
A Pattern Language for Metadata-based Frameworks
Eduardo M. Guerra

Aeronautical Institute of Technology
Praça Marechal Eduardo Gomes, 50
Vl Acácias - SJ Campos – SP, Brazil

+55 12 39475899

guerraem@gmail.com

Jerffeson T. de Souza
State University of Ceará (UECE)
Av. Paranjana, 1700 , Campus do
Itaperi - Fortaleza – CE, Brazil

+55 85 3101-9776

jeff@larces.uece.br

Clovis T. Fernandes
Aeronautical Institute of Technology
Praça Marechal Eduardo Gomes, 50
Vl Acácias - SJ Campos – SP, Brazil

+55 12 39475899

clovistf@uol.com.br

ABSTRACT

Metadata-based frameworks are those that process their logic

based on the metadata of the classes whose instances they are

working with. Many recent frameworks use this to get a higher

reuse level and to be more suitably adapted to the application

needs. However, there is not yet a complete best practices

documentation or reference architecture for the development of

frameworks by using the metadata approach. As a result, this

paper presents a pattern language that addresses preliminarily the

internal structure of metadata-based frameworks, helping in the

understanding and development of such kind of framework..

Categories and Subject Descriptors

D.2.2 [Design Tools and Techniques]: Object-oriented design

methods.

General Terms

Design, Experimentation.

Keywords

Metadata, Design Patterns, Pattern Language, Annotation,

Attribute-oriented Programming, Framework.

1. I%TRODUCTIO%
According to Beck [2], there are three styles of use that a

framework can support: instantiation, implementation and

configuration. Instantiation is the simplest style of use, where the

client instantiate a framework class and use it invoking its

methods. In implementation, the client implements a framework

interface or extends the framework class to include logic during

its execution. In configuration, the client invokes framework

methods and passes his own objects to be called at predetermined

times.

The implementation style is the one that has the most potential to

restrict future design decisions in the framework and the client

classes also became tight coupled with the framework structure.

Many recent frameworks, in order to avoid these drawbacks, use

the configuration style by defining metadata of application's

classes. Metadata-based frameworks are frameworks that use class

metadata in runtime to process their logic [11].

Many metadata-based frameworks use attribute-oriented

programming, which is a program-level marking technique that

allows developers to mark programming elements, such as classes

and methods, to indicate application-specific or domain-specific

semantics [32]. In Java platform, this programming style has

become popular with the native support to code annotations [20].

But in these frameworks, the metadata can be stored not only by

using annotations, but also by using external files (usually as

XML documents), databases or programmatically. The metadata

can also be configured implicitly using name conventions [6].

Many mature frameworks and APIs used in the industry nowadays

are based on metadata, such as Hibernate [1], EJB 3 [21] and

JUnit [2] [24]. However, some of these frameworks have a few

flexibility problems that can difficult or prevent their use in some

applications. For instance, the metadata reading mechanism of

some frameworks cannot be extended, which makes it difficult to

retrieve metadata from other sources or formats. This lack of

flexibility in the metadata reading can create the need of

annotation refactoring [31]. Examples of other design concerns

are the following: how to make metadata extensible, how the

framework logic can be adapted according to class metadata and

how the metadata can be shared among frameworks or

components.

This paper presents a study that included an analysis in the

internal structure of many existing open source metadata-based

frameworks. Other frameworks are developed by the author's

research group to experiment existent and alternative solutions in

different contexts. The objective is to identify best practices both

in the understanding and in the development of metadata-based

frameworks and to consolidate this design knowledge. This study

documents the identified design patterns and structures them in a

pattern language.

In Guerra et al. [13] some isolated patterns for metadata-based

components were identified and documented. It classifies the

patterns in two categories: structural patterns and application

patterns. The structural patterns are related to the internal

structure of the component and the application patterns are related

to situations in which this kind of solution can be applied. This

paper is a continuation of this work, but its scope is limited to

structural patterns and the focus is only on frameworks. Some of

the structural patterns showed in Guerra et al. [13] are split in new

patterns of the pattern language proposed in this work.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. To copy otherwise, to

republish, to post on servers or to redistribute to lists, requires prior

specific permission. Preliminary versions of these papers were presented in

a writers' workshop at the 16th Conference on Pattern Languages of

Programs (PLoP). PLoP'09, August 28-30, Chicago, IL, USA. Copyright

2009 is held by the author(s). ACM 978-1-60558-873-5

The main objective of the Pattern Language for Metadata-based

Frameworks is to serve as a guide to framework developers that

want to use the metadata-based approach. Some of the design

knowledge is documented in new patterns, but the pattern

language also includes specialization and combination of some

existent patterns to this context. It can also be used as a base to

define reference architectures for this kind of frameworks [3]. The

running example of the pattern language also presents a complete

and detailed example of how to refactor an existent framework to

implement the patterns.

2. PATTER% LA%GUAGE DESCRIPTIO%
This section presents the proposed Pattern Language for

Metadata-based Frameworks. Figure 1 illustrates the pattern

language structure. The dashed arrows represent pattern

dependences, meaning that for the implementation of the

dependent pattern, the other must also be implemented. For

instance, Metadata Reader Strategy depends on the Metadata

Container. The solid arrow represents that there is a connection

between the patterns and they are often used together, but they can

also be applied independently. For instance, Metadata Processing

Layers is connected to Metadata Repository.

The patterns are classified in the following tree different

categories:

• Structural Patterns - These patterns document best

practices about how to structure internally the classes of a

metadata-based framework. They can be considered as the

base of the pattern language, since many other patterns

depend on their implementation. They are described in

section 3.

• Metadata Reading Patterns - These patterns document

recurrent solutions about the reading of metadata by the

framework. They present solutions to improve the flexibility

in the reading process, allowing metadata sharing and

metadata extension. They are described in section 4.

• Logic Processing Patterns - These patterns document

solutions in the design of the classes that process the main

logic of the framework. They allow the logic processing that

is based on the class metadata to be extended and modified.

They are described in section 5.

It is not in the scope of this pattern language to describe how

metadata-based frameworks can be attached to the application

architecture. The simplest case is when the framework entry point

class is instantiated and used by the application, but it can also be

transparent for clients in an application class proxy [10],

embedded in a container like in the EJB specification [21] or even

weaved with an aspect [14]. How the framework is invoked does

not change the best practices in its internal structure. For

Structural Patterns

Metadata Reading Patterns

Delegate Metadata Reader

Logic Processing Patterns

Metadata Reader Strategy

Metadata Repository

Metadata Container

Metadata Reader Chain Metadata Reader Adapter

Metadata Processor

Metadata Processing Layers

Pattern Dependence

Pattern Connection

Figure 1. Pattern Language Structure.

simplicity, the pattern language will consider, without loss of

generality, that the client directly invokes the framework's

methods.

2.1 Patterns Overview
The objective of this section is to give an initial idea of the pattern

language and how each pattern fits in its context. The following

gives a small description of each pattern:

• Metadata Container - This pattern decouples the metadata

reading from the framework's logic creating a container to

represent metadata at runtime. A metadata reader populates

the instance of this class, which is used by the framework.

• Metadata Repository - This pattern creates a repository to

store metadata in runtime, avoiding unnecessary metadata

readings. The repository manages the metadata reading and

is accessed by the framework to retrieve the metadata

container.

• Metadata Reader Strategy - This pattern creates an

abstraction of the metadata reading algorithm allowing it to

have different implementations. It allows the framework to

read metadata from different kind of sources.

• Metadata Reader Chain - This pattern allows the use of

more than one source at the same time to get metadata from

classes. It uses a composite metadata reader that invokes

other readers to compose the reading algorithm.

• Metadata Reader Adapter - This pattern uses the metadata

repository of another framework to get the existent metadata

and set information in the metadata container. It allows

metadata sharing among frameworks.

• Delegate Metadata Reader - In this pattern, the metadata

reader delegate to other classes the responsibility to interpret

pieces of metadata defined in annotations or XML elements.

It allows the metadata schema to be extended by the

application.

• Metadata Processor - In this pattern, the metadata

container is composed of classes that maintain logic to

process pieces of metadata. By implementing these class

abstractions, it is possible to extend the framework

behavior.

• Metadata Processing Layers - In this pattern, the logic

processing is composed of many different layers with

different responsibilities. It allows each layer to evolve

independently and also the framework functionality to be

extended by adding new layers.

2.2 Frameworks Used as Examples
This section presents briefly the frameworks used in the research

to identify best practices in dealing with metadata. They are also

used as examples in the pattern language. The frameworks will be

referenced by the name in bold and the references are not repeated

in the pattern’s “Known Uses” section.

• Hibernate [1] is a framework that uses metadata for object-

relational mapping for implementing a persistent layer. The

metadata can be defined in a XML file or using annotations.

• SwingBean framework [30] provides graphical components

for creating forms and tables for a Swing desktop

application in Java. These components use the metadata of

an application domain class defined in a XML document to

configure how the information should be retrieved or

presented.

• JAXB API [22] is a Java standard for XML binding, which

uses annotations on application classes to map them to the

target XML Schema. The reference implementation is used

in the analysis.

• XapMap [34], which stands for Cross Application

Mapping, is a framework that maps entities of the same

domain but implemented in different class structures. It

provides a component that creates an instance of one

schema based on an instance of the other schema and also

provides a proxy that encapsulates the access of an instance

of one schema based on the other schema's API.

• ACE Framework [5] uses metadata to map functionalities

of a web application to mobile applications. This framework

supports this mapping for new applications, using

annotations, and for legacy applications, using XML files.

• MentalLink [12] [26] is a framework which uses

annotations for mapping between instances of ontology and

objects.

• MetadataSharing [26] is an implementation that allows

metadata sharing among frameworks. A repository reads the

metadata from many sources and then provides an API for

the frameworks to retrieve the information that they need.

• Hibernate Validator [15] is framework that checks in-

memory instances of a class for constraint violations. Two

versions of this framework are used in the analysis: the

release 3.1 and the release 4.0 alpha which implements the

specification Bean Validation [23].

• JColtrane [19] is a framework to parse XML files based on

SAX [29] events. It uses annotations to define conditions

for each method to be executed.

• JBoss Application Server 5 [17] is an implementation of

an application server that supports the EJB 3 specification

[21].

• Esfinge Framework [7] is a framework for the business

layer of a corporative application. It provides a layered

structure that allows layers to be easily created and inserted.

Other references that are not properly frameworks can also be

used as know uses in some of the identified patterns.

2.3 Running Example
The pattern language is illustrated in this work by means of a

running example featuring the Comparison Component, a

framework that compare instances of the same class and returns a

list of differences among them. It will compare all the application

class properties searching for differences. The metadata will be

used to configure characteristics in the comparison algorithm for

each class, such as properties to ignore, numeric tolerance and

objects to go deep into the comparison.

The comparison component provides tree annotations to configure

how the classes should be compared: @Ignore annotates

properties that should not be included in the comparison;

@Tolerance annotates numeric properties that should have a

numeric tolerance to be considered; @DeepComparison annotates

compound properties that should be compared using the

comparison component itself. Listing 1 presents an example of a

class with these annotations.

