the queue, i.e.
it takes the role of the leader. On returning from
Message_Queue::get() Message_Queue::monitor_-

lock_ is being released, thus implicitly a new leader
gets designated. The former leaders can process their
work packages concurrently then.

Listing 2 shows how the parts proposed above work to-
gether. No emphasis was put on where the service requests
actually originate from, i.e. on an useful interface to Re-
moteClient.

Listing 2: How to use MQ_Scheduler

namespace {
std:: jmp_buf env_;

} /* (anonymous ) namespace */

extern "C" {
static void SIGTERMDisposition_ (int sig)
{

longjmp(env_ ,1);
}

}

int main () {
signal(SIGTERM , SIGTERMDisposition_ );
MQ_Scheduler sched;
std:: auto_ptr < Method_Request > mr;
if(! setjmp(env_)) {

while(true) {
// Very rough sketch ...
mr.reset(new Concrete_Method_Request );
sched.insert(mr.release ());

}
}
return EXIT_SUCCESS;

} // On automatic destruction of "sched"
// first its workerswill terminate
// after having caught a
// "Message_Queue_Disabled " exception .
// Then they are going to be joined
// before "Message_Queue_Disabled ::
// act_queue_ " is destructed .
// After all , "MQ_Scheduler" vanishes .

In an even simpler setting the main thread can simply block
in pause() until a signal comes in as described e.g. in [53]
instead of the above signal handler and its interaction via
longjmp() and setjmp() that have to be used with caution
to avoid resource leaks. mr was defined outside the setjmp()
block to avoid it not to be destructed in case of termination.

Figure 5 sketches the participants and their relations to
each other. The dynamics of the entities in this example is
shown in Figure 6. Note that Thread_Condition automat-
ically deactivates the associated Thread_Mutex on blocking
and activates it again before returning in Thread_Condition

::wait().

8.2.2 Dynamic Adaptation to Varying Load
This section extends the example with a mechanism to

dynamically shut down some Units of Execution to adapt
their number to decreasing load. Reasons for the need for
this dynamic adaptation are e.g.

• Threads consume resources even if they block, so they
should be limited in number to the expected load.

• Many active objects are I/O bound, so the perfor-
mance can benefit from more threads than there are
processor cores.

Figure 6: Sequence diagram matching Listings 1 and 2. For
the sake of readability the concurrency inside was limited to
one thread.



Figure 5: Class diagram matching Listings 1 and 2.

• It is hard to estimate the load up–front. Furthermore,
the load likely varies.

From a more abstract point of view half–sync / half–
async server designs turn asynchrony into synchrony, which
on the one hand yields a programming model easier to deal
with than event–driven I/O strategies, but on the other hand
results in the need for dynamic load adaptation.

Several aspects need to be refined in order to do so: We
want to cancel some, but not all threads of PoolOfUnit-
sOfExecution. As all of these threads execute the same code,
it is reasonable to assume that the code does not need to
cancel a particular thread—all we need is a way to cancel a
certain number of threads from the pool regardless of their
identity3. So the cancellability of Message_Queue::get()

got changed in a way that the number of threads to send
the exception to can be specified.

Furthermore, we can now cancel getting work from Mes-

sage_Queue independently from putting new work to the
queue—only the first operation needs to be cancelled dur-
ing dynamic adaptation to decreasing load, because the Re-
moteClients must not be affected by this internal operation.
Note, however, that both the member function Message_-

Queue::disable() and the destructor Message_Queue::

~Message_Queue() shown above are supposed to also be part
of the refined code—they are not shown here in order not to
duplicate code.

The code in Listing 3 shows the modified Message_Queue.

Listing 3: Message queue with refined cancellability

class Message_Queue {
...
volatile std:: size_t consumers2Cancel_ ;

public:
explicit Message_Queue(std:: size_t

max_messages =MAX_MESSAGES
) : ...,

3It might be wise to refine this strategy to improve CPU
cache affinity. This is beyond the scope of this example. See
the original leader / followers paper for details on the
LIFO follower promotion protocol.

consumers2Cancel_ (0) ,... {
...

