
Coordinator-Worker-Context
Process Pattern

John Liebenau
Capital Group Companies Inc.

USA

jfl@capgroup.com

Abstract
This paper describes the Coordinator-Worker-Context process
pattern—a pattern for designing processes that contain embedded
elements responsible for ensuring proper execution and
coordination. Coordinator-Worker-Context addresses some of the
problems that occur in complex processes involving both human
workers and automated systems.

Categories and Subject Descriptors
D.2.11 [Software Engineering]: Software Architectures—

Patterns

General Terms
Design

Keywords
business automation, business modeling, business process,
patterns, socio-technical systems

1. Intent
Ensure a process executes consistently by organizing process
participants into a coordinator role that directs process execution
and a set of worker roles that perform process tasks. Artifacts and
information produced and consumed during process execution are
managed in a common context that enables communication and
information transfer between process participants.

2. Motivation
A process can be defined by specifying: the workers that execute
the process, the step-by-step activities that guide or direct the
workers, and the artifacts that are inputs and outputs of the
activities. A process worker embodies a set of skills, behaviors,
and responsibilities which can be instantiated by individuals,
groups, or automated systems.

Suppose that you are designing a process for your
organization that will involve both human workers and automated
systems. How will you ensure that the process is successfully
implemented from your design and will be executed properly,
both now and in the future? The focus of many process designs is
the sequence of activities that make up the process and mapping
those activities to the appropriate human workers and automated
systems. This kind of process design is a good starting point but it
exposes the process to several problems. Processes that involve
human workers can be difficult to execute consistently because:

• Human workers can misinterpret the activities assigned to
them. Detailed activities must be performed accurately in
order for a process to execute properly but this becomes
harder as the complexity of process activities increases:

o Human workers may misunderstand the instructions of an
activity and perform that activity incorrectly.

o Over time human workers may forget the exact
instructions of an activity by incrementally altering small
elements until the alterations accumulate to a degree that
affects the process.

o Human workers are replaced by newer workers that may
have less knowledge about the process causing them to
perform activities incorrectly.

• Human workers may have difficulties coordinating who
performs what activities. One way of managing the
complexity of a large process is to break it down into smaller
activities handled by specialized process workers but this
shifts the complexity to coordinating process workers.
Common issues include coordinating:

o The correct execution sequence of activities between
many process workers,

o The parallel execution of activities between multiple
process workers, and

o The notification of critical events or state changes during
process execution.

A better approach is to design elements into the process itself
that will ensure proper execution and coordination. For example,
you could specify a role that is responsible for coordinating
workers that execute the process. This design separates the
responsibilities of coordination from execution allowing
coordinators to concentrate on monitoring the overall process
while enabling workers to concentrate on their tasks. You could
also specify a central work repository where artifacts and
information could be stored, enabling easier collaboration

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission. Preliminary versions of these papers
were presented in a writers' workshop at the 15th Conference on Pattern
Languages of Programs (PLoP).
PLoP'08, October 18-20, Nashville, TN, USA.
Copyright 2008 is held by the author(s). ACM 978-1-60558-151-4

between the coordinator and the workers. Together the
coordinator role, worker roles, and work repository make up the
Coordinator-Worker-Context process pattern and provide a
reusable design for implementing many kinds of business
processes.

Let us examine how an online bookstore could implement an
order fulfillment process using the Coordinator-Worker-Context
process pattern. An online bookstore sells books to customers
through its web site. A customer accesses the web site and selects
books to be purchased. The purchase order is created when the
customer provides credit card and shipping information to the
order page on the web site. The order is saved in the bookstore’s

order database and made available to various applications that
will process the order. A billing application charges the
customer’s credit card and verifies that processing may continue.
An inventory application checks warehouse inventory and notifies
a packaging clerk of the order. The clerk packages the order for
shipment, registers package contents with the inventory
application, and sends the package to shipping. The shipping clerk
sends all outgoing packages to the delivery company partnered
with the bookstore. The delivery company delivers the package to
the customer. The major components of the bookstore’s order
fulfillment process are shown in figure 1 (see section 13 for
notation guide).