The framework entry point, represented by the class

ComparisonComponent, has only one public method called

compare(). This method receives two instances of the same class,

considering that they are different versions of the same business

entity. This method also returns an instance list of Difference,

which is a data class that has three properties representing the

property name, the property value in the new instance and the

property value in the old instance. Listing 2 presents a sample

code that compares two instances and prints the differences in the

console. Listing 3 presents the initial implementation of the

Comparison Component without any pattern implementation. In

each pattern, this implementation will be refactored to increase its

flexibility and, in some cases, enabling the creation of new

functionalities

The implementation of the compare() method in Listing 3 first

verify if both instances are from the same class. After that, it

retrieves all getter methods from the class and compare the values

retrieved from both instances based on the metadata. The private

methods compareRegular() and compareWithTolerance() are used

by the compare() method respectively for the regular comparison

and for the comparison using tolerance.

3. STRUCTURAL PATTER%S

3.1 Metadata Container

Motivation

A framework must read metadata to obtain information about the

instance that is being processed to execute its logic. If reading and

processing logic are mixed in the source code, it disables the

extension of the framework logic and the metadata reading from

other sources.

Problem

How to decouple the metadata reading from the framework's main

logic?

Forces

• The reading of metadata mixed with the framework main

logic is easier for a small metadata schema.

• The reading of metadata in all framework invocations can

make it stateless but it can become a performance

bottleneck.

• The existence of an internal representation of the metadata

can consume more runtime memory, which is a problem

especially in embedded applications.

• A representation of the metadata read can be used to share

this information among frameworks.

• The metadata format coupled with the framework's main

logic can disable the application of other patterns that can

make flexible the metadata reading and enable the extension

of the metadata schema.

Structure

In Metadata Container, the application class metadata is stored

in an instance that represents it at runtime. Figure 2 represents the

pattern structure. The MetadataContainer, that is the class that

represents the metadata structure, is the main interface among a

class that reads the metadata wherever it is defined, the

MetadataReader, and the class that contains the main logic, the

FrameworkController.

The FrameworkController can store the MetadataContainer

instance internally as represented in the diagram. This is usually

done when the class with the metadata is received by the

FrameworkController in the constructor. Alternatively, the

FrameworkController can be stateless and accept invocation with

any class, invoking the MetadataReader in each one.

Person p1 = new Person("John",70.5f,20);
Address e1 = new Address("Street Road","50");
p1.setAddress(e1);
Person p2 = new Person("John B.",70.6f,21);
Address e2 = new Address("Street Road","55");
p2.setAddress(e2);
ComparisonComponent c = new ComparisonComponent();
List<Difference> difs = c.compare(p2, p1);
for(Difference d : difs){
 System.out.println(d.getProperty() +
 ":" +d.getOldValue() +"/" +d.getNewValue());
}

Listing 2 – The use of Comparison Component.

public class Person{
 private String name;
 private double weight;
 private int age;
 private Address address;
 public Person(String name,
 float weight, int age) {
 this.name = name;
 this.weight = weight;
 this.age = age;
 }
 @DeepComparison
 public Address getAddress() {
 return address;
 }
 public String getName() {
 return name;
 }
 @Tolerance(0.1)
 public double getWeight() {
 return weight;
 }
 @Ignore
 public int getAge() {
 return age;
 }
 //setter methods omitted
}

Listing 1. Example of a class with Comparison

Component's annotations.

Participants

• MetadataReader - It is in charge of reading the metadata

wherever it is defined. It is used by FrameworkController to

retrieve an instance of MetadataContainer representing the

metadata of an ApplicationClass.

• MetadataContainer - It is responsible for representing the

metadata of an ApplicationClass at runtime. It is the main

interface among MetadataReader and

FrameworkController.

• FrameworkController - It is the framework entry point. It

is responsible for executing the main logic and for being a

controller of the other classes. It uses the data of

MetadataContainer, retrieved from MetadataReader, to

execute its logic.

• ApplicationClient - It represents the application class that

invokes, implicitly or explicitly, FrameworkController.

• ApplicationClass - It represents the application class that is

described by the metadata used by FrameworkController in

its main logic.

Dynamics

When the application client accesses the entry point of the

metadata-based framework, it invokes the MetadataReader that

reads the metadata and returns an instance of the

MetadataContainer populated with the class metadata. In the

execution of the main logic, the FrameworkController accesses

the required metadata by using the MetadataContainer instance.

The correspondent sequence diagram is represented in Figure 3.

As an alternative implementation of this pattern, the

ApplicationClient can create the MetadataContainer instance

explicitly. Using this approach, the client uses the

MetadataReader to create the MetadataContainer and passes it to

the MBContainer in its constructor or as a parameter in a method.

public class ComparisonComponent {
 public List<Difference> compare(Object oldObj, Object newObj)
 throws CompareException {
 List<Difference> difs = new ArrayList<Difference>();
 if (!newObj.getClass().isAssignableFrom(oldObj.getClass())) {
 throw new CompareException("Not compatible types");
 }
 Class clazz = newObj.getClass();
 for (Method method : clazz.getMethods()) {
 try {
 boolean isGetter = method.getName().startsWith("get");
 boolean noParameters = (method.getParameterTypes().length == 0);
 boolean notGetClass = !method.getName().equals("getClass");
 boolean noIgnore = !method.isAnnotationPresent(Ignore.class);
 if (isGetter && noParameters && notGetClass && noIgnore) {
 Object oldValue = method.invoke(oldObj);
 Object newValue = method.invoke(newObj);
 String propName = method.getName().substring(3, 4).toLowerCase()
 + method.getName().substring(4);

 if (method.isAnnotationPresent(Tolerance.class)) {
 Tolerance tolerance = method.getAnnotation(Tolerance.class);
 compareWithTolerance(difs, tolerance.value(),
 newValue, oldValue, propName);
 } else if (method.isAnnotationPresent(DeepComparison.class)
 && newValue != null && oldValue != null) {
 List<Difference> difsProp = compare(newValue, oldValue);
 for (Difference d : difsProp) {
 d.setProperty(propName + "." + d.getProperty());
 difs.add(d);
 }
 } else {
 compareRegular(difs, propName, newValue, oldValue);
 }
 }
 } catch (Exception e) {
 throw new CompareException("Error retrieving property", e);
 }
 }
 return difs;
 }
 private void compareWithTolerance(List<Difference> difs, double tolerance,
 Object newValue, Object oldValue, String prop) {
 double dif = Math.abs(((Double) newValue) - ((Double) oldValue));
 if (dif > tolerance) {
 difs.add(new Difference(prop, newValue, oldValue));
 }
 }
 private void compareRegular(List<Difference> difs, String prop,
 Object newValue, Object oldValue) {
 if (newValue == null) {
 if (oldValue != null) {
 difs.add(new Difference(prop, newValue, oldValue));
 }
 } else if (!newValue.equals(oldValue)) {
 difs.add(new Difference(prop, newValue, oldValue));
 }
 }
}

Listing 3 – The initial source code for ComparisonComponent.

Consequences

• The metadata can be shared with other frameworks by the

MetadataContainer instance, enabling metadata sharing.

• The framework became more testable, enabling metadata

reading and the logic processing to be tested separately.

• The FrameworkController can reuse the same

MetadataContainer instance, avoiding unnecessary metadata

reading and improving the application performance.

• As to frameworks that use a small amount of metadata, the

use of this pattern can complicate unnecessarily its structure.

Known Uses

Hibernate uses, as a MetadataContainer, an implementation of the

interface ClassMetadata that can be retrieved from a

SessionFactory instance. The SessionFactory is the class

responsible for creating instances of Session, which is the class

that the application uses to interact with the framework.

ClassMetadata contains all the information about a persistent

class that is used by the framework.

In SwingBean, the class XMLDescriptorFactory provides a

Facade [10] for the client to retrieve the metadata, represented by

the FieldDescriptor interface. The client uses this instance to

create the graphical components, passing it as an argument in the

constructor.

In the internal structure of the JAXB reference implementation,

the structure of a Metadata Container can be identified. The

MetadataContainer

+getMetadataContainer()

MetadataReader

create

+execute()

FrameworkController

use

ApplicationClient

ApplicationClass

Class described with metadata

Figure 2 – Metadata Container structure

ApplicationClient FrameworkController MetadataReader

execute()

getMetadataContainer()

MetadataContainer

create

populate with metadata

container

main logic

retrieves metadata

Figure 3 – Metadata Container sequence diagram

interfaces ClassInfo and Element represent the metadata at

runtime and are used by the internal logic of the component.

Running Example

To increase its flexibility, the Comparison Component, defined

earlier in the Running Example (section 2.1), is refactored to

decouple the metadata reading from the comparison logic. This

step is necessary to allow the implementation of metadata reading

from other sources and the extension of the components logic.

Listing 4 and 5 represents respectively the classes

PropertyDescriptor and ComparisonDescriptor, which are the

metadata containers for this component. The PropertyDescriptor

provides information about one property, such as property name,

its tolerance and whether it should be compared “deeply”. The

class ComparisonDescriptor has a map with the properties that

should be included in the comparison and the respective

PropertyDescriptor instances.

The class ComparisonMetadataReader is represented in Listing 6.

The createContainer() receives a class as a parameter and returns

the respective instance of ComparisonDescriptor created using

the annotations in the properties getter methods. When a property

presents the annotation @Ignore, it is not included in the

ComparisonDescriptor instance. The information provided by

other annotations are obtained and stored in the descriptor.

Listing 7 illustrates the ComparisonComponent, which is the class

that actually has the comparison logic. It retrieves the

ComparisonDescriptor from the ComparisonMetadataReader and

compares the two instances based on the metadata. It uses the

Reflection API [8] to retrieve the properties values and, based on

the information contained on the respective PropertyDescriptor,

delegates the comparison to one of the methods

compareWithTolerance(), compareRegular() or the method

compare(), in case of deep comparison.

Related Patterns

Metadata Container is the base of the proposed pattern

language. In Figure 1, one can observe that all patterns depend

directly or indirectly on it. The rationale behind this pattern is that

the decoupling between the logic and the metadata reading

provides a structure that allows each part to evolve independently.

This pattern is also related to Data Accessor [28], which

encapsulates physical data access details in a single component,

decoupling data access responsibilities. Metadata Container uses

the same principle to decouple the metadata reading, but not

necessarily from physical data.

3.2 Metadata Repository

Motivation

The main class of some frameworks is instantiated many times in

the same application. If each one of them reads metadata, it can

lead to an unnecessary performance lost.

public class PropertyDescriptor {

 private String name;
 private double tolerance;
 private boolean deepComparison;
 //getters and setters omitted
}

Listing 4 – Source code of PropertyDescriptor.

public class ComparisonDescriptor {

 private Map<String,PropertyDescriptor> properties =
 new HashMap<String, PropertyDescriptor>();

 public void addPropertyDescriptor(
 PropertyDescriptor descProp){
 properties.put(descProp.getName(), descProp);
 }
 public PropertyDescriptor
 getPropertyDescriptor(String prop){
 return properties.get(prop);
 }
 public Set<String> getProperties(){
 return properties.keySet();
 }
}

Listing 5 – Source code of ComparisonDescriptor.

public class ComparisonMetadataReader {
 public ComparisonDescriptor createContainer(Class c) {
 ComparisonDescriptor descr = new ComparisonDescriptor();
 for (Method method : c.getMethods()) {
 boolean isGetter = method.getName().startsWith("get");
 boolean noParameters = (method.getParameterTypes().length == 0);
 boolean notGetClass = !method.getName().equals("getClass");
 boolean noIgnore = !method.isAnnotationPresent(Ignore.class);
 if (isGetter && noParameters && notGetClass && noIgnore) {
 PropertyDescriptor prop = new PropertyDescriptor();
 String getter = method.getName();
 String propName = getter.substring(3, 4).toLowerCase()
 + getter.substring(4);
 prop.setName(propName);
 prop.setDeepComparison(method
 .isAnnotationPresent(DeepComparison.class));

 if (method.isAnnotationPresent(Tolerance.class)) {
 Tolerance t = method.getAnnotation(Tolerance.class);
 prop.setTolerance(t.value());
 }
 descr.addPropertyDescriptor(prop);
 }
 }
 return descr;
 }
}

Listing 6 – Source code of ComparisonDescriptorReader.

