
A Pattern Language for Developing Analog to

Digital Converter Data Sampling Firmware

Sachin Bammi
Schlumberger Technology Corp.

Sugar Land, TX, USA
+12812857800

SBammi@exchange.slb.com

Peter Swinburne
Schlumberger Technology Corp.

Sugar Land, TX, USA
+12812857800

swinburne1@exchange.slb.com

Adefeyike Odutayo
Schlumberger Technology Corp.

Sugar Land, TX, USA
+12812857800

aodutayo@exchange.slb.com

ABSTRACT

Analog to digital converters (ADC) are widely used real-time data
acquisition systems. This paper presents a pattern language for
sampling data from analog to digital converters (ADC) by
presenting commonly used best practices and providing advice on
avoiding specific pitfalls in designing ADC data
sampling/acquisition firmware. From the classification presented
in the paper a user can potentially come up with 15 designs to
sample ADCs. The paper first presents seven core patterns
followed by three composite ones that the authors have seen being

successfully applied in their domain and work experience.

Categories and Subject Descriptors

D.3.3 [Programming Languages]: Language Contructs and
Features – abstract data types, polymorphism, control structure.;
D.2.11 [Software Architectures]: Patterns

General Terms

Algorithms, Measurement, Design, Languages.

Keywords

Analog to digital converters (ADCs), Sampling, Design Patterns,
Pattern Language.

1. INTRODUCTION
A real time data acquisition system may at times need to acquire

data from an analog signal and convert the signal to a digital
format. The hardware device that performs this conversion is
called the analog to digital converter (ADC). The ADC converts
analog signals to discrete digital numbers. The digital output may
be in binary or two’s complement. ADCs are used virtually in all
applications where an analog signal has to be processed, stored, or
transported in digital form. ADC implementation ranges from
direct conversion ADCs to Sigma-Delta ADCs. There are several

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. To copy otherwise,

to republish, to post on servers or to redistribute to lists, requires prior

specific permission. Preliminary versions of these papers were presented

in a writers' workshop at the 15th Conference on Pattern Languages of

Programs (PLoP). PLoP'08, October 18-20, Nashville, TN, USA.

Copyright 2008 is held by the Schlumberger Technology Corp. ACM

978-1-60558-151-4

types of ADCs available, each satisfying a particular purpose
[WIKI07, Staller05]. As such, the choice of the type of ADC is
dependent on application requirements.

Data acquisition through an ADC can be divided into several

categories. The first level of classification is based on the number
of analog signals being sampled. If two or more analog signals are
being sampled then the question arises if they are all sampled at
once (simultaneous) or sequentially (i.e. one at a time). In either
of these cases the periodicity (if any) is the next basis of
distinguishing between the various ADC sampling techniques.
The periodicity at which the analog signals are being sampled
(simultaneously or discreetly) can be fixed, quasi-periodic or non-
periodic. When the periodicity is fixed, a hardware device such as

a timer is usually used to triggering the ADC, while a quasi-
periodic sampling is usually soft triggered. The non-periodic
triggering of the ADC is typically random usually, as a result of
some external event. Both multi-channel and single-channel ADC
sampling techniques can have the aforementioned sub-
classifications based on the periodicity of the sampling. Finally at
the firmware implementation level a sequential or table driven
sampling approach can be used to distinguish between applied

ADC sampling techniques. Figure 1 summarizes the above
classifications.

Based on Figure 1, there are seven core basic patterns that are
talked about in section 3. These seven patterns for a generative
pattern language which can be used to develop 15 composite
design patterns as explained next. The number of patterns that can
be generated for multi-channel acquisition are 2 (simultaneous or
discreet) x 3 (Periodic or Quasi-Periodic or Non-Periodic) x 2

(Table driven or Sequential). This gives us 12 possible multi
channel ADC sampling design patterns. Similarly the number of
patterns that can be generated for single-channel acquisition are: 1
(only one way to do it) x 3 (Periodic or Quasi-Periodic or Non-
Periodic) x 1 (only one way to do it) = 3 possible single channel
ADC sampling design patterns. Hence the pattern language that
we are presenting in this paper is a set of the above possible
design patterns (12 + 3 = 15) that a reader/user can potentially

choose from. What we describe in the paper are 3 of these 15 that
we have seen most commonly in our domain and work experience
in section 4.

The patterns presented in this paper aim at providing general
architecture specific guidelines for developing the firmware for a
real time data acquisition with an ADC. The authors recommend

keeping them in mind while using other published references
[Kalinsky03, Kalinsky06, Bammi06, Bammi07] which may not
necessarily be focusing just on ADCs. These patterns are elements
of a pattern language being developed by the authors for
developing real time data acquisition applications, which drive

electronics in harsh environmental conditions while taking several
measurements at the same time. Parts of this pattern language
have been presented at some of the earlier PLoP conferences
[Bammi06, Bammi07].