Bookstore
Customer

«BusinessWorker»
OrderManager

«BusinessBoundary»
Deliv eryServ ice

«BusinessWorker»
OrderProcessor

«BusinessBoundary»
Purchasing

«BusinessEntity»
OrderContext

«BusinessEntity»
OrderArtifact

*

1

1

*

Figure 1

The major components of the order fulfillment process include:

• Purchasing – A boundary of the bookstore and provides
features that allow customers to make book orders and
inquire about the status of existing orders.

• OrderManager – A worker that coordinates and monitors the
work required to complete the book order. The
OrderManager delegates activities to other workers.

• DeliveryService – A boundary of the delivery company
partnered with the bookstore.

• OrderProcessors – Workers representing the bookstore’s
billing, inventory, and shipping capabilities all play a part in
processing customer orders. These workers are notified by
the OrderManager to start working on activities.

• OrderContext - A work context that tracks the state of the
customer’s order and other information needed to complete
the order. The online bookstore has an order and inventory
databases that keep track of customer orders and the
inventory of books in the bookstore’s warehouse.

• OrderArtifacts – Entities representing the informational and
physical artifacts that are produced, consumed, and
manipulated during the order fulfillment process.

Figure 2 expands the OrderProcessor and OrderArtifact
components into hierarchies that show the specialized kinds of
processors and the various kinds of artifacts that they manipulate
in the order fulfillment process. Each OrderProcessor has an
association with the OrderContext and uses that to update and
retrieve OrderArtifacts .

«BusinessWorker»
Billing

+ isPaymentMethodValid() : boolean
+ makeTransaction() : Result

«BusinessWorker»
Inv entory

+ checkInventory() : void
+ packageOrder() : void

«BusinessWorker»
Shipping

+ shipPackage() : void

«BusinessEntity»
Order

+ setAccount(Account) : void
+ getAccount() : Account

«BusinessEntity»
Account

+ addOrder(Order) : void
+ findAccount(Identifier) : Account
+ getPaymentMethod() : PaymentMethod
+ getMailingAddress() : Address

«BusinessEntity»
Package

+ addBook(Book) : void

«BusinessWorker»
OrderProcessor

+ setContext(OrderContext) : void
+ getContext() : OrderContext

«BusinessEntity»
Book

«BusinessEntity»
OrderContext

+ update(OrderArti fact) : void
+ retrieve(Identifier) : OrderArtifact

«BusinessEntity»
OrderArtifact

+ getIdentifier() : Identifier

*1

*

Figure 2

 The Coordinator-Worker-Context process pattern separates
the elements responsible for process coordination from the
elements responsible for executing process activities. Referring to
the bookstore example, the OrderManager ensures that the order
fulfillment process executes properly by coordinating the
activities of automated and human workers that make up the
Billing, Inventory, and Shipping capabilities of the bookstore.
Customer Account and Order information are managed in an
OrderContext, a datastore that facilitates the exchange of
information needed to coordinate order fulfillment activities
between the bookstore’s automated systems and human clerks.

Consistency and efficiency are important to the bookstore.
Bookstore customers expect the same experience each time they
order books and they expect this service to be performed in a
timely fashion. The Coordinator-Worker-Context process pattern
enables the bookstore to implement and execute its order
fulfillment process in a consistent and efficient manner satisfying
customer requirements and providing clear responsibilities for
bookstore workers.

3. Applicability
Use the Coordinator-Worker-Context process pattern when:

• You are implementing a process that involves multiple
workers of different types. Each type of worker is dedicated
to specific activities in the process and is performed by
specially trained human workers or special purpose
automation.

• Human workers and automated systems must collaborate to
execute the process. Human workers play important roles in
the process and must interact with automated systems to
accomplish the activities of the process.

• A high degree a consistency in process execution is required.

• The work being done by the process is complex and requires
coordination between workers to ensure consistency and
efficiency. Examples include processes that have detailed
instructions and well defined service level agreements.

• The output of the process is produced incrementally and
must be communicated or transferred between workers at
each step of the process.

• Workers may be selected from a pool rather than being
dedicated to a specific customer, process, or activity.

Do not use the Coordinator-Worker-Context process pattern
when:

• The process is implemented entirely through automated
systems.

• Workers have well defined input and output relationships
between themselves that specify the transfer of process
artifacts.

• The work being done by the process allows workers to work
independently with little need to coordinate their activities.