}
...
bool emptyAndEnabled_i () const {

return empty_i ()
&& isActive_
&& 0== consumers2Cancel_ ;

}
void disableGet (std:: size_t

consumers2Cancel ) {
Thread_Mutex_Guard guard(monitor_lock_ );
consumers2Cancel_ =consumers2Cancel ;
not_empty_ .notify_all ();

}
// Transfers ownership
Method_Request *get() {

Method_Request *result =0;
{

Thread_Mutex_Guard
guard(std::move(

not_empty_ .wait_if(
boost ::bind(

&Message_Queue
:: emptyAndEnabled_i ,

this ,
_1

)
)));

// Note the differences to put ().
if(consumers2Cancel_ )
{

--consumers2Cancel_ ;
throw Message_Queue_Disabled ;

}
if(empty_i ())

throw Message_Queue_Disabled ;
const bool wasFull(full_i ());
result=get_i ();
if(wasFull)

not_full_ .notify_all ();
}
return result;

}
};

Simply cancelling some of the threads from the pool re-



gardless of their identity also means that it becomes difficult
to both join the threads that have gone and to maintain a
list of ids of still active threads later to join. Therefore we
use detached threads here and emulate joinThread() by our
own mechanism similar to what David R. Butenhof once
suggested [13]. The heart of this is a threadsafe incarnation
of the detached counted body idiom or shared owner-
ship (see Section 6.3), shown in Listing 4.

Listing 4: Smart pointer that both protects shared data and
acts as a Future

class Message_QueueHandle {
class Count {

// No copy allowed , therefore
// private and declared only
Count(const Count &);
// No assignment allowed , therefore
// private and declared only
Count &operator =( const Count &);

public:
std:: size_t count_;
mutable Thread_Mutex lock_;
Thread_Condition unique_;
Count () : count_(1), unique_(lock_) {}

};
Message_Queue *rep_;
Count *count_;

public:
explicit Message_QueueHandle (

Message_Queue *rep
) : rep_(rep), count_(new Count) {}
Message_QueueHandle (const

Message_QueueHandle &rhs
) : rep_(rhs.rep_), count_(rhs.count_) {

atomicIncrement ();
}
~Message_QueueHandle () {

if (0== atomicDecrement ()) {
delete count_;
delete rep_;

}
}
Message_QueueHandle &operator =( const

Message_QueueHandle &);
Message_Queue *operator ->() const {

return rep_;
}
std:: size_t atomicIncrement () {

Thread_Mutex_Guard
guard(count_ ->lock_ );

return ++count_ ->count_;
}
std:: size_t atomicDecrement () {

Thread_Mutex_Guard
guard(count_ ->lock_ );

if(1==--count_ ->count_)
count_ ->unique_.notify ();

return count_ ->count_;
}
void waitUnlessUnique () const {

Thread_Mutex_Guard
guard(count_ ->lock_ );

while (1!= count_ ->count_)
count_ ->unique_.wait ();

}
};

Instances of this class protect an instance of Message_Queue
from premature destruction. As shown below, Message_-

QueueHandle::waitUnlessUnique() makes instances of this
class Futures.

The scheduler only needs slight adaptations, whereas the
main thread loop now periodically tests whether to cancel or
start threads—the respective metric is only sketched in the
following code. Listing 5 shows the remaining code fraction.

Listing 5: Scheduler and thread main loop

class MQ_Scheduler {
Message_QueueHandle act_queue_ ;
void joinPool_ () {

act_queue_ .waitUnlessUnique ();
}

public:
MQ_Scheduler(std:: size_t high_water_mark ,

std:: size_t number_of_threads
) : act_queue_ (

new Message_Queue(high_water_mark )
)

{
std:: size_t i(0);
try {

for(; number_of_threads >i;++i)
{

act_queue_ .atomicIncrement ();
createDetachedThread (svc_run ,

&act_queue_ );
}

}
catch (...) {

// Creation of (i+1)th thread failed
// to happen.
act_queue_ .atomicDecrement ();
act_queue_ .disableGet (i);
joinPool_ ();
throw;

}
}
...
// Transfers ownership
void insert(Method_Request *

method_request) {
act_queue_ ->put(method_request );