2. Intended Audience and Scope
The intended audience of this paper is beginning to intermediate
level embedded software engineers developing real time data
acquisition applications involving ADCs. The technical scope of
this work is limited to general design issues related to system
development for proprietary embedded applications that are
responsible for ADC data acquisition and processing in real time.

The patterns presented here are by themselves not enough for a

good design since a good design requires deep knowledge of the
device under consideration and the specific hardware and a real
time operating system (RTOS) on which the real time application
will run. What this paper provides is some generic characteristics
of a good design, which the authors believe are independent of
specific hardware and RTOS issues.

3. Atomic ADC Data Sampling Choices
This section describes the basic ADC design patterns that form the
building blocks of the ADC firmware pattern language. These
patterns can be combined in several ways to come up with
different design to suit different requirements and constraints.

Section 4 presents three such examples which are design patterns
in their own right and have been generated from these basic
atomic ADC design patterns.

3.1 Discrete Sampling

3.1.1 Context
Real time systems may require ADC sampling. Designers have to

choose from various sampling techniques to come up with a

design which finds balance between a business/system’s
requirements, complexity and development costs.

3.1.2 Problem
How to design ADC sampling firmware when one has to sample
from multiple signals?

3.1.3 Forces
The design of an ADC sampling system depends on several
factors one of them being whether to use one ADC per analog
signal or use one ADC per several analog signal. The overriding
factor here is normally cost. While the former option is easy to
design but it is more costly due to increased level of hardware.

3.1.4 Solution
In the interest of reducing cost, use a single ADC device and
multiplex the various analog signals to it. Sample one channel at a
time (discreet sampling) and switch between them in an order that

satisfies the system requirements.

3.1.5 Resulting Context
While complexity is increased due to use of one ADC device to

sample multiple analog signals, the cost is reduced due to savings
in hardware related costs. There are a few more implementation
related details that remain to be sorted out. For example a decision
needs to be made regarding whether to sample the multiple analog
signals in a hard-coded sequential way or to use a more flexible
but complex table driven approach. The Sequential Sampling and
Table driven Sampling patterns attempt to answer this question.

3.1.6 Related Patterns
Discrete sampling in section 3.2, Sequential sampling (section
3.6) and Table Driven Sampling (section 3.7)

3.2 Simultaneous Sampling

3.2.1 Context
Real time systems may require ADC sampling. Designers have to
choose from various sampling techniques to come up with a
design which finds balance between business requirements,
complexity and development costs.

3.2.2 Problem
How to design ADC sampling firmware when one has to sample
from multiple analog signals?

3.2.3 Forces
The design of an ADC sampling system depends on several
factors one of them being whether to use one ADC per analog
signal or use one ADC per several analog signals. While the
former option is easy to design it also increases complexity.

3.2.4 Solution
In the interest of reducing complexity, use one ADC device per
signal that needs to be sampled. This way all the analog signals
can be sampled simultaneously.

3.2.5 Resulting Context
The simultaneous sampling design while being more costly is
straight forward to implement and reduces the sampling time.

3.2.6 Related Patterns
Sequential sampling in Section 3.1

ADC Data Acquisition

Multi Channel Acquisition Single Channel Acquisition

Simultaneous Discrete

Periodic

Continuous

Hard Triggered

Quasi-Periodic

Continuous

Soft Triggered

Non-Periodic

Single Shot

Event Triggered

Table

Driven
Sequential

Periodic

Continuous

Hard Triggered

Quasi-Periodic

Continuous

Soft Triggered

Non-Periodic

Single Shot

Event Triggered

Figure 1 : Classification of ADC Data Sampling Techniques

3.3 Simultaneous Sampling

3.3.1 Context
Real time systems may require ADC sampling. Designers have to
choose from various sampling techniques to come up with a
design which finds balance between business requirements,
complexity and development costs.

3.3.2 Problem
How to choose the periodicity of sampling while designing ADC
sampling firmware?

3.3.3 Forces
Sometimes the timing constraints on the rate of sampling are very
strict and may require sampling to occur with a certain guaranteed
interval of time.

3.3.4 Solution
Use hardware based interrupt triggering for ADC sampling as this
is the best way to guarantee that the timing of sampling will be
consistent all else being equal.

3.3.5 Resulting Context
The required sampling interval is achieved using a hardware

based trigger. This approach is more costly due to need of
additional interrupt triggering hardware resources but it will make
it possible to meet the strict timing constraints related to ADC
sampling interval.