Problem

How to provide a central place to store metadata and manage the

metadata reading?

Forces

• Having a singleton instance of the framework controler can

be easier in some architectures, but for other circumstances,

like when the class is a proxy, it is not possible.

• Having a central place to retrieve metadata can ease external

classes to retrieve metadata.

• Store all metadata in central repositories consumes more

runtime memory, which is a problem especially in

embedded applications.

• Lazy loading the metadata can avoid unnecessary metadata

readings but can slow the execution when the metadata is

retrieved.

• Pre-loading the metadata can accelerate the execution but

can slow down the application initialization.

Structure

In Metadata Repository, a Singleton class [10] is responsible for

managing the metadata reading and storing internally the class

metadata. In the first reading of metadata, the Repository caches

the information and makes it available to any other component

that needs it.

In Figure 4, a class diagram of the pattern is presented. In this

structure, FrameworkController does not access directly

MetadataReader. All of the metadata accesses occurs via

Repository, which has a common base of metadata, represented by

instances of MetadataContainer, which is shared between all

FrameworkController instances.

Participants

• MetadataReader - It is responsible for reading the

metadata wherever it is defined. It is used by Repository to

retrieve instances of MetadataContainer and store it

internally.

• MetadataContainer - It is responsible for representing the

metadata of an application class at runtime. It is stored

internally by using Repository.

• FrameworkController - It is the framework entry point. It

is responsible for executing the main logic and for being a

controller of the other classes. It uses Repository to retrieve

metadata represented in instances of MetadataContainer.

• Repository - It is responsible for managing the access to

MetadataReader and storing internally the instances of

MetadataContainer. It is a singleton and provides metadata

to all instances of FrameworkController.

public class ComparisonComponent {
 protected ComparisonMetadataReader reader;
 public ComparisonComponent() {
 this.reader = new ComparisonMetadataReader();
 }
 public List<Difference> compare(Object oldObj, Object newObj)
 throws CompareException {

 List<Difference> difs = new ArrayList<Difference>();

 if (!newObj.getClass().isAssignableFrom(oldObj.getClass()))
 throw new CompareException("Not compatible types");
 ComparisonDescriptor descr = reader.createContainer(newObj.getClass());

 for (String prop : descr.getProperties()) {
 try {
 String getterName = "get" + prop.substring(0, 1).toUpperCase()
 + prop.substring(1);
 Method method = newObj.getClass().getMethod(getterName);
 Object oldValue = method.invoke(oldObj);
 Object newValue = method.invoke(newObj);
 PropertyDescriptor descProp = descr.getPropertyDescriptor(prop);

 if (descProp.getTolerance() != 0) {
 compareWithTolerance(difs, descProp.getTolerance(),
 newValue, oldValue, prop);
 } else if (descProp.isDeepComparison() && newValue != null
 && oldValue != null) {
 List<Difference> difsProp = compare(newValue, oldValue);
 for (Difference d : difsProp) {
 d.setProperty(prop + "." + d.getProperty());
 difs.add(d);
 }
 } else {
 compareRegular(difs, prop, newValue, oldValue);
 }
 } catch (Exception e) {
 throw new CompareException("Error retrieving property", e);
 }
 }
 return difs;
 }
 //compareWithTolerance and compareRegular had the same implementation of Listing 3
}

Listing 7 – Source code of ComparisonComponent.

Dynamics

The sequence diagram represented in Figure 5 shows the first

access to metadata of one class, and then the access from another

component to the metadata of the same class. In the first access,

Repository collaborates with MetadataReader to retrieve the

metadata represented by an instance of MetadataContainer. In the

second access, the metadata is already stored inside Repository

and is returned without an additional reading.

Consequences

• The unnecessary metadata readings can be avoided,

improving the application performance.

• The application can use the repository to load all metadata

when the application starts or to load it only when the

application needs them.

• The metadata has a central point to be accessed by other

frameworks, facilitating to share metadata.

• For a component that has only one instance shared by all the

application, the creation of a repository may be unnecessary.

• For applications that can change the metadata at runtime, it

is necessary to control the access in the MetadataContainer

for concurrent modification.

MetadataContainer

+getMetadataContainer()

MetadataReader

create

use

MetadataContainer

+getMetadataContainer()

MetadataReader

create

+execute()

FrameworkController

*

1

use +getInstance()

+getMetadata()

«singleton»

Repository

use

use

Figure 4 – Metadata Repository structure

Repositor MetadataReader

getMetadataContainer()

MetadataContainer

create

populate with metadata

container

FrameworkController

getMetadata()

container

Access Internal Cache

if [not exists MetadataContainer]

if [exists MetadataContainer]

Figure 5 – Sequence diagram representing FrameworkController retrieving MetadataContainer.

• The storage of metadata can increase the use of runtime

memory by the application.

Known Uses

The Hibernate framework provides the class SessionFactory,

which is responsible for creating Session. The Session class

provides an API for the application to persist and retrieve entities

from the database. The SessionFactory has a repository

encapsulated and provides methods to retrieve metadata. Each

instance of Session created receives a reference to SessionFactory,

a central place to retrieve the metadata for all instances.

The SwingBean framework provides static methods to encapsulate

the metadata reading in the class XMLDescriptorFactory. The

methods of this class encapsulate an access to a singleton map that

acts as a repository for the framework. This structure allows the

framework to have a mechanism to load in a low priority

background thread the metadata for the graphical components

creation, to improve the application performance.

XapMap provides a component that creates an instance of one

schema based on an instance of the other schema and also

provides a proxy that encapsulates the access of an instance of one

schema based on the other schema's API. Both components of the

framework access the metadata through a singleton repository,

which guaranties that the metadata will not be read again for the

same class.

Running Example

The application that uses the Comparison Component creates an

instance of ComparisonComponent and then calls the compare()

method to get the differences between two instances of the same

class. According to the implementation presented in Listing 7,

whenever the compare() method is called, a new metadata reading

occur.

To avoid the probably performance lost that unnecessary metadata

readings can cause, the Metadata Repository pattern is applied to

the Comparison Component. Listing 8 represents the Repository

class, which is a singleton, and provides metadata to all

ComparisonComponent instances. Listing 9 represents changes in

the FrameworkController to use the class Repository instead of

accessing directly the ComparisonMetadataReader.

Related Patterns

Metadata Repository is important to allow metadata sharing. The

Metadata Reader Adapter uses the repository of another

component to read and adapt the metadata format. The Metadata

Processing Layers divides the logic of the metadata-based

component in many processing layers and the use of Metadata

Repository is recommended to provides only one place to access

metadata by each layer.

This pattern is also related to the patterns Cache Accessor and

Demand Cache [28], which provides a structure for caching data

retrieved from a data source. The Metadata Repository can be

considered a specialization of those patterns to the context of a

metadata-based component. Other Cache Patterns can also be

applied in the implementation of a metadata repository.

4. METADATA READI%G PATTER%S

4.1 Metadata Reader Strategy

Motivation

Different strategies for metadata definition have different

consequences in the application that uses it. For example,

annotations are usually less verbose and closer to the source code

while XML files can easily be changed without the need to

recompile the code. A framework can increase its flexibility and

reusability supporting more than one type of metadata definition.

Problem

How to provide a structure to allow metadata reading from

different sources?

Forces

• The application can already have the same metadata

need by the framework in other sources.

• The use of external sources of metadata definition can

make it modifiable at deployment time.

• Code annotations make the make definition closer to the

source code, usually making it easier to maintain.

public class ComparisonComponent {

 public List<Difference> compare(Object oldObj, Object newObj)
 throws CompareException {

 List<Difference> difs = new ArrayList<Difference>();

 if (!newObj.getClass().isAssignableFrom(oldObj.getClass()))
 throw new CompareException("Not compatible types");
 ComparisonDescriptor descr = Repository.getInstance().
 getMetadata(newObj.getClass());

 //the same as Listing 4
 }
 //the same as Listing 4

}

Listing 9 – Changes in FrameworkController source code.

public class Repository {

 private static Repository instance;

 public static Repository getInstance(){
 if(instance == null){
 instance = new Repository();
 }
 return instance;
 }

 private ComparisonMetadataReader reader;
 private Map<Class, ComparisonDescriptor> cache;

 private Repository(){
 reader = new ComparisonMetadataReader();
 cache = new HashMap<Class, ComparisonDescriptor>();
 }
 public ComparisonDescriptor getMetadata(Class clazz){
 if(cache.containsKey(clazz)){
 return cache.get(clazz);
 }
 ComparisonDescriptor cd =
 reader.createContainer(clazz);
 cache.put(clazz, cd);
 return cd;
 }
}

Listing 8 – Source code of Repository.

• The use of annotations sometimes is not possible in

legacy classes.

• Different applications may have different needs for

metadata definition in the same framework domain.

Structure

The Metadata Reader Strategy is a specialization of the

Strategy [10]. An interface is used to abstract the reading of

metadata and different classes can implement it to read metadata

from different sources. A Singleton [10] is used to retrieve the

correct metadata reader instance.

The structure of Metadata Reader Strategy is presented in

Figure 6. The interface AbstractMetadataReader abstracts the

reading of metadata and is implemented by any

ConcreteMetadataReader. The MetadataReaderClient represents

the class that needs to read metadata. If the component uses the

structure of Metadata Container the client will be

FrameworkController. Otherwise, if it uses Metadata Repository

structure the client will be Repository.

Participants

• AbstractMetadataReader - It represents an abstraction of a

metadata reader. It is implemented by any

ConcreteMetadataReader.

• ConcreteMetadataReader - It is responsible for reading

metadata from one source and implements the interface of

AbstractMetadataReader.

• MetadataReaderClient - It represents a Repository or a

FrameworkController, depending on the component's

structure. It is the class that needs to directly retrieve

metadata from a reader. It is the class that is coupled only

with AbstractMetadataReader, not with one specific

implementation.

• MetadataReaderProvider - It is responsible for providing

the correct ConcreteMetadataReader instance that the

MetadataReaderClient should use for each application

class.

+getMetadataContainer()

«interface»

AbstractMetadataReader

+getMetadataContainer()

ConcreteMetadataReader

+getMetadataReader()

+getInstance()

«singleton»

MetadataReaderProvider

MetadataReaderClient

use
get reader

instance

Figure 6 – The structure of Metadata Reader Strategy.

MetadataReaderClient MetadataReaderProvider

ConcreteMetadataReader

getMetadataReader()

create

reader

getMetadataContainer()

Figure 7 – Sequence diagram representing how MetadataReaderClient retrieves a MetadataContainer from a reader.