4. Structure

ProcessCustomer

«BusinessBoundary»
ProcessBoundary

+ initiate() : void
+ getInput() : ProcessArtifact
+ deliverOutput() : ProcessArtifact

«BusinessWorker»
ProcessCoordinator

+ initiate() : void

«BusinessWorker»
ProcessWorker

+ setContext(ProcessContext) : void
+ getContext() : ProcessContext

«BusinessEntity»
ProcessInput

«BusinessEntity»
ProcessOutput

«BusinessEntity»
ProcessContext

+ update(ProcessArtifact) : void
+ retrieve(Identifier) : ProcessArtifact

«BusinessEvent»
ProcessEvent

+ getInput() : ProcessArtifact

«BusinessEntity»
ProcessState

«BusinessEntity»
ProcessArtifact

«BusinessWorker»
ProcessWorkerB

+ doStep3() : Status
. . .

...

«BusinessWorker»
ProcessWorkerA

+ doStep1() : Status
+ doStep2() : Status

* 1

1

*

*

Figure 3

5. Participants
• PROCESSCUSTOMER (Bookstore Customer)

— Initiates a process by interacting with the
PROCESSBOUNDARY

— Provides PROCESSARTIFACT(s) as input to
PROCESSBOUNDARY at the beginning of process
execution

— Obtains PROCESSARTIFACT(s) as output from
PROCESSBOUNDARY at the end of process execution

• PROCESSEVENT

— Initiates a process execution by notifying the
PROCESSCOORDINATOR

• PROCESSBOUNDARY (Purchasing, DeliveryService)

— Interacts with PROCESSCUSTOMER to accept
PROCESSARTIFACTs as input and may return
PROCESSARTIFACTs as output

— Initiates a process execution by notifying the
PROCESSCOORDINATOR

• PROCESSCOORDINATOR (OrderManager)

— Interacts with PROCESSBOUNDARY to accept
PROCESSARTIFACTs as input and may return
PROCESSARTIFACTs as output

— Coordinates PROCESSWORKERs during process
execution

• PROCESSWORKER (Billing, Inventory, Shipping)

— Performs the main processing steps of the process as
directed by PROCESSCOORDINATOR

— Updates PROCESSCONTEXT with intermediate state
during process execution

• PROCESSARTIFACT (OrderArtifact, Account, Order, Book,
Package)

— Information or other resources that are inputs to the
process

— State or other information produced and consumed
during process execution

— Products, services, information, or other things that are
resulting outputs from the process

• PROCESSCONTEXT (OrderContext)

— Organizes or manages the intermediate state of the
process

— Provides a common point of access to
PROCESSARTIFACTs

6. Collaborations
The following diagram (see figure 4) describes the overview of
the Coordinator-Worker-Context collaborations. A process can be
initiated by a customer or by an event. Once the process has been
initiated, the main work of the process is performed. During this
stage the output of the process is being produced. After the
process’s main work is complete, the resulting output is delivered
to the customer.

sd Collaborations Overview

ref
Initiate Process Through Customer

ref
Do Work

ref
Deliver Results

ref
Initiate Process Through Event

[event][customer]

Figure 4

A customer initiates a process by sending a request to the
process’s boundary. The boundary relays this request to the
coordinator which starts the process by directing the boundary to
obtain any necessary input from the customer. This input is stored
in the context for use in subsequent work steps. (see figure 5)

sd Initiate Process through Customer

customer boundary :
ProcessBoundary

coordinator :
ProcessCoordinator

input :ProcessInput

context :
ProcessContext

initiate()

initiate()

getInput() :ProcessArtifact

getInput()

:ProcessInput

:ProcessInput

update(input)

Figure 5

An event initiates a process by signaling to the coordinator to
begin the process. The coordinator obtains any input information

from the event and stores this input in the context for use in
subsequent work steps. (see figure 6)

sd Initiate Process Through Ev ent

coordinator :
ProcessCoordinator

input :ProcessInput

context :
ProcessContext

initiateProcess :ProcessEvent

initiate()

getInput() :ProcessArtifact

:ProcessInput

update(input)