3.3.6 Related Patterns
Quasi-Periodic Sampling (section 3.4) and Non-Periodic sampling
(section 3.5).

3.4 Simultaneous Sampling

3.4.1 Context
Real time systems may require ADC sampling. Designers have to
choose from various sampling techniques to come up with a
design which finds balance between business requirements,
complexity and development costs.

3.4.2 Problem
How to choose the periodicity of sampling while designing ADC
sampling firmware?

3.4.3 Forces
Sometimes the timing constraints on the rate of sampling may not
be very strict and/or the cost of additional interrupt triggering

hardware resource may be too costly based on the needs of the
business.

3.4.4 Solution
The firmware designer can use software based triggers to schedule
the ADC sampling. While this may not be the most reliable
solution it is cost effective and especially attractive when the
timing constraints on ADC sampling are not very strict.

3.4.5 Resulting Context
The need for scheduling ADC sampling is met and at the same
time cost is kept under control as no new additional hardware
resource is needed.

3.4.6 Related Patterns
Periodic Sampling (section 3.3) and Non-Periodic sampling
(section 3.5).

3.5 Simultaneous Sampling

3.5.1 Context
Real time systems may require ADC sampling. Designers have to
choose from various sampling techniques to come up with a
design which finds balance between business requirements,
complexity and development costs.

3.5.2 Problem
How to choose the periodicity of sampling while designing ADC
sampling firmware?

3.5.3 Forces
There can be certain applications where ADC data acquisition is
triggered as a response to an event that is random in time
(asynchronous). Sometimes ADC sampling needs to happen only
when a particular event occurs and/or the cost of continuous
sampling (periodic or quasi-periodic) may be too high in terms of
system resources being used.

3.5.4 Solution
In this case ADC sampling can be triggered when an event of
interest occurs. This by definition can happen without any specific
frequency and as such continuous ADC sampling to monitor
change of state may be a wasteful use of system resources.

3.5.5 Resulting Context
With event based sampling the use of system resources is
optimized under conditions when continuous sampling delivers
little or no value. Depending on the typical requirements of the
application the random ADC sampling could be single channel or
multi channel and sequential or table driven. Some of the possible

scenarios are vending machines, which take an input form the
user, operator controlled industrial equipment, some real time
systems that are programmed to act a certain way when a
particular even occurs etc.

3.5.6 Related Patterns
Periodic Sampling (section 3.3) and Quasi-Periodic sampling
(section 3.4).

3.6 Simultaneous Sampling

3.6.1 Context
Real time systems may require ADC sampling. Designers have to
choose from various sampling techniques to come up with a
design which finds balance between business requirements,
complexity and development costs.

3.6.2 Problem
How to implement sampling of multiple analog signals?

3.6.3 Forces
Sampling of multiple analog signals needs to be done in a certain
order. Hard coding of the channels and the sequence in which they
will be sampled is a fairly straight forward, easy to implement and

easy to understand approach. But it is also not flexible. The table
driven approach in which the sequence of channels to be sampled
and the frequency with which they need to be sampled can be
changed or be chosen from amongst different strategies is much
more complex to implement and sustain.

3.6.4 Solution
If the probability of change in system/business requirements is
less and the concern for maintainability of the firmware by other
software engineers in the future is high then the sequential

sampling approach should be applied. In this approach each ADC
channel is given a number and the sampling is done in a
predetermined way that is hard coded in the code. More details
related to implementation of this approach can be found in the
Discrete Periodic Sequential Sampling pattern in section 4.1.

3.6.5 Resulting Context
This solution causes the complexity of the code to reduce and
hence it is easy to understand and maintain by other engineers
who would work in the project in future.

3.6.6 Related Patterns
Table driven sampling section 3.7 and Discrete Periodic
Sequential Sampling pattern in section 4.1

3.7 Simultaneous Sampling

3.7.1 Context
Real time systems may require ADC sampling. Designers have to
choose from various sampling techniques to come up with a
design which finds balance between business requirements,
complexity and development costs.

3.7.2 Problem
How to implement sampling of multiple analog signals?

3.7.3 Forces
Sampling of multiple analog signals needs to be done in a certain
order. Hard coding of the channels and the sequence in which they
will be sampled is a fairly straight forward, easy to implement and
easy to understand approach. But it is also not flexible. The table
driven approach in which the sequence of channels to be sampled
and the frequency with which they need to be sampled can be
changed or be chosen from amongst different strategies is much
more complex to implement and sustain. But it is more flexible.