}
};

void *svc_run(void *arg) {
// Set all signals blocked in the
// current thread ’s signal mask
...
assert(arg);
// Copy the smart pointer
Message_QueueHandle act_queue (

*static_cast < Message_QueueHandle * >
(arg)

);
act_queue .atomicDecrement ();
while(true)

try {
if(tooManySpareThreads )

act_queue ->disableGet (
superfluousSpares

);
// Block until the queue is
// not empty
std::auto_ptr < Method_Request >

mr(act_queue ->get ());
if(tooFewSpareThreads )

// Increase number of Units of
// Execution
// (beyond the scope of this paper)

mr ->call ();
}
catch(const Message_Queue_Disabled &) {

break;



}
catch (...) {
}

return 0;
} // On automatic destruction of

// "act_queue " its reference counter will
// be reliably decremented . After all
// worker threads terminated , the main
// thread holds the only reference to the
// Activation List and therefore knows
// that all other threads were gone.

Additionally to the comments on the code in the section
before note some details of this implementation:

• As the instance of Message_QueueHandle must be pas
sed by pointer to svc_run() it is important to tem-
porarily manipulate its reference counter.

• The main thread waits until it is the only one that
holds a reference to the contents of Message_QueueHan-
dle. To implement waiting, a condition variable is
used within Message_QueueHandle.

The usage of the modified scheduler does not differ from the
first example.

8.3 Relationship of Examples and Participants
The restaurant example layed out in Sections 2 and 8.1

and the code examples shown in Section 8.2 map to the
participants defined in Section 6.1 as shown in Table 2.

9. VARIANTS
The level of abstraction chosen for the interception of

blocking calls can vary. So a variant is to equip condition
variables with an operation to disable their operation and to
let all their potentially blocking operations throw if and only
if they have been disabled. If portability is an issue, then
choosing as high a level as suggested can make life easier.

Another variant is to make cancellability a property of a
Unit of Execution instead of a class with blocking operations.

The decision to first let the Units empty the queue before
terminating is well–founded, but nevertheless arbitrary. So a
variant was to replicate CORBA interfaces qualified oneway

[39, pp 15–17], that do not guarantee that the service re-
quested is ever going to be executed. Another variant was
to dump the backlog to disk, terminate immediately after-
wards and read it in again the next time the active object
starts. But as serialization can fail, this may be not as reli-
able as the solution proposed in the first place. Furthermore
an according implementation was more complex.

This pattern can be combined with more aggressive ways
of cancellation: To overcome liability 1 a timeout may be
introduced such that PoolOfUnitsOfExecution is forced to
immediately die if it did not cooperatively terminate within
a certain time frame. The difficulty is the heuristic choice of
a timeout large enough to only affect uncooperative Units.

As its name already suggests, an implementation accord-
ing to the poison pill approach lets the consumers die, but
does not consider producers [34, pp 145–146].

10. KNOWN USES
Examples of deferred cancellation can be found in

existing software.

10.1 ACE
The ADAPTIVE Communication Environment (ACE)

provides ACE_Message_Queue<>, a synchronized queue, that
can be disabled similar to the one proposed above. Its block-
ing member functions do not throw if the queue has been
disabled. Instead they return the special value ESHUTDOWN

then.

10.2 Boost.Thread
Deferred cancellation was recently added to the

Boost.Thread [29, 58] C++ library. Cancellation is referred
to as “interruption”. Different from the pattern descrip-
tion above it’s not ActivationList that can be disabled, but
it is the thread itself. This is similar to Java (see Sec-
tion 10.4). Interruption takes place by means of an ex-
ception thrown from well–defined interruption points, e.g.
boost::condition_variable. The user can define addi-
tional interruption points, if necessary. The set of pre–
defined interruption points is still limited to entities within
Boost.Thread—there are many more blocking calls, how-
ever, e.g. in std::fstream or during network communica-
tions, because cancellability is a crosscutting concern [30].

Internally, thread–specific storage [48] is used to man-
age the flag that indicates interruption of a thread for it to
be accessible from the interruption points.