Figure 6

The main work of the process is coordinated by the coordinator
and executed by the workers. The coordinator directs the workers
to begin working on their tasks in the order specified by the
process. Work may proceed sequentially with each worker

notifying the coordinator that their task is complete or tasks can
be executed in parallel depending on the nature of the work. (see
figure 7)

sd Do Work

coordinator :
ProcessCoordinator

worker1 :
ProcessWorker

context :
ProcessContext

worker2 :
ProcessWorker

worker3 :
ProcessWorker

par

doStep(context) :Status

retrieve(item) :ProcessArtifact

:ProcessArtifact

doTask(item) :
ProcessArtifactupdate(state)

:Status

doStep(context) :Status

retrieve(item) :ProcessArtifact

:ProcessArtifact

doTask(item) :
ProcessArtifactupdate(state)

:Status

doStep(context) :Status

retrieve(item) :ProcessArtifact

:ProcessArtifact

work()

update(state)

:Status

Figure 7

The coordinator—or a worker designated for the task—produces
or packages the process output from data or materials in the
process context. The coordinator directs the boundary to deliver

the output to the customer and the process is complete. (see figure
8)

sd Deliv er Results

customer boundary :
ProcessBoundary

coordinator :
ProcessCoordinator

output :
ProcessOutput

context :
ProcessContext

retrieve(item) :ProcessArtifact

:ProcessArtifact

deliverOutput()

:ProcessOutput

Figure 8

7. Consequences
The Coordinator-Worker-Context process pattern has the
following benefits:

• Enables clear separation of responsibilities. The Coordinator-
Worker-Context pattern separates process participants
according to their responsibilities. For example, the
PROCESSCOORDINATOR role is responsible for ensuring that
the process executes correctly by coordinating the work of
PROCESSWORKERs and monitoring the progress of work
being done in the process. PROCESSWORKERs are responsible
for specific activities that must be completed during process
execution. This separation of responsibilities enable each
participant to concentrate on their activities which has the
effect of making the process easier understand form a
participant’s point of view and therefore easier to execute.

• Ensures that work is efficiently distributed to workers. The
PROCESSCOORDINATOR assigns work to specific
PROCESSWORKERs and tracks their work load. If a
PROCESSWORKER is working at maximum load the
PROCESSCOORDINATOR selects another PROCESSWORKER to

• Provides common access point for information and material
needed to complete work. A PROCESSCONTEXT that is
equally accessible to the PROCESSCOORDINATOR and all
PROCESSWORKERs improves communication between
participants and facilitates the transfer of information and
materials needed for efficient process execution. The
PROCESSCONTEXT may also provide mechanisms that assist
in synchronizing parallel work.

Coordinator-Worker-Context has the following liability:

• PROCESSCOORDINATOR could become a bottleneck if not
properly implemented. The PROCESSCOORDINATOR is the
primary decision maker during process execution and
controls the progress from task to task until the process has
completed executing. This responsibility can become a
bottleneck if the PROCESSCOORDINATOR becomes
overwhelmed by too many items that need monitoring
including: process executions occurring at the same time,
concurrent tasks within a process, and complex decisions.
Some of these issues are addressed in the Implementation
section.

8. Implementation
The following implementation issues should be considered when
implementing processes with the Coordinator-Worker-Context
process pattern:

• Process automation. In many cases it is possible to improve
the efficiency and consistency of a process by automating
some of its elements. The PROCESSCOORDINATOR can be
automated when the plan defining the process steps is
relatively simple and the decision criteria for advancing from
step to step can be represented in an automated system.
Business Rule Management Systems [Halle 2002][Morgan
2002] and Business Process Execution Language engines
[OASIS 2007] are frequently used technologies for
implementing automated PROCESSCOORDINATORs.
PROCESSWORKERs can also be automated if the tasks they
perform are conducive to automation in either mechanical or
software-intensive systems. Some tasks require a
combination of both human and automated workers. These
types of tasks can be implemented with a business ensemble
that combines human worker(s) and automation into a
cohesive unit (see figure 9).