3.7.4 Solution
If the probability of change in system/business requirements is
considerable and the concern for maintainability of the firmware
by other software engineers in the future is not appreciable then
the table driven sampling approach should be applied. In this
approach for each ADC channel there is a specific entry in a table
specifying its order in a sequence, the number of times it needs to

be sampled before switching to the next channel in the sequence
and other such possible sequences. More details related to
implementation of this approach can be found in the Discrete
Periodic Table Driven Sampling pattern in section 4.2 and
Discrete Quasi-Periodic Table Driven Sampling pattern in section
4.3.

3.7.5 Resulting Context
This solution causes the complexity of the code to increase but
makes the design more flexible and open to future changes in the
business requirements.

3.7.6 Related Patterns
Sequential sampling section 3.6, Discrete Periodic Table Driven

Sampling pattern in section 4.2 and Discrete Quasi-Periodic Table
Driven Sampling pattern in section 4.3

4. FIGURES/CAPTIONS
This section presents a group of three composite design patterns
that are generated by using certain combinations of the seven

basic patterns presented in previous section. These composite
combinations have been called patterns as the authors have seen
them being applied successfully over and over again in their

domain and work experience. These are namely; Periodic

Sequential Sampling, Periodic Table-Drive Sampling and
Quasi-periodic Sampling.

4.1 Discrete Periodic Sequential Sampling

Pattern

4.1.1 Context
Often during real time data acquisition, it may be necessary for

several analog signals to be read and converted to their digital
representations. In such cases these multiple analog signals are
read through the same ADC device but in a predetermined fashion
so that the system knows which channel’s signal was just
converted to digital format. This pattern illustrates firmware
implementation of data acquisition from an ADC device, which
has several analog signals, multiplexed through it.

4.1.2 Problem
Usually multiplexed ADC devices use interrupt driven I/O. The
sequence in which data is converted and read to/from the device
need to be in a specific order with only one data line to be read at
a time. Hence the problem is to accomplish periodic and interrupt-

driven data acquisition over an ADC multiplexed channel. How
do we convert a parallel stream of values into serially accessible
separate data elements in a periodic fashion?

4.1.3 Forces
The reading of the multiplexed channels from ADC has to be
cyclic. After reading a particular channel the next data channel
that needs to be read has to be set so it has enough time to
stabilize before data is read from it the next time the ADC
interrupt is generated. The state of the read/write to the data
channel has to be saved from one interrupt to another so that the
interrupt handler knows which data channel it is reading

4.1.4 Solution
The solution is to setup a hardware based interrupts, one for
periodically starting ADC data conversion (“Start ADC data
conversion “) and the other for signaling that the conversion is

done and consequently data is ready to be read (“ADC conversion
done”). The first interrupt can typically be clubbed with the
system timer interrupt so that every time there is a system timer
tick there is new conversion started on the ADC. Of course this
scheme will work only when the ADC conversion time is always
less than time between two consecutive timer ticks on the system
clock. If it is more then the ADC conversion can be started every
other timer tick or a similar scheme like that.

Next, we use a switch statement in the interrupt service routine of
the “ADC conversion done” interrupt. Some local static variables
are used to preserve the state of the sequence in which the data
channels have to be read. Figure 2 presents a flow chart of the
multiplexed (MUX) ADC driver. The index variable in the
flowchart is used for keeping track of the data channel to be read
when the interrupt occurs. To ensure that it points to the next data
channel that will be read at the next interrupt, it is incremented by
one before exiting the interrupt service routine. When the index

value reaches the total number of channels (n), a cycle of
conversion is completed and it is reset to zero. This allows the
first channel to be read during the start of a new cycle. In addition
to tracking the next channel to sample, setting the next ADC
channel that needs to be read in the ISR gives the next channel
some time to stabilize before it ready for conversion.

Figure 2: Discreet periodic sequential sampling pattern

Figure 3 presents a sequence UML diagrams to explain the
functioning of the pattern in more detail. It shows the sequence in
which the interrupts happen and how they get handled. The
interrupts are generated by the ADC resource when it s ready with
the data to be read from it. This interrupt is handled by the
handler, which implements the Discreet periodic sequential
sampling pattern. The sequence diagram shows two cycles in the

interrupt sequence, which leads to data being read by the driver
twice from the N channels that are multiplexed through the ADC.

Figure 3: ADC acquisition interrupt handler design pattern

Figure 4 shows how the interrupt handler for the
ADC_Data_Ready_Interrupt switched between different states

depending on the “SensorMuxIndex” which is kept track by a
local static variable in the ISR. Interrupt # N causes the ISR to be
in “SensorMuxIndex_Nminus1” state.