Dynamics

The client uses MetadataReaderProvider to retrieve the correct

instance of AbstractMetadataReader. This class can have some

logic that returns different readers to read metadata from different

classes. It is very useful if different sets of classes in the

application requires different readers.

As an alternative implementation, the MetadataReaderProvider is

not necessary if the client passes the ConcreteMetadataReader

instance as a parameter. The need for the

MetadataReaderProvider can also be eliminated by the use of

dependence injection [9] on the MetadataReaderClient. Figure 7

shows a sequence diagram that represents how the

MetadataReaderClient retrieves the MetadataContainer in this

structure.

Consequences

• The framework can provide more than one alternative for

metadata definition for the applications to use.

• The application can create new approaches for metadata

definition, extending the framework's metadata reading

strategy.

• The MetadataReaderProvider can return different readers

for different sets of classes in one application.

• In cases in which one approach for metadata definition is

enough, the use of this pattern can over-design the

component.

Known Uses

Early versions of Hibernate framework support metadata

definition only using XML. The class Configuration is used to

setup the configuration files and create the SessionFactory

instance. The project Hibernate Annotations is a separated release

that gives to the framework support to annotations. The class

AnnotationConfiguration, which extends Configuration, creates

the same SessionFactory instance by using instead annotations as

the metadata source.

The ACE framework supports the mapping of functionalities of a

web application to mobile applications for new applications, using

annotations, and for legacy applications, using XML files. As a

result, it uses an interface to abstract the metadata reading and has

implementations for get it both from annotations and from XML

files.

MentalLink map between instances of an ontology and objects

using annotations, but it uses the structure of this pattern to allow

the extension of the metadata reading by the application.

Running Example

The application that uses the Comparison Component now needs

to compare classes from a legacy application in which the

developers do not have access to modify the source code. One

solution to this problem is to provide the Comparison Component

with a facility to define metadata by using XML files.

Before implementing the reading from XML files, the framework

is refactored to implement the Metadata Reader Strategy. The

ComparisonMetadataReader class is renamed to

AnnotationComparisonMetadataReader and an interface, named

ComparisonMetadataReader, is extracted to generalize the

concept of metadata reading. The interface extracted is

represented in Listing 10.

Listing 11 presents the MetadataReaderProvider class. It is a

Singleton class that returns an instance of the configured

ComparisonMetadatReader. It has two static methods that

encapsulate the access to the singleton instance to set and to get

the metadata reader instance. The access to the metadata factory

also should be refactored in the Repository or in the

ComparisonComponent.

After refactoring, the metadata reading using XML files can be

implemented and used by the Comparison Component. Listing 12

presents an example of a XML document for defining metadata

for a class. For simplicity, the metadata of a class is considered to

be stored in a XML file with the same name of the class.

The XMLComparisonMetadataReader source code is presented in

Listing 13. It uses JColtrane framework [19], which is based in

SAX parsing [29], to read the XML files. JColtrane uses

annotations for the SAX event management. Listing 14 presents

the XML handler that reads metadata and populates the

ComparisonDescriptor.

<?xml version="1.0" encoding="UTF-8"?>
<comparison>
 <prop name="name"/>
 <prop name="weight" tolerance="0.1" />
 <prop name="address" deep="true" />
</comparison>

Listing 12 – An example of the metadata definition in XML.

public class MetadataReaderProvider {

 private static MetadataReaderProvider provider;
 public static MetadataReaderProvider getProvider(){
 if(provider == null){
 provider = new MetadataReaderProvider();
 }
 return provider;
 }

 private ComparisonMetadataReader reader;
 private MetadataReaderProvider(){
 //set the default implementation
 reader = new AnnotationComparisonMetadataReader();
 }
 public void setReader(ComparisonMetadataReader reader){
 this.reader = reader;
 }
 public ComparisonMetadataReader getReader(){
 return reader;
 }

 //ease the access to configured reader
 public static void set(ComparisonMetadataReader reader){
 getProvider().setReader(reader);
 }
 public static ComparisonMetadataReader get(){
 return getProvider().getReader();
 }
}

Listing 11 – MetadataReaderProvider source code.

public interface ComparisonMetadataReader {

 public ComparisonDescriptor createContainer(Class c);

}

Listing 10 – The ComparisonMetatadaReader interface.

Related Patterns

Metadata Reader Strategy provides the flexibility in the

achievement of metadata required by other patterns in this pattern

language. Metadata Reader Chain and Metadata Reader

Adapter are patterns based on the fact that it is possible to change

the algorithm for reading metadata.

This pattern is a specialization of Strategy [11] to help to solve

the specific problem of metadata reading. It is also Data Access

Object [28], also known as DAO, which is used to encapsulate

data access and manipulation in separate layers. Using DAO, it is

possible to have different implementations for retrieving data from

different data sources. Metadata Reader Chain

4.2 Metadata Reader Chain

Motivation

Sometimes, to read different metadata sources exclusively is not

enough for a framework, because the metadata can be disperse in

more than one place. In this case, it is important for the

framework to combine the metadata from different sources in the

reading.

Problem

How to provide a structure to allow metadata to be read from

more than one source at the same time?

Forces

• Each kind of metadata definition has its benefits and

drawbacks and some applications crave to take advantage of

the benefits from more than one definition type.

• Some metadata can be retrieved partially from alternative

sources and must be complemented with more information.

• An order can be defined for reading metadata from more

than one source, but some applications may need to use a

different order.

• Code annotations are an easy way to define metadata and

can be complemented by a XML document that can be

changed at deployment time.

Structure

The Metadata Reader Chain provides a structure that allows the

class metadata to be read from more than one source. Figure 8

presents the class diagram that represents the basic structure of

this pattern. The CompositeMetadataReader is a class that uses

other readers to compose the metadata reading algorithm. At first,

it populates a MetadataContainer by using the first reader; then

the information is complemented by using other readers.

In this pattern, the AbstractMetadataReader implementations

must have a different implementation for reading metadata. The

method populateMetadataContainer() does not return an instance

of MetadataContainer, but receives it as a parameter and

populates it. The reading algorithm must not assume that

MetadataContainer instance is empty and must consider that

another reader may have already populated it.

public class XMLComparisonMetadataReader implements ComparisonMetadataReader{
 @Override
 public ComparisonDescriptor createContainer(Class c) {
 try {
 SAXParser parser= SAXParserFactory.newInstance().newSAXParser();
 File file=new File(c.getSimpleName()+".xml");
 ComparisonXMLHandler handler = new ComparisonXMLHandler();
 parser.parse(file,new JColtraneXMLHandler(handler));
 return handler.getDescriptor();
 } catch (Exception e) {
 throw new RuntimeException("Can't read metadata",e);
 }
 }
}

Listing 13 – The implementation of XMLComparisonMetatadaReader.

public class ComparisonXMLHandler {

 private ComparisonDescriptor descriptor;
 @StartDocument
 public void init(){
 descriptor = new ComparisonDescriptor();
 }
 @StartElement(tag="prop")
 public void addProperty(@Attribute("name") String name,
 @Attribute("tolerance") Float tolerance, @Attribute("deep") Boolean deep){
 PropertyDescriptor pd = new PropertyDescriptor();
 pd.setName(name);
 if(tolerance != null)
 pd.setTolerance(tolerance);
 if(deep != null)
 pd.setDeepComparison(deep);
 descriptor.addPropertyDescriptor(pd);
 }

 public ComparisonDescriptor getDescriptor() {
 return descriptor;
 }
}

Listing 14 – The handler to interpret XML files using JColtrane framework.

Participants

• AbstractMetadataReader - It represents an abstraction of a

metadata reader. Any ConcreteMetadataReader must

implement it.

• ConcreteMetadataReader - It is responsible for reading

metadata from one source and implements the interface of

AbstractMetadataReader. It should consider that the

MetadataContainer might have already been populated by

another source.

• MetadataReaderClient - It represents a Repository or a

FrameworkController, depending on the component's

structure. It is the class that needs to directly retrieve

metadata from a reader.

• CompositeMetadataReader - It represents the reader that

uses other AbstractMetadataReader to compose the

metadata reading algorithm.

• MetadataContainer - It is responsible for representing the

metadata of an application class at runtime. It is created by

the MetadataReaderClient and populated by metadata

readers.

Dynamics

Figure 9 represents how CompositeMetadataReader uses other

readers to compose the information in MetadataContainer. The

MetadataReaderClient is responsible for creating a

MetadataContainer instance, which is to be passed as a

parameter. The CompositeMetadataReader delegates for each

ConcreteMetadataReader instance the responsibility to read

metadata and populate the MetadataContainer.

Consequences

• The framework can use simultaneously more than one

source of metadata.

+populateMetadataContainer()

«interface»

AbstractMetadataReader

+populateMetadataContainer()

ConcreteMetadataReader

MetadataReaderClientuse

+populateMetadataContainer()

CompositeMetadataReader1

*

Figure 8 – Structure of Metadata Reader Chain.

MetadataReaderClient CompositeMetadataReader ConcreteMetadataReader

MetadataContainer

create

populateMetadataContainer()

populateMetadataContainer()

set metadata

loop [for each metadata reader]

Figure 9 – Sequence diagram for a composite metadata reading.

• Alternative metadata sources that contain only a part of

information can be used to complement the reading of

metadata.

• The metadata defined in one source can be inconsistent

with other sources and the readers must consider that

situation, dealing with it appropriately.

• The order that the readers retrieve metadata can be

configured.

• The use of more than one source for metadata definition

by the framework can slow down its reading.

Known Uses

The ACE framework supports the metadata definition by using

annotations and XML documents. The XML-based definition

overrides the annotation-based definition allowing the

configurations to be changed at deployment time. This pattern is

used internally to allow this reading from multiple sources.

In MetadataSharing, a repository reads the metadata from many

sources and then provides an API for the frameworks to retrieve

the information that they need. The metadata reading in organized

in a composite reader with a configurable reading order.

Using Hibernate Validator, release 4.0 alpha, it is possible to

override the metadata defined in annotations by the metadata in

XML files, but by the specification this order cannot be changed.

With an element in the XML file, it is possible to ignore the all

the validation annotations defined in the class.

Running Example

After the Comparison Component is deployed with the

application, some comparison rules needed to be changed. As to

this kind of requirement, the definition of metadata in XML files

is the most appropriate solution, but it is easier and more

productive configure the comparison metadata using annotations

too. Based on that, the Comparison Component is refactored to

support the definition of metadata using annotations and be

overridden by definitions conveyed by a XML document.

The first modification to be made is to change the signature of the

method that reads metadata, to receive the metadata container as a

parameter. Listing 15 shows this modification in the

ComparisonMetadataReader interface. The method is renamed

from createContainer() to populateContainer() to best describe

what it really does.

Other modification that should be made in the existing metadata

readers is to consider that metadata information may already exist

in the descriptor. An example is presented in Listing 16. In this

piece of code, it first tries to retrieve the PropertyDescriptor to

verify if it is already in the descriptor and creates a new one only

if it is not. The Repository also needs to be changed to create an

empty instance of ComparisonDescriptor to pass it to the

populateContainer() method.