«BusinessEnsemble»
Ensemble

«BusinessRole»
HumanWorker «BusinessAutomation»

Automation

«BusinessWorker»
ProcessWorker

+ setContext(ProcessContext) : void
+ getContext() : ProcessContext

Figure 9

• Designing the ProcessContext. The PROCESSCONTEXT holds
the information and materials needed by all
PROCESSWORKERs to complete the process. The following
are important design issues that must be addressed when
implementing the PROCESSCONTEXT:
o Integrating physical and digital elements into a single

context. It is common to manipulate physical as well as
digital elements in a process. For example, the book
order process described in the Motivation section
manipulates the state of the book order which is a
digital element and the physical books that make up the
order. One way of managing physical elements that
interact with digital elements is to create a digital proxy
[Gamma+ 1995] for each type of physical element. The
digital proxy is stored in the PROCESSCONTEXT and
provides the needed interaction with the digital
elements. Using our example, a physical book can have
a book record that describes the book, the number of
copies in inventory, and other data. Book records
represent the physical books.

o Notifying process participants of changes to the
PROCESSCONTEXT. The state of the PROCESSCONTEXT
changes during process execution. Often it is important
for process participants to be notified of these changes
so they can continue the next step or monitor progress.
If the PROCESSCONTEXT is completely implemented in
software then mechanisms can be designed into the
PROCESSCONTEXT to trigger notifications on changes.
This design conceptually follows the Observer design
pattern [Gamma+ 1995] where the PROCESSCONTEXT
acts as the Subject and the process participants act as
the Observers. The notification medium depends on the
process and the systems that implement it. Example
notification mechanisms include email, pop-up
windows, and automated phone messages.

o Separating the PROCESSCONTEXT from
PROCESSWORKER sandboxes. The PROCESSCONTEXT
contains the shared state of a process execution but
there may be tasks that use state private to a specific
PROCESSWORKER. This state can be stored in a sandbox

that is dedicated to a specific PROCESSWORKER rather
than mixing this state into the PROCESSCONTEXT. In the
bookstore example the Order Management System may
provide functionality for an Inventory Clerk to assume
control of a Book Order and assemble the Book Order
Package without updating the shared state of the Book
Order until the clerk’s work is completed. This insulates
other PROCESSWORKERs from being exposed to
incremental or incomplete work that could be confusing
or difficult to follow.

• Handling process parallelism. Many processes will have
activities that can be (or need to be) executed in parallel.
Parallel execution of activities requires synchronized access
and update of the PROCESSCONTEXT and the
PROCESSCONTEXT or the PROCESSCOORDINATOR can be
responsible for synchronizing the activities of multiple
workers either through synchronization state in the
PROCESSCONTEXT or explicit signaling from the
PROCESSCOORDINATOR. For example the PROCESSCONTEXT
or PROCESSCOORDINATOR may provide functionality for
reserving or checking out information or materials contained
in the PROCESSCONTEXT preventing other PROCESSWORKERs
from accessing these item simultaneously.

• Process Initiation. A process can be initiated by
PROCESSCUSTOMER making a request and providing a
PROCESSARTIFACT as input to the PROCESSCOORDINATOR
through the PROCESSBOUNDARY. A process can also be
initiated by the PROCESSCOORDINATOR receiving a
PROCESSBOUNDARY. If your process can be initiated by both
a customer request and an event, the PROCESSCOORDINATOR
must be designed to accept both modes of initiation.

• Multiple PROCESSBOUNDARIES. Processes may receive input
in the form of ProcessArtifacts from multiple types of
PROCESSBOUNDARIES and send PROCESSARTIFACTs as output
to multiple PROCESSBOUNDARIES. For example, in an order
fulfillment process a customer could make the same kinds of
orders over a web site, a phone, or face-to-face with a sales
representative. Delivery of the order could be through a
parcel delivery company, purely electronic (depending on
the product), or in a brick and mortar store. If these
PROCESSBOUNDARIES have common behavior they can be
grouped into a hierarchy (see figure 10).

ProcessCustomer

«BusinessRole»
HumanBoundary

File Edit Tools Help

AutomatedBoundary

«BusinessBoundary»
ProcessBoundary

+ initiate() : void
+ getInput() : ProcessArtifact
+ deliverOutput() : ProcessArtifact

«UserInterfaceClient»

Figure 10

• Hierarchical PROCESSCOORDINATORs. Large or complex
process can be decomposed into a hierarchy of sub-
processes, each with their own PROCESSCOORDINATOR. This
can be accomplished by making PROCESSCOORDINATOR a
specialization of PROCESSWORKER (see figure 11) The
resulting design follows the Composite design pattern
[Gamma+ 1995].