Figure 4: State Chart Diagram Presenting the Various States

through which the Multiplexed ADC Driver Cycles During

Data Acquisition

The following code in Figure 5 presents a sample implementation
of the pattern, where the total number of multiplexed ADC
channels is 12. The handler for the timer interrupt that happens
once every 10 msec has a dummy read call, which in turn starts
the acquisition on the ADC. When the ADC finishes the data

acquisition it fires an ADC_Data_Ready_Interrupt , which is then
handled by a routine that implements the pattern. The initial ADC
channel, MUX_CHAN_0, is set in a ADCinit() routine which
called during the initialization of MuxAdcDriver class.

4.1.5 Resulting Context
Data is read form the mux-ed channel in the desired sequence
every time the concerned interrupt is handled. The switch
statement and the local static index guarantees that the right ADC
channel is read in the right sequence every time. This of course is
going to be true if and only if the hardware keeps functioning
without a problem.

Another consideration to keep in mind is the jitter that can be

caused by different processor implementations. Most
microprocessors will vector to an interrupt after the current
instruction has completed. If that instruction is an extended
instruction then more CPU cycles will be needed before the
instruction is completed as compared to a normal instruction. This
then causes jitter in that the timing between the interrupt events
and leads to varying of the interrupt processing from one
execution to another.

4.1.6 Related Patterns
There should be only one ADC driver per ADC device and this
can be ensured by using the Singleton pattern [GHJV94]. Also the
application level code does not need to know about the low level
details along with the instantaneous data being collected by the
ADC driver. Usually it uses some averaged or filtered value and

this functionality can be encapsulated in an Adapter class

Switch(index)

ReadADC(index)

SetNextADC

break;

index = 0;

break;

++index >= n index = 0

static int index = 0

Yes

Yes

No (default)

No

ADC interrupt handler routine

Switch(index)

ReadADC(index)

SetNextADC

break;

index = 0;

break;

++index >= n index = 0

static int index = 0

Yes

Yes

No (default)

No

ADC interrupt handler routine

: In te rn alA cqu i

s ition Driver

A D C IS R

A D C IS R

A D C IS R

A D C IS R

A D C IS R

A D C IS R

:A D C R e so urce

in terrupt # 1

in terrupt # 2

in terrupt # N

in terrupt # 1

in terrupt # 2

in terrupt # N

…

…

…

…

…

…

: In te rn alA cqu i

s ition Driver

A D C IS R

A D C IS R

A D C IS R

A D C IS R

A D C IS R

A D C IS R

:A D C R e so urce

in terrupt # 1

in terrupt # 2

in terrupt # N

in terrupt # 1

in terrupt # 2

in terrupt # N

…

…

…

…

…

…

ADC_Initialization

staticint index = 0;

SensorMuxIndex_0

ReadADC(index);SetNextADCChannel();

if(++index >= N) index = 0;

ADC_Data_Ready_Interrupt

SensorMuxIndex_1

ReadADC(index);SetNextADCChannel();

if(++index >= N) index = 0;

ADC_Data_Ready_Interrupt

SensorMuxIndex_2

ReadADC(index);SetNextADCChannel();

if(++index >= N) index = 0;

ADC_Data_Ready_Interrupt

SensorMuxIndex_N_minus_1

ReadADC(index);SetNextADCChannel();

if(++index >= N) index = 0;

ReadADC(index);SetNextADCChannel();

if(++index >= N) index = 0;

ADC_Data_Ready_Interrupt

ADC_Data_Ready_Interrupt

…

…

…

ADC_Initialization

staticint index = 0;

SensorMuxIndex_0

ReadADC(index);SetNextADCChannel();

if(++index >= N) index = 0;

ADC_Data_Ready_Interrupt

SensorMuxIndex_1

ReadADC(index);SetNextADCChannel();

if(++index >= N) index = 0;

ADC_Data_Ready_Interrupt

SensorMuxIndex_2

ReadADC(index);SetNextADCChannel();

if(++index >= N) index = 0;

ADC_Data_Ready_Interrupt

SensorMuxIndex_N_minus_1

ReadADC(index);SetNextADCChannel();

if(++index >= N) index = 0;

ReadADC(index);SetNextADCChannel();

if(++index >= N) index = 0;

ADC_Data_Ready_Interrupt

ADC_Data_Ready_Interrupt

…

…

…

[GHJV94], which provides an easy to use interface for accessing
data from the ADC device.

4.1.7 Known Uses
MUX ADC Driver pattern has been widely used in
Schlumberger’s real time data acquisition firmware, which
involved dealing with ADCs [SLB].

4.2 Simultaneous Sampling
Periodic sampling with constant periodicity is one case of the

periodic sampling described in the Introduction section of this
paper. As the title suggests, the timing of this type periodic
sampling is constant. Once enabled, new data samples are
produced every ∆T seconds. Periodic sampling describes A/D
conversions that are synchronized to a timing event.