With these modifications, a composite metadata reader is possible

to be implemented. The class ChainComparisonMetadataReader

is presented in Listing 17. It receives a list of

ComparisonMetadataReader as a parameter in the constructor

and invokes all of them in the same order to populate the

ComparisonDescriptor instance.

Related Patterns

Metadata Reader Chain is important to enable metadata reading

from sources that contains only a part of the necessary metadata. It

is important for the implementation of Metadata Reader

Adapter, which uses metadata already obtained from other

frameworks to populate the Metadata Container.

Metadata Reader Chain uses Composite (Gamma at al, 1994) to

create a metadata reader composed by other readers. An

alternative implementation of this pattern could use the Chain of

Responsibility (Gamma at al, 1994), where each reader could

represent a handler in the processing chain. In this

implementation, after reading metadata each reader would invoke

the next reader in the chain.

public interface ComparisonMetadataReader {

 public void populateContainer(Class c,
 ComparisonDescriptor descriptor);

}

Listing 15 – Source code of ComparisonMetadataReader:

new signature for the method that reads metadata.

PropertyDescriptor pd =
 descriptor.getPropertyDescriptor(name);
if(pd == null){
 pd = new PropertyDescriptor();
 pd.setName(name);
 descriptor.addPropertyDescriptor(pd);
}

Listing 16 – Example of change in the metadata readers:

getting or creating the PropertyDescriptor.

public class ChainComparisonMetatataReader implements ComparisonMetadataReader {

 private List<ComparisonMetadataReader> readers;

 public ChainComparisonMetatataReader(ComparisonMetadataReader... readers) {
 this.readers = new ArrayList<ComparisonMetadataReader>();
 for(ComparisonMetadataReader reader : readers){
 this.readers.add(reader);
 }
 }
 @Override
 public void populateContainer(Class c, ComparisonDescriptor descriptor) {
 for(ComparisonMetadataReader reader : readers){
 reader.populateContainer(c, descriptor);
 }
 }
}

Listing 17 – Source code of ChainComparisonMetadataReader.

4.3 Metadata Reader Adapter

Motivation

Some metadata are useful for more that one framework. For

example, information defined for object-relational mapping may

be useful for the configuration of user interface components. It is

desirable that the metadata can be read only once and do not need

to be defined twice, which can lead to inconsistencies.

Problem

How to allow one framework to retrieve metadata already

obtained from another one?

Forces

• The performance can degrade with two frameworks

reading the same information in the same application.

• It is easy to locate metadata of frameworks that support

only one source, but that is not true for frameworks that

support more than one source or an extensible metadata

reading.

• The same information can be defined in the metadata

formats of both frameworks, but it can lead to

inconsistencies and may reduce the productivity.

Structure

In Metadata Reader Adapter there is a metadata reader that

accesses the Metadata Repository of another framework to get

information to populate its own Metadata Container. It is

difficult to get from other component all the metadata needed, so

this pattern considers the use of the shared information to

compose a Metadata Reading Chain.

Figure 10 presents the structure of this pattern. The class

AdapterMetadataReader uses a repository from another

framework, represented by the class OtherRepository, to retrieve

its metadata container, represented by the class

OtherMetadataContainer.

Participants

• AbstractMetadataReader - It represents an abstraction of a

metadata reader.

• ConcreteMetadataReader - It is responsible for reading

+populateMetadataContainer()

«interface»

AbstractMetadataReader

+populateMetadataContainer()

ConcreteMetadataReader

+populateMetadataContainer()

CompositeMetadataReader1

*

+populateMetadataContainer()

AdapterMetadataReader

+getOtherContainer()

«singleton»

OtherRepository OtherMetadataContainer

use

Figure 10 – Metadata Reader Adapter structure.

CompositeMetadataReader AdapterMetadataReader MetadataContainer

populateMetadataContainer()

OtherMetadataContainerOtherRepository

getMetadata()

otherContainer

get metadata

set metadata

Figure 11 – Sequence diagram representing how the AdapterMetadataReader retrieves metadata from the repository of another

framework.

metadata from one source and implements the interface of

AbstractMetadataReader.

• CompositeMetadataReader - It represents the reader that

uses other AbstractMetadataReader to compose the

metadata reading algorithm.

• AdapterMetadataReader - It represents the metadata

reader that accesses the OtherRepository to retrieve

instances of OtherMetadataContainer. It converts also the

information obtained to the MetadataContainer format.

• MetadataContainer - It is responsible for representing the

metadata of an application class needed by the framework.

• OtherRepository - It represents the metadata repository of

another framework.

• OtherMetadataContainer - It is responsible for

representing the metadata of an application class needed by

another framework.

Dynamics

Figure 11 represents the sequence diagram for the method

populateMetadataContainer() of the class

AdapterMetadataReader. After retrieving the metadata from the

other framework, the adapter sets the information on its own

metadata container. Alternatively, the adapter can retrieve the

metadata directly from a metadata reader, when a repository is not

available in the other framework.

 Consequences

• The possibility of inconsistencies that might occur with the

definition of the same information in two-metadata schema

is reduced.

• The amount of metadata that should be defined for a class is

reduced.

• This solution is sensitive to changes in the Metadata

Container interface of the other component.

• This solution is only viable when the other component have

an API that allows an application to get its Metadata

Container.

Known Uses

MetadataSharing has central repository is used to store metadata

read from the configured sources. The components must use a

Metadata Reader Adapter to get it from the repository and put it

in a format of its Metadata Container.

Hispagnol [16] proposed a model to unify the models OLTP

(Online Transaction Processing) and OLAP (Online Analytical

Processing). In the proposed implementation, the OLTP metadata

is retrieved and then adapted and complemented to compose the

metadata necessary for OLAP.

In Nardon and Silva [27], tips, tricks and new design patterns are

presented in the context of a Java EE application using the EJB 3

specification [21]. One of the practices described is the use of

object-relational metadata retrieved from Hibernate

SessionFactory [1] for its use inside some kinds of EJB

components.

Running Example

Some applications that use the Comparison Component, may also

use the Hibernate [1] in the persistence layer. When a property of

a persistent class is also a persistent class, that property is a

composed object. For the comparison domain, that means that this

property must be deep compared. To avoid duplicate

configurations and inconsistencies, a Metadata Reader Adapter is

created to get this information directly from Hibernate and is

presented in the Listing 18.

The class AdapterComparisonMetadataReader, presented in

Listing 18, receives in the constructor an instance of

SessionFactory, namely a Hibernate class with a method that

allows the application to retrieve the class metadata. Based on

class metadata, in the method populateContainer() searches for

properties that are also entities and sets the deepComparison to

true in the PropertyDescriptor.

Related Patterns

Metadata Reader Adapter assumes that the framework uses

Metadata Reader Chain because rarely the metadata from the

other framework would have all the information needed. If that is

not true, the Metadata Reader Chain does not need to be

implemented. The Metadata Repository also needs to be

implemented but in the other framework. If it is not implemented,

public class AdapterComparisonMetadataReader implements ComparisonMetadataReader {
 private SessionFactory sessionFactory;

 public AdapterComparisonMetadataReader(SessionFactory sessionFactory) {
 this.sessionFactory = sessionFactory;
 }

 public void populateContainer(Class c, ComparisonDescriptor descriptor) {
 ClassMetadata metadata = sessionFactory.getClassMetadata(c);
 if (metadata != null) {
 for (String prop : metadata.getPropertyNames()) {
 if (metadata.getPropertyType(prop).isEntityType()) {
 PropertyDescriptor pd = descriptor.getPropertyDescriptor(prop);
 if (pd == null) {
 pd = new PropertyDescriptor();
 pd.setName(prop);
 descriptor.addPropertyDescriptor(pd);
 }
 pd.setDeepComparison(true);
 }
 }
 }
 }
}

Listing 18 – The AdapterComparisonMetadataReader source code.

an alternative is to retrieve the metadata directly from a metadata

reader.

This pattern obviously is related to the Adapter (Gamma at al,

1994). In Metadata Reader Adapter, it is not the functionality

provided that is adapted to another API, but the information

provided by the other framework that is used and interpreted in

another context.

4.4 Delegate Metadata Reader

Motivation

The framework usually provides a standard format to define its

metadata, but in some applications and for some frameworks

domains it is important to allow the extension of the metadata

schema. A prerequisite for this is to enable extensions in the

framework to read pieces of metadata.

Problem

How to allow extensions in the metadata reading mechanism to

enable extensions in the metadata schema?

Forces

• Sometimes the source code can become cleaner if the

application expresses the metadata using domain terms.

• It is possible to read metadata from different schemas using

the Metadata Reader Strategy, but sometimes it is important

to extend the metadata in one of them.

• The frameworks provide metadata for general use, but for

some specific domains, such as validation, some

applications will probably need more specific metadata.

Structure

In Delegate Metadata Reader the metadata reader delegates to

other classes the reading and interpretation of metadata. Each

piece of metadata can have related classes with which the reading

should be delegated. Using this structure, the metadata schema

can be extended by creating classes that can read and interpret this

extension.

+populateMetadataContainer()

ConcreteMetadataReader

+readMetadata()

ConcreteReaderDelegate

+readMetadata()

«interface»

ReaderDelegate
use

MetadataContainerpopulate

Figure 12 – The structure of Metadata Reader Delegate

ConcreteMetadataReader

ConcreteReaderDelegate

create

MetadataContainer

readMetadata()

populate

loop [for each piece of metadata]

Figure 13 – Sequence diagram representing the metadata reading process using Metadata Reader Delegate.

To use this pattern, it is important to define what is a piece of

metadata for the framework. It can be an annotation or, if it uses

XML documents, an element or an attribute. The framework

should also create a configurable mapping to relate each piece of

metadata to the class that should read it.

Figure 12 represents the pattern structure. The interface

ReaderDelegate is an abstraction of the classes that receives a

piece of metadata and populates the MetadataContainer based on

its information.

Participants

• ConcreteMetadataReader - It represents a class that reads

metadata and delegates part of its logic to implementations

of ReaderDelegate. It is responsible for instantiating the

appropriate ConcreteReaderDelegate for each piece of

metadata.

• ReaderDelegate - It is an abstraction of the classes that

reads and interprets a piece of metadata.

• ConcreteReaderDelegate - It represents a concrete class

that implements ReaderDelegate and interprets a specific

piece of metadata.

• MetadataContainer - It is responsible for representing the

metadata of an application class needed to the framework.

Dynamics

Figure 13 presents a sequence diagram representing the reading of

metadata using the ReaderDelegate. For each piece of metadata

found, it creates the respective ConcreteReaderDelegate and

delegates the reading of that piece to it. This readMetadata()

method receives the MetadataContainer as a parameter and

populates it with the metadata contained in that piece.

 Consequences

• The metadata schema can be changed without affecting the

concrete class responsible for reading that type of metadata

definition.

• The metadata schema of the framework can be extended by

the application.

• Depending on the number of possible different pieces of

metadata, there will be many different implementations of

ReaderDelegate and usually they are small classes.

• In some frameworks, it is difficult to divide metadata in

pieces, which makes unfeasible the implementation of this

pattern.

Known Uses

Using Hibernate Validator, release 3.1, new annotations can be

created to validate more specific constraints associated to an

application domain. Each framework annotation has the

annotation @ValidatorClass that receives as a parameter a class

that implements the interface Validator. This interface has the

method initialize() that is used to interpret the annotation.