«BusinessWorker»
ProcessWorker

+ setContext(ProcessContext) : void
+ getContext() : ProcessContext

«BusinessWorker»
ProcessCoordinator

«BusinessWorker»
ProcessWorkerA

+ doStep1() : Status
+ doStep2() : Status

«BusinessWorker»
ProcessWorkerB

+ doStep3() : Status
1

*

Figure 11

PROCESSCOORDINATOR instances form a tree with the main
coordinator as the root (see figure 12).

«BusinessWorker»

mainCoordinator :ProcessCoordinator

«BusinessWorker»
subCoordinatorA :ProcessCoordinator

«BusinessWorker»
subCoordinatorB :ProcessCoordinator

«BusinessWorker»
subCoordinatorC :ProcessCoordinator

+child

+child

+parent

+child

Figure 12

• Multiple instances of PROCESSCOORDINATOR or a single
instance of PROCESSCOORDINATOR. The capabilities of the
organization and systems implementing the process will
determine if the process has multiple
PROCESSCOORDINATORs responsible for groups of process
executions or a single PROCESSCOORDINATOR responsible for
all process executions. Using the order fulfillment process as
an example, a small organization may only have the
resources to process few concurrent orders and would have a
single instance of PROCESSCOORDINATOR for all order
fulfillment executions. A larger organization would have

more resources available to process many concurrent orders
and may choose to have multiple instances of
PROCESSCOORDINATOR to manage a greater number of order
fulfillment executions.

• Reporting status to Customer. PROCESSCUSTOMERs of long
running process executions may require status during process
execution. This can be accomplished by a mechanism in the
PROCESSBOUNDARY for the PROCESSCUSTOMER to request
status and a mechanism in the PROCESSCOORDINATOR for
obtaining execution status from the PROCESSCONTEXT. The
PROCESSCOORDINATOR transforms the execution status into a
format consumable by the PROCESSCUSTOMER and instructs
the PROCESSBOUNDARY to deliver this status to the
PROCESSCUSTOMER.

• Process Cancellation. PROCESSCUSTOMERs may require the
ability to cancel a process execution. This functionality
requires a mechanism in the PROCESSBOUNDARY for the
PROCESSCUSTOMER to send a cancel request to the
PROCESSCOORDINATOR The PROCESSCOORDINATOR cancels
the ongoing work of PROCESSWORKERs and clears the
PROCESSCONTEXT. The PROCESSCUSTOMER instructs the
PROCESSBOUNDARY to notify the PROCESSCUSTOMER that the
process execution has been cancelled. Some types of
processes may require a transaction mechanism to ensure the
consistency of important information (such as account
balances) after process cancellation.

9. Example
In the Motivation section we presented a high level view of an
order fulfillment process for an online book store. We developed
business class diagrams (see figures 1 and 2) that described the
major business boundaries, business workers, and business
entities of the bookstore’s order fulfillment process. In this section
we further illustrate the Coordinator-Worker-Context process
pattern by providing a more detailed view of the bookstores
components and their collaborations.

The business classes shown in the following diagram (see
figure 13) represent the logical components of the bookstore’s
order fulfillment process. These logical components are realized
by human workers performing well defined business roles or
automated systems designed to provide the necessary
functionality that executes the process.

Bookstore
Customer

«BusinessWorker»
OrderManager

+ initiate() : void

«BusinessWorker»
Billing

+ isPaymentMethodValid() : boolean
+ makeTransaction() : Result

«BusinessWorker»
Inv entory

+ checkInventory() : void
+ packageOrder() : void

«BusinessWorker»
Shipping

+ shipPackage() : void

«BusinessBoundary»
Deliv eryServ ice

+ deliver(Package) : void

«BusinessEntity»
Order

«BusinessEntity»
Account

«BusinessEntity»
Package

«BusinessWorker»
OrderProcessor

+ setContext(OrderContext) : void
+ getContext() : OrderContext

«BusinessEntity»
Book

«BusinessBoundary»
Purchasing

+ newOrder() : void
+ promptForOrderInformation() : void

«BusinessEntity»
OrderContext

+ update(OrderArtifact) : void
+ retrieve(Identifier) : OrderArtifact

«BusinessEntity»
OrderArtifact

1

*

*

*1

Figure 13

 Figure 14 provides an example of mapping business roles

and automation to the logical components of the business process.
The Shipping business worker is realized by a ShippingClerk
business role. ShippingClerk specifies the necessary skill required
to perform the role and the responsibilities and tasks assigned to
the role. The Billing business worker is realized by a
BillingSystem software application that provides all of the
necessary functionality to implement the Billing component of the
process. The Inventory business worker is realized by an

InventoryEnsemble made up of an InventoryClerk business role
interacting with an InventorySystem software application. This is
an example of a business ensemble that combines business roles
and automation into a unified component that realizes a business
process element.