4.2.1 Context
Periodic sampling with constant periodicity is used in applications
that require time synchronized data that are searching for a
particular event, or where measurements are used to control a
device.

4.2.2 Problem
There are situations where the signals to be acquired must be
acquired according to a fixed timing interval. It may also be
required that the signals be acquired in a particular known order
especially where frequency or position measurements are

concerned. In such cases a simple sequential approach as
described in section 3.1 will not be enough. What do we do in
such cases ?

4.2.3 Forces
The system must conform to a specified timing spec for the
acquisition of the signals and their order. Further constraints for
this type of acquisition maybe:

• The channels are typically multiplexed.

• The channels may or may not be acquired sequentially.

• The data may have to be filtered or windowed.

4.2.4 Solution
The solution is contained in two separate parts. The first is to use
hardware such as a timer to trigger the A/D conversion process;
thus providing periodic sampling. The second is to use a table-

driven approach to select which channel is going to be acquired
next and how many times the channel will be acquired. In this
case a table is used to store the order of the acquisition of signals
and the number of times they need to be acquired before moving
to the next channel.

The system is initialized such that interrupts are enabled and a
timer is started. When the timer expires an A/D conversion is
started and the timer is restarted. When the A/D conversion is
complete an interrupt will be generated and the Interrupt Service
Routine (ISR) reads the results of the conversion. The template
for the implementation of the conversion complete ISR is handled
has illustrated in the flowchart of Figure 6.

4.2.5 Resulting Context
Multiplexed A/D conversion is achieved with the constraint of a
precise sampling time. In complex cases where a channel needs to
be sampled several times before switching to another channel and
the next logical channel is not the next physical channel then a

table implementation is an efficient approach. The table approach
provides a means to extend the number of acquisitions required
for a particular channel before advancing to the next channel,
typically used for over sampling acquired data. In this way a
particular channel acquisition order can be defined and a periodic
cycle time is achieved.

As discussed in section 3.1.5, another consideration to keep in
mind is the jitter that can be caused by different processor
implementations. Most microprocessors will vector to an interrupt

//This happens outside interrupt handler during device
//initialization

static int SensorMuxIndex = 0;

//Interrupt handler implementing ‘MUX ADC driver’ pattern

void MuxAdcDriver::MuxAdcInterruptHandler(void)

{

… … … …

 if(irq_source & ADC_INT_AVAIL) //ADC data available

 {

 switch(SensorMuxIndex)

 {

 case 0: //MUX_CHAN_0

 if(actel_stat & ADC_BUSY_PIN)

 PreviousCHAN0 = Reg_ADC_DATA;

 //Set next MUX channel after clearing
previous

 Reg_PORTF0 = ((Reg_PORTF0 &
MUX_ADR_CLR) | MUX_CHAN_1);

 break;

 case 1: // MUX_CHAN_1

 if(actel_stat & ADC_BUSY_PIN)

 PreviousCHAN1 = Reg_ADC_DATA;

 //Set next MUX channel after clearing
previous

 Reg_PORTF0 = ((Reg_PORTF0 &
MUX_ADR_CLR) | MUX_CHAN_2);

 break;

… … … …

 case 11: // MUX_CHAN_11

 if(actel_stat & ADC_BUSY_PIN)

 PreviousCHAN11 = Reg_ADC_DATA;

 //Set next MUX channel after clearing
previous

 Reg_PORTF0 = ((Reg_PORTF0 &
MUX_ADR_CLR) | MUX_CHAN_0);

 break;

 default:

 SensorMuxIndex = 0;

 break;

 }

 if (++SensorMuxIndex >= 12)

 SensorMuxIndex = 0;

Figure 5: Sample code showing implementation of the ‘MUX

ADC Driver’ pattern implemented in the
ADC_Data_Ready_Interrupt service routine

after the current instruction has completed. If that instruction is an
extended instruction then more CPU cycles will be needed before
the instruction is completed as compared to a normal instruction.
This then causes jitter in that the timing between the interrupt
event and actually processing the interrupt varies from one
execution to another.

Figure 6: Example Flowchart for Periodic Sampling

4.2.6 Related Patterns
There should be only one ADC driver per ADC device and this
can be ensured by using the Singleton pattern [GHJV94]. Also the
application level code does not need to know about the low level
details along with the instantaneous data being collected by the

ADC driver. Usually it uses some averaged or filtered value and
this functionality can be encapsulated in an Adapter class
[GHJV94], which provides an easy to use interface for accessing
data from the ADC device.

4.2.7 Known Uses
Multiplexed A/D conversion with constant periodicity has been
employed on projects in Schlumberger [SLB].