10.3 POSIX Threads
POSIX 1003.1c compliant systems provide pthread_can-

cel(), that cancels a thread specified as an argument. This
plays the role of Message_Queue::disable() in Section 8.2.1.
Threads can be configured dynamically to react differently
upon cancellation requests: They can igore them, they can
be cancellable at well–defined cancellation points only (“de-
ferred cancellation”)—in Section 8.2.1 these were only Mes-

sage_Queue::{get(),put()}—, or they can immediately
exit (“asynchronous cancellation”). In both of the last two
cases during the cancellation procedure so–called cleanup
handlers are going to be executed that have been registered
by the user before like the finally block referred to in Sec-
tion 6.3. The default behavior is cancellation enabled at
well–defined cancellation points only. The set of POSIX
Threads cancellation points is extensible. The list of cancel-
lation points defined in UNIX98 lists accept() as a cancel-
lation point, POSIX 1003.1c does not. For details see e.g.
[14].

Some C++ compilers automatically register destructors
as cleanup handlers and so transparently support Resource
Acquisition is Initialization even in the area of multithread-
ing, that is out of scope of the current C++ standard.

10.4 Java
Similar to Boost.Thread (see Section 10.2) instances of

the class java.lang. Thread can be set interrupted. In
this case some blocking operations are left with an instance
of java.lang.InterruptedException thrown, some with an
instance of java.nio.channels.ClosedByInterruptExcep-
tion thrown, while calls to java.nio.channels.Selectors
are simply waked up. For details see e.g. [33, pp 169–
177,294].

10.5 MS Windows
MS Windows is listed here for two reasons.
With regard to threads MS Windows is a counterexam-



Table 2: Relationship of Examples and Participants

Examples Participant
Restaurant Code

Orders Holder Message_Queue ActivationList
Waiter rejects any new orders; empty
orders holder triggers kitchen staff to
leave off work

Message_Queue_Disabled ActivationListDisabled

Restaurant operations, represented
by the waiters as proxies

MQ_Scheduler ActiveObject

Restaurant manager (not considered) main() LocalClient
Kitchen staff Section 8.2.1: MQ_Scheduler::pool_;

Section 8.2.2: Implicit.
PoolOfUnitsOfExecution

Customers main() RemoteClients

Figure 7: In case a process cancelled did not terminate
within a certain time frame MS Windows NT resorts to the
user.

ple. TerminateThread() simply kills a thread immediately
without giving it a chance to clean up. There is no function
similar to POSIX 1003.1c pthread_cancel(). Implementing
cancellation of active objects and other thread pools or
implementing a mechanism that automatically adapts their
sizes to varying load on MS Windows requires code similar
to that of Section 8.2.1 that does not rely on safe cancella-
tion provided by the operating system.

With regard to processes MS Windows NT implements
the timeout variant referred to in Section 9. If a process
cancelled does not terminate within a certain time interval,
the operating system resorts do a dialog that lets the user
decide whether to apply more aggressive means to get rid of
the respective process. An example of these dialogs is shown
in Figure 7.

11. RELATED IDIOMS AND PATTERNS
The context of deferred cancellation is formed by a

pool of Units of Execution, e.g. worker threads. This is
the basis of active objects, half–sync / half–async or
leader / followers designs.

Deferred cancellation shows how to safely clean up
resources specific to members of PoolOfUnitsOfExecution
and shared among many Units. These resources must have
been initialized before. Kircher / Jain have a comprehen-

sive collection of initialization patterns [31, pp 19–79].
The mechanism to force cancellation of the members of

the pool steps in at wrapper facades or higher level ab-
stractions like monitor objects.

Both the pooling pattern and the resource lifecycle
manager pattern give a high level view on the whole lifecy-
cle of resources. The pattern descriptions cover the release
of resources, which means cancellation in case of threads and
processes [31, pp 97–110,128–146].

If static configuration of the platforms is required or there
is the need to choose among different higher–level archi-
tectures, e.g. between the designs leader / followers,
One Child per Client [53, pp 732–736] and One Thread
per Client [53, pp 752–753], then static and metaprogram-
ming patterns—especially static adapter and static ab-
stract type factory—can be applied additionally to build
such static frameworks [7].

There are many more patterns and idioms that assist in
the development of concurrent applications. Schmidt et al.
[44] and Mattson et al. [34] are comprehensive collections
or pattern languages in this area.
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APPENDIX

Glossary
This section contains pattern–thumbnails and definitions of
the most important terms used in this paper.