JColtrane uses annotations to define conditions for each method

to be executed. New conditions can be added by creating

annotations annotated with @ConditionFactoryAnnotation. This

annotation receives the class responsible for reading that

annotation.

XapMap provides annotations for converting data among different

types and a mechanism for the application to define its own

convertion annotations. The mechanism is similar to the ones used

in Hibernate Validator and JColtrane.

Running Example

The Comparison Component in this step is refactored to support

annotations created by the application. As a consequence, the

application is able to create annotations related to its domain,

which can also be used by other frameworks and components.

Listing 19 presents the interface AnnotationReader, used to

abstract the reading of an annotation. The method

readAnnotation() receives as parameters the annotation to be

interpreted and the PropertyDescriptor associated to the property

where the annotation is found. The generic parameter in this

interface will represent in the subclasses, the specific annotation

that it should receive to interpret. Listing 20 presents the

annotation that will be used in the annotations to define its

respective AnnotationReader.

The class AnnotationComparisonMetadataReader must be

refactored to look for annotations with @DelegateReader, then to

create the configured AnnotationReader and subsequently to

invoke the readAnnotation() method. Listing 21 illustrates the

new version of this class. The specific code to read the

@Tolerance and @DeepComparison is removed and substituted

by a loop that searches for annotations that have the

@DelegateReader annotation.

After the modification in the class that reads comparison metadata

using annotations, the @DelegateReader must be inserted into the

current framework annotations. Listing 22 presents this insertion

into the @Tolerance and Listing 23 shows the class responsible

for reading this annotation and inserting its information in the

respective property descriptor. The same must be done for

@DeepComparison.

public interface AnnotationReader<A extends Annotation> {

 public void readAnnotation(A annotation,
 PropertyDescriptor descriptor);

}

Listing 19 – The interface AnnotationReader.

@Target({ElementType.ANNOTATION_TYPE})
@Retention(RetentionPolicy.RUNTIME)
public @interface DelegateReader {
 Class<? extends AnnotationReader> value();
}

Listing 20 – The annotation used to configure the

AnnotationReader for each annotation.

As an example of the extension of the metadata schema, one can

assume that the application has fields in many different classes

that represent a weight, and for these values the tolerance must

always be '0.1'. Listing 24 has the definition of the @Weight

annotation. The class WeightComparisonReader, represented in

Listing 25, is configured to read this annotation. It eases a change

in the tolerance for all the properties that represent a weight and

can also be used by other frameworks for other purposes, such as

validation with Hibernate Validator.

Related Patterns

Delegate Metadata Reader is often used with Metadata

Processor, allowing the extension of the metadata schema with

the extension of the framework logic. Both patterns can be used

independently, but it is more plausible to imagine them being used

together.

5. LOGIC PROCESSI%G PATTER%S

5.1 Metadata Processor

Motivation

Sometimes the existent metadata is not enough for the application

requirements. It needs to add new pieces of metadata with an

extended processing logic to the framework.

Problem

How to allow the framework functionalities to be extended adding

logic for new pieces of metadata?

Forces

• Some applications need some more specific functionality

than those provided by the framework.

• Applications can use parallel solutions to implement

functionalities not covered by the framework, but the

architecture will have two components with the same

responsibility.

• The application developers may change the source code of

an open-source framework to add functionality, but it might

make unfeasible to take advantage of its future versions.

• In framework domains that are closer to the application

domain, like to validate constraints on instances, the

metadata extension is important to increase reuse.

@Target({ElementType.METHOD})
@Retention(RetentionPolicy.RUNTIME)
@DelegateReader(WeightComparisonReader.class)
public @interface Weight {
}

Listing 24 – The definition of the custom annotation

@Weight.

public class WeightComparisonReader
 implements AnnotationReader<Weight> {
 @Override
 public void readAnnotation(Weight annotation,
 PropertyDescriptor descriptor) {
 descriptor.setTolerance(0.1);
 }
}

Listing 25 – The class responsible for interpreting the

annotation @Weight.

@Target({ElementType.METHOD})
@Retention(RetentionPolicy.RUNTIME)
@DelegateReader(ToleranceReader.class)
public @interface Tolerance {
 double value();
}

Listing 22 – The definition of @Tolerance annotation with

@DelegateReader.

public class ToleranceReader
 implements AnnotationReader<Tolerance>{

 @Override
 public void readAnnotation(Tolerance annotation,
 PropertyDescriptor descriptor){
 descriptor.setTolerance(annotation.value());
 }
}

Listing 23 – The class responsible to read the @Tolerance

annotation.

public class AnnotationComparisonMetadataReader implements ComparisonMetadataReader {

 public void populateContainer(Class c, ComparisonDescriptor descr){
 for (Method method : c.getMethods()) {
 boolean isGetter = method.getName().startsWith("get");
 boolean noParameters = (method.getParameterTypes().length == 0);
 boolean notGetClass = !method.getName().equals("getClass");
 boolean noIgnore = !method.isAnnotationPresent(Ignore.class);
 if (isGetter && noParameters && notGetClass && noIgnore) {
 String getter = method.getName();
 String propName = getter.substring(3,4).toLowerCase()+getter.substring(4);
 PropertyDescriptor prop = descr.getPropertyDescriptor(propName);
 if(prop == null){
 prop = new PropertyDescriptor();
 prop.setName(propName);
 descr.addPropertyDescriptor(prop);
 }
 for(Annotation an :method.getAnnotations()){
 Class anType = an.annotationType();
 if(anType.isAnnotationPresent(DelegateReader.class)){
 DelegateReader reader = (DelegateReader) anType.getAnnotation(DelegateReader.class);

 Class<? extends AnnotationReader> readerClass = reader.value();

 try {

 AnnotationReader anReader = readerClass.newInstance();

 anReader.readAnnotation(an, prop);

 } catch (Exception e) {

 throw new RuntimeException("cannot instanciate reader",e);

 }

 }

 }
 }
 }
 }
}

Listing 21 – The class AnnotationComparisonMetadataReader

Structure

In Metadata Processor, part of the main functionality of the

framework is delegated to other classes. These classes compose

the Metadata Container and are created during the phase of

metadata reading. The controller class of the framework retrieves

processor instance from the container and calls its methods as part

of the execution.

Figure 14 shows the class diagram for this pattern. The interface

MetadataProcessor abstracts the concept of processing a piece of

metadata. The DefaultMetadataProcessor represents a default

implementation for processing and the

ConcreteMetadataProcessor represents other implementations.

The MetadataProcessor implementations can have instance

variables to represent part of the metadata obtained during its

reading.

Participants

• FrameworkController - It is the framework entry point. It

is responsible for executing of the main logic and for being

a controller of the other classes. It retrieves an

implementation of the MetadataProcessor from the

MetadataContainer and executes it as part of the framework

logic.

• MetadataContainer - It is responsible for representing the

metadata of an application class needed to the framework. It

is composed of instances of MetadataProcessor

implementations.

• MetadataProcessor - It is an abstraction of the classes that

compose the MetadataContainer and is invoked as part of

the framework's logic by the FrameworkController.

• DefaultMetadataProcessor - It represents a default

implementation of the MetadataProcessor.

• ConcreteMetadataProcessor - It represents a concrete

implementation of the MetadataProcessor.

Dynamics

A sequence diagram that represents the use of the processor by the

framework is presented in Figure 15. The FrameworkController

retrieves the MetadataProcessor from the MetadataContainer and

invokes its methods. It is possible to have more than one kind of

processor in a framework, depending of the different tasks that it

executes and the need to make it extensible.

An alternative implementation is to store the metadata in the

MetadataContainer in a more flexible way, for example using

+getMetadataProcessor()

MetadataContainer

+execute()

FrameworkController

1

+process()

«interface»

MetadataProcessor

+process()

DefaultMetadataProcessor

+process()

ConcreteMetadataProcessor

Figure 14 – The structure of Metadata Processor.

FrameworkController MetadataContainer ConcreteMetadataProcessor

getMetadataProcessor()

processor

process()

Figure 15 – Sequence diagram representing the use of the metadata.

attribute maps, then use this information in the

FrameworkController to create the processor. It is recommended

when the processor must have heavyweight objects or it cannot be

shared between more than one framework entry point instance.

 Consequences

• It is possible to extend the framework functionalities by

creating more MetadataProcessor implementations.

• The MetadataContainer uses a more flexible structure,

allowing the addition of different information easily.

• Allow the application to extend the metadata schema by

adding functionality relative to its domain.

• To implement this pattern, the metadata must be divided

into pieces that can be processed separately and in some

frameworks domains that is not possible.

• The use of processors in the metadata container

structure, may difficult the metadata interpretation when

it is retrieved by other frameworks.

Known Uses

In Hibernate Validator, release 3.1, one can define new

annotations by using the annotation @ValidatorClass to reference

a class that implements the interface Validator, that is

simultaneously the Metadata Reader Delegate and the Metadata

Processor. Other frameworks, like Stella [4], extend the

validation annotations to a more specific domain.

In JColtrane, the method getConditions() of the interface

ConditionFactory returns a list of Condition, that is the Metadata

Processor for this framework. The Condition interface has the

method verify(), which based on information of the parsing event,

returns true if that method should be invoked.

The SwingBean framework is an example of a framework that

uses the Metadata Processor and not the Delegate Metadata

Reader. The Metadata Container in SwingBean uses maps to

store metadata that were read in XML files. The processor in

SwingBean corresponds to a set of wrappers for graphical

components that are created based on the descriptor. Wrappers for

new graphical components can be created and mapped for

different values of the 'type' attribute for the 'property' element in

the XML descriptor.

public interface ComparisonProcessor {

 public Difference compare(String prop,
 Object oldValue, Object newValue);

}

Listing 26 – The ComparisonProcessor interface.

public class PropertyDescriptor {

 private String name;
 private ComparisonProcessor processor;
 private boolean deepComparison;

 public ComparisonProcessor getProcessor() {
 if(processor == null)
 processor = new RegularProcessor();
 return processor;
 }
 public void setProcessor(ComparisonProcessor processor) {
 this.processor = processor;
 }

 //other getters and setters omitted
}

Listing 27 – The source code of the refactored PropertyDescriptor.

public class RegularProcessor implements ComparisonProcessor {
 @Override
 public Difference compare(String prop, Object oldValue, Object newValue) {
 if (newValue == null) {
 if (oldValue != null) {
 return new Difference(prop, newValue, oldValue);
 }
 } else if (!newValue.equals(oldValue)) {
 return new Difference(prop, newValue, oldValue);
 }
 return null;
 }
}

Listing 28 – The source code of RegularProcessor.

public class ToleranceProcessor implements ComparisonProcessor {
 private double tolerance;
 public ToleranceProcessor(double tolerance) {
 this.tolerance = tolerance;
 }
 @Override
 public Difference compare(String prop, Object oldValue, Object newValue) {
 double dif = Math.abs(((Double) newValue) - ((Double) oldValue));
 if (dif > tolerance) {
 return new Difference(prop, newValue, oldValue);
 }
 return null;
 }
}

Listing 29– The class ToleranceProcessor that processes the tolerance metadata.

Running Example

The Comparison Component deals with a domain that can have

many rules that are specific to the application. It is important for

the component to allow the application developers to add new

types of comparison and associate them with new pieces of

metadata. In this section, the Comparison Component is

refactored and a new kind of comparison is added.