4.3 Simultaneous Sampling

4.3.1 Context
The most common approach for performing A/D conversion is to
employ a hardware trigger, usually resulting in periodic sampling.
Using a hardware trigger is especially desirable when there a
system has timing constraints, which requires sampling be done at
specific time intervals. When the A/D conversion process is

completed, the output of the ADC is read and the ADC is
configured for the next conversion process. For multi-channel
conversion, the general sampling method employed is the
sequentially driven.

This pattern describes an alternative to the periodic sampling that
provides the flexibility that is lacking in periodic sampling.

4.3.2 Problem
When the ADC is used for sequential multiplexing data
acquisition, it is generally desirable to sample each channel at the
same rate. This requires that the start of the conversion process is
pre-determined and triggered by hardware say for example by a
timer. In the event that such hardware resource is unavailable, and
the ADC data acquisition does not need to be sampled at specific
timing interval, then an alternative means of performing the A/D

conversion process is required.

4.3.3 Forces
Other tasks in a system may generate interrupts that may result in
significant variation in time interval between consecutive

samplings.

4.3.4 Solution
The solution presented here uses software to trigger the A/D

conversion process. In this case, the ADC will, at initialization be
configured for soft-trigger. After the ADC is initialized and setup,
the start of conversion (SOC) can be initiated when required,
usually as a function call. The code template in Figure 7 illustrates
the SOC in an infinite loop, in which ADC starts a conversion
every time control returns to the start of the infinite for loop. If the
loop is never exited, then the sampling is categorized as periodic
sampling with the exception that the conversion process is

software triggered. In general however, the loop will be exited as
a result of some random event (such as an interrupt), thus, the
periodicity of the A/D process is classified as quasi-periodic
sampling.

Figure 7: Code template for Software ADC Start of
Conversion Trigger

void main(void)

{

 adcInitialization();

 .

 .

 for(; ;)

 {

 startAdcConversion();

 while(!converted);

 process_result();

 }

}

When the ADC has completed the conversion, the system needs to
be notified so that the output of the ADC can be read and the

ADC configured for the next conversion process. The ADC’s end
of conversion (EOC) can be determined either by software polling
or could be interrupt-driven. Software polling incurs the overhead
of wasting processor time; tying down the processor thus,
preventing it from performing other tasks [Minasi93, Rusling97].
Therefore, to avoid the penalty of software polling, and to meet
our application requirements, we have employed the use of an
interrupt to signify the end of an A/D conversion process. When

EOC interrupt is generated, the output of the ADC is read in the
interrupt service routine (ISR) and the ADC is configured for next
set of analog signal(s) to be digitized. The configuration of the
ADC for the next conversion process is table-driven. The table-
driven approach has already been discussed in the periodic table-

driven sampling pattern. The flowchart in Figure 8 provides a
high-level representation of the end of conversion ISR.

Figure 8: Flowchart for an A/D End-of-Conversion Interrupt
Service Routine

Configure for Next Input Channel

Read ADC Results

Last Input? Yes
Reset input counter to first input in

sequence

No

Return

Increment input counter

4.3.5 Resulting Context
Quasi-periodic sampling provides a flexible means for
performing A/D conversion in the absence of hardware resources.
Due to the unknowns of other events in a system, the sampling
time intervals for this approach may vary. If the latter is a
concern, we suggest not using the quasi-periodic sampling
pattern in systems that require high timing interval precision for
A/D conversion process.

4.3.6 Related Patterns
The previous two patterns are similar to this as they all lend
themselves equally well to either sequential or table driven
approach but differ in the fact that they use a hardware based
trigger. There should be only one ADC driver per ADC device

and this can be ensured by using the Singleton pattern [GHJV94].
Also the application level code does not need to know about the
low level details along with the instantaneous data being collected
by the ADC driver. Usually it uses some averaged or filtered
value and this functionality can be encapsulated in an Adapter
class [GHJV94], which provides an easy to use interface for
accessing data from the ADC device.

4.3.7 Known Uses
Multiplexed A/D conversions using the quasi-periodic sampling
pattern have been employed on projects in Schlumberger [SLB].

5. A Guide to Selecting an ADC Sampling

Solution
The following table in conjunction with the design level
classification presented in the introduction section serves as a
guide for selecting the most appropriate solution at each level of
the classification.

Table 1. Design guide to selecting ADC sampling solution

Design
Issue Level

Solution When to use

Number of
ADCs to
use

One ADC per
Signal

One ADC for
two or more
signals

Limited hardware resource

 How to
acquire data

Simultaneous
When several signals need to be
sampled at the same pre-
determined time

Discrete

Choice of
periodicity

Periodic Fixed sampling period required

Quasi-
periodic

No hardware resource to
perform fixed sampling
No constraint on when sampling
is performed

Non-periodic
When another event results in
need to perform analog to digital
conversion

Order of
signal
sampling

Sequential Order of acquisition is fixed

Table-driven
Varying order of acquisition
Repeated sampling of a specific
signal(s).