Active Object The active object pattern proposes a de-
sign that decouples the invocation of services from their
actual execution. To do so commands are going to
be produced that reify the service requests. Within
the active object these commands are placed into a
queue then. Active objects own a pool of Units of
Execution, and each Unit periodically consumes new
work from the queue. So active objects introduce
concurrency. This approach is subsumed under the
worker threads pattern [33, pp 290–298], which in
turn is a realization of the pattern share the load
[36, pp 588–589]. Calls to active objects are asyn-
chronously. Active objects are often combined with
Futuress.[40, 26]

Command The command pattern encapsulates commands
as objects. Commands can be placed in a queue and
are an essential ingredient for undo functionality.[19]

Future After issuing an asynchronous call to a function
a client can continue to work without having to wait
for the result. But at some point in time it may need
to be sure that the operation initiated has completed.
Futures allow for this. Futures are usually issued while
calling an asynchronous member function of an active
object. A client can block in a call to a member func-
tion of the Future until the associated asynchronous
call completed (“Rendezvous”). Then a client can get
the equivalent of a return value from the asynchronous
call.[8], [40, pp 413, 417,423–430,435–436] Basic build-
ing blocks of Futures are e.g. condition variables com-
bined with mutual exclusion locks.

Half–Sync / Half–Async Kernels of modern operating
systems act asynchronously. Operating systems offer
also synchronous programming interfaces, however, be-
cause they are easier to deal with than asynchronous
ones. The half–sync / half–async architecture pat-
tern sheds light on the boundary between the asyn-
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chronous kernel and its synchronous programming in-
terface [51, 41].

Leader / Followers The leader / followers pattern
specifies an architecture for concurrent servers. Sev-
eral threads take turns accessing shared event sources,
demultiplexing pending events, dispatching, and finally
processing them [42], [53, pp 754–756].

Monitor Object The monitor object pattern synchro-
nizes the concurrent access to an object. It keeps the
state of the object well–defined by applying necessary
serialization to shared data. It also controls access
based on monitor conditions: In case of a queue this
synchronization takes place at the two bounds of the
queue: If the queue reached its maximum capacity,
producers are blocked or producers receive an accord-
ing return value; if the queue is empty, consumers are
blocked.[43]

Portability Portability has two aspects: Portability re-
garding to environments or platforms means that an
application requires no or only a few local changes to
run on another platform than once planned for. The
term platform can refer to operating system, hardware
architecture or even a set of third party software the ap-
plication interfaces with, e.g. a database management
system. Portability in time means that an application
can still be compiled after years have passed.

Reactor The reactor pattern describes a mechanism to
demultiplex events arriving concurrently from differ-
ent sources and to dispatch the requests to appropriate

handlers. In a reactor a function blocks until an event
occurs. Then the dispatching takes place.[52, 50, 45]

Resource We consider any entity a resource that takes one
of two states: Released and acquired. The latter state
is somehow expensive: Only one client at any one time
can acquire the same resource (access to an acquired
resource can be shared among several clients, however);
some resources are limited, e.g. main memory or even
more handles to open files; some can introduce scalabil-
ity issues, e.g. mutual exclusion locks. Because of these
properties care must be taken to reliably release re-
sources again after use. Applications that do not prop-
erly release resources are said to leak them. Typical
strategies to deal with resources are either the Resource
Acquisition is Initialization technique [55, pp 388–393],
[54, pp 495–497], especially the execute–around ob-
ject design pattern [25, pp 4–7], or the dispose pattern
[5, pp 228–230], [38], [1] in programming languages that
do not support the first alternative. In case of not–so–
expensive resources like memory garbage collection was
also an option to go for, if available. See Kircher /
Jain for a slightly more specialized definition [31]. You
will find a classification of different resources and last
but not least many other useful strategies to deal with
resources there, too.

Unit of Execution Unit of Execution is the umbrella term
for processes and threads [34, pp 217–221]. It nei-
ther presumes a certain visibility of memory address
space among several Units nor whether a hierarchy ex-
ists among the Units of Execution or not.
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