«BusinessEnsemble»
InventoryEnsemble

«BusinessWorker»
Billing

+ isPaymentMethodValid() : boolean
+ makeTransaction() : Result

«BusinessWorker»
Inv entory

+ checkInventory() : void
+ packageOrder() : void

«BusinessWorker»
Shipping

+ shipPackage() : void

«BusinessWorker»
OrderProcessor

+ setContext(OrderContext) : void
+ getContext() : OrderContext

«BusinessRole»
ShippingClerk

+ shipPackage() : void

«BusinessBoundary»
DeliveryServ ice

+ deliver(Package) : void

«BusinessRole»
InventoryClerk

+ packageOrder() : void
«BusinessAutomation»

InventorySystem

+ checkInventory() : void
+ displayAvailabil ity() : void
+ updateInventory() : void

«BusinessAutomation»
BillingSystem

+ isPaymentMethodValid() : boolean
+ makeTransaction() : Result

Figure 14

The remainder of this section focuses on describing the
collaborations that implement the order fulfillment process. The
following diagram (see figure 15) describes the high level
interactions of the online bookstore’s order process. This diagram
is the framework that organizes the process’s interactions.
Subsequent diagrams drill down into each step.

sd Online Bookstore Overview

Start

Fin ish

ref

Make Book Order

ref

Process Book Order

ref

Deliver Book Order

Figure 15

The following sequence diagram (see figure 16) contains the
interactions for making a book order. The customer initiates the
process by starting a new book order. The customer selects the
books to be purchased and submits the order to the bookstore’s

order management system. The order management system saves
the order and initializes it for processing.

sd Make Book Order

customer purchasing :
Purchasing

coordinator :
OrderManager

account :Account

order :Order

context :
OrderContext

newOrder()

initiate()

findAccount(id) :Account

:Account

update(account)

promptForOrderInformation()

getOrderInformation()

:Order Information

:Order Information
create()

addOrder(order)

setAccount(account)

update(order)

Figure 16

The next diagram (see figure 17) contains the interactions for
processing the book order. The order management system
retrieves the billing information from the customer’s account and
sends that information along with the order amount to the billing
system.

sd Process Book Order

coordinator :OrderManager bill ing :Bil l ing inventory :Inventory account :Account order :Order package :Packagecontext :
OrderContext

break

[status != valid]

opt

[not in stock]

loop

[foreach book in ItemList]

setContext(context)

isPaymentMethodValid() :boolean

retrieve(accountId) :OrderArtifact
:Account

getPaymentMethod() :PaymentMethod
:PaymentMethod

validate()

:OrderStatus

processError()

setContext(context)

checkInventory()

retrieve(order) :OrderArti fact

:Order

getItems() :ItemList

:ItemList

orderFromPublisher()

packageOrder()
addBook(book)

update(package)

makeTransaction() :OrderStatus

:OrderStatus

Figure 17

 The final diagram (see figure 18) shows the delivery of the

package containing the books that were ordered and the
completion of the book order. The order management system
directs the shipping clerk to send the package to the shipping
company that partners with the bookstore. Once the package has

been sent, the clerk notifies the order management system which
completes the book order. The process concludes when the
shipping company delivers the package to the customer.

sd Deliver Book Order

customer delivery :DeliveryService orderManager :OrderManager shipping :Shipping package :Packagecontext :
OrderContext

setContext(context)

shipPackage()

retrieve(package) :OrderArtifact

:Package

addShippingInformation(shippingInfo)

:OrderStatus

deliver(package)

getShippingInformation() :ShippingInformation

:ShippingInformation

:Package

Figure 18

10. Known Uses
There are numerous instances of Coordinator-Worker-Context in
a variety of businesses and organizations. Many implementations
of the Order Fulfillment Process like the ones described in the
Motivation and Example sections conform to Coordinator-
Worker-Context.