6. The Hardware Angle
It is difficult to write a paper on embedded system design without
addressing the various hardware issues involved. The patterns
presented in this paper have been implemented on various ADC

devices. The Discrete Periodic Sequential sampling pattern was
implemented on a 16 bit successive approximation ADC with 16
channels of multiplexed data. The Discrete periodic table driven
sampling pattern was implemented on a sigma delta ADC. The
Discrete quasi-periodic table driven sampling pattern was
implemented on a pipelined 12-bit ADC module with built-in
sample-and-hold.

7. Pattern Thumbnails
This section summarizes the patterns discussed in the table below.

Table 2. Summary of patterns presented in this paper

Pattern

No.
Pattern Intent

1 Discrete Sampling
A pattern for sampling one signal at

a time.

2
Simultaneous

Sampling

A pattern for sampling multiple

signals at a time.

3 Periodic Sampling
A pattern for hardware based

interrupt driven ADC sampling.

4
Quasi-Periodic

Sampling

A pattern for software based

interrupt driven ADC sampling.

5
Non-Periodic

Sampling

A pattern for event based interrupt

driven ADC sampling.

6 Sequential Sampling
A pattern for sequentially hard coded

ADC sampling

7
Table Driven

Sampling

A pattern for ADC sampling that is

more flexible and more complex

than Sequential sampling.

8
Discrete Periodic

Sequential Sampling

A pattern for sequentially sampling

an ADC device in a periodic fashion

9

Discrete Periodic

Table Driven

Sampling

A pattern for sampling an ADC

device in a periodic fashion using the

table driven approach.

10

Discrete Quasi-

Periodic Table

Driven Sampling

A pattern for sampling an ADC

device using the table driven

approach in a periodic fashion with

variable periodicity

8. ACKNOWLEDGMENTS
The authors would like to thank Gerard Meszaros for shepherding
this paper for PLoP 2007. The authors are grateful to Lise Hvatum
for her constant support and encouragement during the process of
writing this paper. Thanks also go out to Linda Rising for
providing very useful comments during a patterns boot-camp.

9. REFERENCES

[1] [Bammi06] “Patterns for a Designing a Generic Device
Driver for Interrupt Driven I/O”, Bammi S., presented at the
Pattern Languages of Programming conference (Portland,
Oregon, USA, October 2006).

[2] [Bammi07] “A generic real time embedded data acquisition
pattern language for interrupt driven I/O”, Bammi S.,
presented at the European Conference of Pattern Languages
of Programming conference (Bavaria, Germany, July 2007).

[3] [Ganssle01] Interrupt Latency, Ganssle, J. G. Embedded
Systems Programming, VOL. 14 NO.12, October 2001.
DOI= http://www.embedded.com/story/OEG20010918S0052

[4] [GHJV94] Gamma, E., Helm, R., Johnson, R. and Vlissides,
J., “Design Patterns: Elements of Reusable Object-Oriented
Software” (Addison-Wesley, Boston, 1994).

[5] [Kalinsky03] Kalinsky, D., Introduction to Real-Time
Operating Systems, Introductory Course for Real-Time
Software Development using an RTOS, Courseware
Version 2.1, 3-05-03, D. Kalinsky Associates, 2003.

[6] [Kalinsky06] Kalinsky, D., Architectural Design of Device
Drivers, Tutorial # ESC-505, Embedded Systems Conference
2006 San Jose – Silicon Valley, D. Kalinsky Associates,
2006.

[7] [Minasi93] Minasi, M. “Interrupts Made Easy”, Article in
COMPUTE!, Issue 149, Page 60, February 1993.
DOI=
http://www.atarimagazines.com/compute/issue149/60_Interr
upts_made_easy.php

[8] [Rusling97] Rusling, D., “The Linux Kernel”, DRAFT,

Version 0.1-10(30), ‘Polling and Interrupts’ subsection, April
1997.
DOI=http://www.science.unitn.it/~fiorella/guidelinux/tlk/tlk-
html.html

[9] [SLB] Internal Schlumberger technical literature.

[10] [Staller05] Staller, L., Understanding analog to digital

converter specifications, article on Embedded.com
(February 2005).
DOI=http://www.embedded.com/showArticle.jhtml?articleI
D=60403334

[11] [WIKI07] Analog to digital converter
DOI=http://en.wikipedia.org/wiki/Analog-to-
digital_converter