The interface ComparisonProcessor is presented in Listing 26.

The method compare() receives the property name and the values

to be compared and return null if they can be considered the same

or the respective Difference instance. Listing 27 presents the new

PropertyDescriptor class, which has as an instance variable the

respective ComparisonProcessor. The method getProcessor()

returns an instance of the class RegularProcessor, presented in

Listing 28, if the processor attribute is null.

The tolerance, that are stored as an attribute in the

PropertyDescriptor, now is an instance variable of the

ToleranceProcessor, presented in Listing 29. The class

responsible for reading the @Tolerance annotation, represented in

Listing 30, is also changed to create the instance of

ToleranceProcessor with the correct tolerance value.

The new implementation of the class ComparisonComponent is

presented in Listing 31. When the property deepComparison is

false, the ComparisonProcessor is retrieved from the

PropertyDescriptor and is used to make the comparison.

To illustrate how the metadata can be extended conveying with

new framework functionalities, an annotation for comparing

property substrings is created. Listing 32 creates the annotation

@CompareSubstring, that has attributes to configure the

@Target({ElementType.METHOD})
@Retention(RetentionPolicy.RUNTIME)
@DelegateReader(SubstringComparisonReader.class)
public @interface CompareSubstring {
 int begin() default 0;
 int end() default Integer.MAX_VALUE;
}

Listing 32 – The definition of @CompareSubstring

annotation.

public class SubstringComparisonReader
 implements AnnotationReader<CompareSubstring> {
 @Override
 public void readAnnotation(CompareSubstring annotation,
 PropertyDescriptor descriptor) {
 int begin = annotation.begin();
 int end = annotation.end();
 SubstringProcessor p =
 new SubstringProcessor(begin,end);
 descriptor.setProcessor(p);
 }
}

Listing 33 – The class SubstringComparisonReader that

reads the @CompareSubstring annotation.

public class ToleranceReader implements AnnotationReader<Tolerance>{
 @Override
 public void readAnnotation(Tolerance annotation,
 PropertyDescriptor descriptor){
 double tolerance = annotation.value();
 ToleranceProcessor processor = new ToleranceProcessor(tolerance);
 descriptor.setProcessor(processor);
 }
}

Listing 30 – The class ToleranceReader that creates the ToleranceProcessor instance.

public class ComparisonComponent {

 public List<Difference> compare(Object oldObj, Object newObj) throws CompareException {

 List<Difference> difs = new ArrayList<Difference>();

 if (!newObj.getClass().isAssignableFrom(oldObj.getClass()))
 throw new CompareException("Not compatible types");
 ComparisonDescriptor descr = Repository.getInstance().getMetadata(newObj.getClass());

 for (String prop : descr.getProperties()) {
 try {
 String getterName = "get" + prop.substring(0, 1).toUpperCase() + prop.substring(1);
 Method method = newObj.getClass().getMethod(getterName);
 Object oldValue = method.invoke(oldObj);
 Object newValue = method.invoke(newObj);
 PropertyDescriptor descProp = descr.getPropertyDescriptor(prop);

 if (descProp.isDeepComparison() && newValue != null && oldValue != null) {
 List<Difference> difsProp = compare(newValue, oldValue);
 for (Difference d : difsProp) {
 d.setProperty(prop + "." + d.getProperty());
 difs.add(d);
 }
 } else {
 ComparisonProcessor processor = descProp.getProcessor();
 Difference dif = processor.compare(prop, oldValue, newValue);

 if(dif != null)
 difs.add(dif);
 }
 } catch (Exception e) {
 throw new CompareException("Error retrieving property", e);
 }
 }
 return difs;
 }
}

Listing 31 – The class ComparisonComponent refactored to support ComparisonProcessor.

beginning and the end of the String. This annotation is mapped to

the delegate reader presented in Listing 33, the

SubstringComparisonReader. This class creates the

SubstringProcessor, presented in Listing 34, and puts it in the

PropertyDescriptor to be used by the framework.

Related Patterns

Metadata Processor is often used in conjunction with Delegate

Metadata Reader, allowing the extension of the metadata schema

conveying the extension of the framework logic. This pattern can

also be used in conjunction with a Metadata Container with a

flexible structure, where the processors are created based on the

information contained in the metadata container.

A Metadata Processor is similar to the Command [10], but it is

related to a piece of metadata. It is also related to Strategy [10],

because each processor can be considered a strategy for executing

one piece of metadata.

5.2 Metadata Processing Layers

Motivation

Sometimes it is not possible to divide the processing of a

metadata-based framework by pieces of metadata. The application

may need to add new responsibilities that uses the entire metadata

schema.

Problem

How to allow the addition of responsibilities in the framework

that can use the entire metadata schema?

Forces

• Some metadata-based frameworks execute different tasks

based on the same metadata.

• The Metadata Processor enable extension when it is

possible to separate the logic by pieces of metadata, but

when the framework has more than one responsibility it is

harder to make this division.

• The framework may have well defined responsibilities, but

the application may need to add other ones that can be

executed using the same metadata.

Structure

In Metadata Processing Layers, the main logic of the framework

is divided in more than one layer of execution. This allows each

layer to evolve independently and enable the extension by the

addition of other layers.

Figure 16 presents the pattern structure. The

FrameworkController is composed by many processing layers

with different responsibilities. The FrameworkController is

responsible for defining when the layers should be invoked. Each

ConcreteProcessingLayer can access the information in

MetadataContainer to use the metadata as the base for its logic.

Participants

• FrameworkController - It is the framework entry point. It

is responsible for executing the main logic and for being a

controller of the other classes. It contains a list of

ProcessingLayer implementations and invokes them in the

right order.

• MetadataContainer - It is responsible for representing the

metadata of an application class needed to the framework.

Each ProcessingLayer can use it during the logic

processing.

• ProcessingLayer - It is an abstraction of the classes that

represents a processing layer of the framework.

• ConcreteProcessingLayer - It represents a concrete

implementation of the ProcessingLayer. It uses the

MetadataContainer to execute part of the framework's logic.

• Repository - It is responsible for managing the metadata

reading and storing internally the instances of

MetadataContainer. It is a singleton and provides metadata

+execute()

FrameworkController

+executeLayer()

ConcreteProcessingLayer

+executeLayer()

«interface»

ProcessingLayer

1 *

MetadataContainer
use

Figure 16 – Structure of Metadata Processing Layer.

for FrameworkController or for each

ConcreteProcessingLayer.

 Dynamics

There are two alternatives for each layer to access the metadata.

The FrameworkController can retrieve the MetadataContainer

and pass it as a parameter in each layer, as represented in the

sequence diagram of Figure 17. The other solution is each layer to

access the Repository separately to retrieve the

MetadataContainer, as represented in Figure 18. The use of the

Repository is not mandatory, but it is particularly important when

each layer retrieves metadata independently.

As an alternative implementation, the layers can also be

implemented using Chain of Responsibility [10]. In this

implementation, each layer would be responsible for invoking or

not the next one. This way, the FrameworkController does not

control the layers invocation and only call the first one.

Consequences

• It is possible to extend the framework functionalities by

creating more ProcessingLayer implementations.

• The order of layers execution can be customized by the

application.

• Implementations of ProcessingLayer can be added,

substituted and removed for each FrameworkController

instance, enabling different behaviors for the framework in

the same application.

• The creation of layers can over-design the framework if it

has a well-defined responsibility that rarely can be extended.

Known Uses

JBoss Application Server supports the EJB 3 specification, which

defines that an EJB container must execute many responsibilities,

such as transaction management, access control and exception

FrameworkController Repository

getMetadata()

metadataContainer

ConcreteProcessingLayer

executeLayer

MetadataContainer

retrieve metadata

execute

loop [for each processing layer]

Figure 17– Sequence diagram for the alternative that the metadata container is passed as a parameter to the layers.

FrameworkController Repository

getMetadata()

metadataContainer

ConcreteProcessingLayer

executeLayer

MetadataContainer

retrieve metadata

execute

loop [for each processing layer]

Figure 18– Sequence diagram for the alternative that the metadata container is retrieved from the repository for each layer.

handling. These functionalities are executed based on class

metadata implemented in many aspects, using JBoss AOP [18].

Each aspect advice can be considered a processing layer in this

context.

The SwingBean framework implements many responsibilities

such as validation, form and table creation and customization of

each graphical component. Each responsibility is implemented in

a different class, which receive a FieldDescriptor instance with the

class metadata.

Esfinge Framework provides a layered structure that allows layers

to be easily created and inserted. Each layer can use the entity

class metadata to customize its behavior. There are layers

implemented for logging, remote access, remote notification and

access control.

Running Example

The Comparison Component has some different responsibilities in

terms of comparison. The functionality to be delegated to the

layers is the comparison of object properties. Examples of these

responsibilities are the comparison of null values, the deep

comparison and the comparison of values using the

ComparisonProcessor. The application may need to add another

comparison layers for more complex data structures such as lists,

sets, maps and trees.

Listing 35 presents the class ComparisonLayer that abstracts a

comparison processing layer for each property. The method

compare() receives the values to be compared, the list of

Difference and the respective PropertyDescriptor. This

implementation chose to pass the metadata as a parameter,

because only a part of the class metadata is necessary. The

boolean value returned by the compare() method indicates

whether the comparison was already performed in that layer. Each

layer also receives the reference to the own

ComparisonComponent.

The new implementation of the ComparisonComponent is

presented in Listing 36. The attribute layers stores the list of the

configured ComparisonLayer instances. The class provides a

constructor that receives a list of ComparisonLayer. It also has a

constructor without parameters that defines tree default

constructors. In the compare() method, the comparison of each

property uses the comparison of each layer until one returns true,

meaning that the comparison is already completed.

Listings 37, 38 and 39 present respectively the classes

-ullComparisonLayer, DeepComparisonLayer and

ValueComparisonLayer. They present the implementation of

comparison layers whose functionalities are already included in

the earlier version of the Comparison Component.

Related Patterns

Metadata Processing Layer can be combined with Metadata

Processor to extend the framework logic in different ways. The

use of this pattern in conjunction with Metadata Repository is

recommended, since the metadata can be retrieved independently

in each layer.

This pattern can be implemented using the structure of the Chain

of Responsibility [10], in which one layer is responsible for

public abstract class ComparisonLayer {
 private ComparisonComponent component;
 public abstract boolean compare(Object oldValue,
 Object newValue, List<Difference> difs,
 PropertyDescriptor descProp)
 throws CompareException ;
 public ComparisonComponent getComponent() {
 return component;
 }
 public void setComponent(ComparisonComponent component) {
 this.component = component;
 }
}

Listing 35 – The ComparisonLayer abstract class.

public class ComparisonComponent {
 private List<ComparisonLayer> layers;
 public ComparisonComponent(ComparisonLayer... layers){

 this.layers = new ArrayList<ComparisonLayer>();

 for(ComparisonLayer layer : layers){

 layer.setComponent(this);

 this.layers.add(layer);

 }

 }

 public ComparisonComponent(){

 this(new NullComparisonLayer(), new DeepComparisonLayer(),

 new ValueComparisonLayer());

 }

 public List<Difference> compare(Object oldObj, Object newObj) throws CompareException{
 List<Difference> difs = new ArrayList<Difference>();
 if (!newObj.getClass().isAssignableFrom(oldObj.getClass()))
 throw new CompareException("Not compatible types");
 ComparisonDescriptor descr = Repository.getInstance().getMetadata(newObj.getClass());
 for (String prop : descr.getProperties()) {
 try {
 String getterName = "get" + prop.substring(0, 1).toUpperCase()+ prop.substring(1);
 Method method = newObj.getClass().getMethod(getterName);
 Object oldValue = method.invoke(oldObj);
 Object newValue = method.invoke(newObj);
 PropertyDescriptor descProp = descr.getPropertyDescriptor(prop);
 boolean compared = false;
 for(int i=0; i<layers.size() && !compared; i++){
 ComparisonLayer layer = layers.get(i);

 compared = layer.compare(oldValue, newValue, difs, descProp);

 }

 } catch (Exception e) {
 throw new CompareException("Error retrieving property", e);
 }
 }
 return difs;
 }
}

Listing 36 – The ComparisonComponent refactored to use the ComparisonLayer.

invoking the next one. In frameworks that implement crosscutting

concerns, each layer can be implemented as a Proxy or Decorator

pattern [10].