Software Development Processes typically use Coordinator-
Worker-Context to organize their work. Stakeholders provide
input to the process in the form of Requirements. Project
Managers act as PROCESSCOORDINATORs to ensure that work is
being performed properly and in the correct order. Analysts,
Architects, Developers, and Testers are all process workers
contributing to the development of the end product. The source
code repository plays the part of the process context that holds the
state of the development effort. Another example from software
development is Continuous Integration Servers such as
CruiseControl or IBM Rational’s BuildForge. A Continuous
Integration Server acts as an automated PROCESSCOORDINATOR
that triggers builds and tests when a developer (PROCESSWORKER)
delivers a new version of source code (PROCESSARTIFACT) to the
source code repository (PROCESSCONTEXT). If the build and tests
are successful the Continuous Integration Server notifies the
developers on the development team that a new source code
baseline is available to use in their next set of development tasks.

The Object Advantage [Jacobson+ 1995] presents a vision of
process-centric business organizations that includes Process
Leader and Process Operator roles. These roles are similar to
PROCESSCOORDINATOR and PROCESSWORKER respectively but in
Jacobson’s description they appear to describe human workers
only.

11. Related Patterns
Coordinator-Worker-Context can optionally use the following
patterns in its application (see figure 19):

• The Proxy design pattern [Gamma+ 1995] can be used in a
conceptual manner to provide a digital proxy for a real world
entity combining both digital and physical entities into a
common PROCESSCONTEXT.

• The Observer design pattern [Gamma+ 1995] can be used in
a conceptual manner to notify PROCESSWORKERs of changes
to the PROCESSCONTEXT.

• The Composite design pattern [Gamma+1995] can be used in
a conceptual manner to create a hierarchy of
PROCESSCOORDINATORs that help to decompose a highly
complex process into more manageable sub-processes.

«Pattern»
Coordinator - Worker - Context

«Pattern»
Observ er

«Pattern»
Proxy

«Pattern»
Composite

optionally-usesoptionally-uses optionally-uses

Figure 19

12. Acknowledgements
Many thanks to Hironori Washizaki for being my PLoP ’08
shepherd and providing many useful suggestions for improving
this paper. Thanks and gratitude to the PLoP ’08 Process &
Services workshop (Bobby Woolf, Lisa Hvatum, Paul Austrem,
Philipp Bachman, Rob Daigneau, Geert Monsieur, Mark
Mahoney, and Miyuko Naruse) for excellent feedback and
discussions.

13. Notation Guide
«Stereotype» Description Icon

BusinessActor A person or system
outside of a business
that interacts with one or
more business processes.

BusinessBoundary An interface between a
BusinessActor and a
business.

BusinessWorker A component that
embodies a set of
behaviors, skills, and
responsibilities that are
applied to executing the
activities of a business
process.

BusinessEntity Informational or
physical item that is
input to or output from a
business process, or is
used in the internal
activities of a business
process.

BusinessEvent An event that has
significance to a
business and may trigger
one or more business
process activities.

UserInterfaceClient A kind of Business
Boundary that is a
software system that
serves as the interface
between a Business
Actor and a business.

BusinessRole A role defined in the
business and performed
by a person or group that
executes the activities of
a business process.

BusinessAutomation A realization of a
Business Worker that is
a software system or
mechanical device that
executes the activities of
a business process.

BusinessEnsemble A realization of a
Business Worker that is
a combination of a
human worker
performing a Business
Role in conjunction with
some kind of Business
Automation such as a
software application or
mechanical device.

14. References
[Gamma+1995] E. Gamma, R. Helm, R. Johnson, and J.
Vlissides. Design Patterns-Elements of Reusable Object-Oriented
Software. Reading, MA: Addison-Wesley, 1995.

[Halle 2002] Barbara von Halle. Business Rules Applied. John
Wiley and Sons, 2002.

[Jacobson+ 1995] I. Jacobson, M. Ericsson, A. Jacobson. The
Object Advantage: Business Process Reengineering with Object
Technology . ACM Press, 1995.

[Morgan 2002] Tony Morgan. Business Rules and Information
Systems. Addison-Wesley, 2002.

[OASIS 2007] OASIS WS-BPEL Technical Committee. Web
Services Business Process Execution Language Version 2.0.
OASIS, 2007. Link:
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.pdf