6. CO%CLUSIO%

This paper presents the Pattern Language for Metadata-based

Frameworks that document design best practices for this kind of

framework. Many existing frameworks used to develop

applications apply these concepts and this work can help in the

development of new frameworks and in the refactoring of existent

ones. Despite the fact that all code examples are given in Java, the

patterns presented here can be implemented in any object-oriented

programming language.

The following are the main contributions of this work:

• The study and investigation of the internal structural

solutions of existing open source metadata-based

frameworks.

• The documentation of the best practices found, in the form

of a pattern language that includes solutions for the

structure, metadata reading and logic processing of

metadata-based frameworks.

• The creation of a detailed running example that illustrates

how to refactor a metadata-based framework to implement

each pattern of the presented pattern language.

Observing the Comparison Component, that is functional before

implementing none of the patterns, it is possible to verify how it

can be more flexible and extensible by using the best practices

documented in the presented pattern language. The consolidation

of this design knowledge about metadata-based frameworks is

important for the generation of more mature solutions in the

development of this kind of software. The metadata sharing

among different frameworks, for example, is an objective hard to

be accomplished in an architecture with the structure of many

existent frameworks.

In this work, the design patterns are applied to the Comparison

Component through refactoring, but in a real framework

development, the requirements should make some to be

implemented in the first place. A suggestion for a future work is

the definition of a methodology for the development of metadata-

based frameworks, that should include not only the framework

design, but also activities like metadata modeling.

public class NullComparisonLayer extends ComparisonLayer {
 @Override
 public boolean compare(Object oldValue, Object newValue,
 List<Difference> difs, PropertyDescriptor descProp)
 throws CompareException {
 if ((oldValue == null && newValue != null)
 || (oldValue != null && newValue == null)) {
 Difference dif = new Difference(descProp.getName(), oldValue,newValue);
 difs.add(dif);
 return true;
 }
 if(oldValue == null && newValue == null){
 return true;
 }
 return false;
 }
}

Listing 37 – %ullComparisonLayer, responsible for comparison when null values are involved.

public class DeepComparisonLayer extends ComparisonLayer {
 @Override
 public boolean compare(Object oldValue, Object newValue,
 List<Difference> difs, PropertyDescriptor descProp)
 throws CompareException {
 if (descProp.isDeepComparison()) {
 List<Difference> difsProp = getComponent().compare(newValue, oldValue);
 for (Difference d : difsProp) {
 d.setProperty(descProp.getName() + "." + d.getProperty());
 difs.add(d);
 }
 return true;
 }
 return false;
 }
}

Listing 38 – DeepComparisonLayer, responsible for deep comparisons.

public class ValueComparisonLayer extends ComparisonLayer {
 @Override
 public boolean compare(Object oldValue, Object newValue,
 List<Difference> difs, PropertyDescriptor descProp)
 throws CompareException {
 ComparisonProcessor processor = descProp.getProcessor();
 Difference dif = processor.compare(descProp.getName(), oldValue, newValue);
 if(dif != null)
 difs.add(dif);
 return true;
 }
}

Listing 39 – ValueComparisonLayer, responsible for comparisons using the ComparisonProcessor.

This pattern language addresses only solutions regarding the

internal structure of a framework. It is also important, as a future

work, to identify architectural patterns that capture what roles can

a metadata-based framework perform in a software architecture.

This work will facilitate the identification of situations where

these frameworks can be used successfully.

An application that uses Adaptive Object Models [33], which uses

metadata to define a more dynamic and flexible domain model,

may also benefit from these patterns. But, as the authors do not

investigate any examples of their use in this scenario, that analysis

is left as a future work.

7. ACK%OLEDGEME%TS
The authors would like to thanks all students that worked in

development of metadata-based frameworks that became an

example and a source of research for this work, like Renzo,

Diego, Bruno, Leandro, Gustavo, Jorge and Ricardo.

We also thank the shepherd Ademar Aguiar, for the hard job of

reviewing this huge pattern language and give us feedback to

improve it. We’d like also to thank all friends that we made at

PLoP, especially those who gave precious feedback at the writer’s

workshop, like Joseph Yoder, Brian Foote, Rebecca Wirfs-Brock

and James Siddle.

8. REFERE%CES
[1] Bauer, C.; King, G. 2004. Hibernate in Action. Manning

Publications.

[2] Beck, K. 2007. Implementation Patterns. Addison-Wesley

Professional, 1st Edition.

[3] Buschmann, F.; Henney, K.; Schmidt, D. C. 2007. Pattern

Oriented Software Architecture Volume 5: On Patterns and

Pattern Languages. Wiley.

[4] Caelum Stella, 2009. Stella – Simplifying the Software

Development in Brazil. Available on

http://stella.caelum.com.br/. [in Portuguese]

[5] Costa, B. C.; Figueredo, L. P. 2009. A Metadata-based

Architecture for the Integration of Web and Mobile

Applications, Technical Report, Aeronautical Institute of

Technology. [in Portuguese]

[6] Dov, A. B. 2006. Convention vs. Configuration. Available

on http://www.javalobby.org/java/forums/t65305.html.

[7] Esfinge, 2007. Esfinge Framework, Available on

http://esfinge.sourceforge.net/.

[8] Forman, I. R.; Forman, N. 2004. Java Reflection in Action.

Manning Publications.

[9] Fowler, M. 2004. Inversion of Control Containers and the

Dependency Injection pattern. Available on

http://www.martinfowler.com/articles/injection.html.

[10] Gamma, E.; Helm, R.; Johnson, R.; Vlissides, J. 1994.

Design Patterns: Elements of Reusable Object-Oriented

Software. Addison-Wesley.

[11] Guerra, E. M. ; Fernandes, C. T. 2008. A Metadata-Based

Components Model. In Proceedings of Doctoral Symposium

at 22nd European Conference on Object Oriented

Programming - ECOOP 08 (Paphos, Cyprus, July 7 -11,

2008).

[12] Guerra, E. M. ; Parente, J. M. ; Fernandes, C. T. 2008.

Mapping Objects to Ontology Entities Using Metadata. In

Proceedings of X SIGE - Defense Operational Applications

Symposium (São José dos Campos, Brazil, 2008). [in

Portuguese]

[13] Guerra, E. M. ; Pavão, F.; Fernandes, C. T. 2008. Design

Patterns for Metadata-based Components and Frameworks.

In Proceedings of 7ª Latin American Conference on Pattern

Languages of Programming – SugarLoafPLoP 2008

(Fortaleza, Brazil, August 24 – 27, 2008). [in Portuguese]

[14] Guerra, E. M. ; Silva J. ; Silveira, F. ; Fernandes, C. T. 2008.

Using Metadata in Aspect-Oriented Frameworks. In

Proceedings of 2nd Workshop on Assessment of

Contemporary Modularization Techniques (ACoM.08) at

OOPSLA 2008 - ACM SIGPLAN International Conference

on Object-Oriented Programming, Systems, Languages, and

Applications (Nashville, EUA, October 19 – 23, 2008).

[15] Hibernate Validator, 2009. Hibernate Validator, Available on

http://www.hibernate.org/412.html.

[16] Hispagnol, G. M. 2009. Unified Multidimensional Model:

Integrating OLAP and OLTP Domains. Technical Report,

Aeronautical Institute of Technology, 2009.[in Portuguese]

[17] JBoss, 2009. JBoss Application Server, Available on

http://www.jboss.org/jbossas/.

[18] JBoss AOP, 2009. JBoss AOP, Available on

http://www.jboss.org/jbossaop/.

[19] JColtrane, 2009. JColtrane – Better than SAX Alone,

Available on http://jcoltrane.sf.net.

[20] JSR 175, 2003. JSR 175: A Metadata Facility for the Java

Programming Language. Available on

http://www.jcp.org/en/jsr/detail?id=175.

[21] JSR 220, 2006. JSR 220: Enterprise JavaBeans 3.0.

Available on http://www.jcp.org/en/jsr/detail?id=220.

[22] JSR 222, 2006. JSR 222: Java Architecture for XML

Binding (JAXB) 2.0. Available on

http://jcp.org/en/jsr/detail?id=222.

[23] JSR 303, 2009. JSR 303: Bean Validation. Available on

http://jcp.org/en/jsr/detail?id=303.

[24] JUnit, 2008. JUnit - Testing Resources for Extreme

Programming. Available on http://www.junit.org/.

[25] MentalLink, 2008. MentalLink. Available on

http://sourceforge.net/projects/mentallink/.

[26] Silva, J.; Okura, R. 2009. A Model for Metadata Sharing

Among Frameworks. Technical Report, Aeronautical

Institute of Technology, 2009.[in Portuguese]

[27] Nardon, F.; Silva, E. 2007. Implementing Java EE

Applications Using Enterprise JavaBeans (EJB) 3

Technology: Real World Tips, Tricks, and New Design

Patterns. JavaOne 2007, Session TS-4721, Avaliable on

http://developers.sun.com/learning/javaoneonline/2007/pdf/T

S-4721.pdf.

[28] Nock, C. 2003. Data Access Patterns: Database Interactions

in Object-Oriented Applications. Addison-Wesley

Professional.

[29] SAX, 2004. SAX Project. Available on

http://www.saxproject.org/.

[30] SwingBean, 2009. SwingBean, Available on

http://swingbean.sourceforge.net/.

[31] Tansey, W.; Tilevich, E. 2008. Annotation Refactoring:

Inferring Upgrade Transformations for Legacy Applications.

The International Conference on Object Oriented

Programming, Systems, Languages and Applications -

OOPSLA 2008 (Nashville, EUA, October 19 – 23, 2008).

[32] Wada, H.; Suzuki, J. 2005. Modeling Turnpike Frontend

System: a Model-Driven Development Framework

Leveraging UML Metamodeling and Attribute-Oriented

Programming. In Proceedings of the 8th ACM/IEEE

International Conference on Model Driven Engineering

Languages and Sytems (MoDELS/UML 2005).

[33] Yoder, J. W.; Foote, B. 1998. Metadata and Active Object-

Models. Fifth Conference on Patterns Languages of

Programs - PLoP '98 (Monticello, Illinois, August, 1998).

[34] XapMap, 2009. XapMap - Cross Application Mapping

Framework, Available on http://xapmap.sourceforge.net.

