
Half-Push/Half-Polling

Youngsu Son
Home Solution Group
Samsung Electronics

arload.son@samsung.com

Sangwon Ko

Dept. of Computer Science
Hanyang University

funkcode@gmail.com

Jinho Jang

Dept. of Computer Science
Hanyang University

jinhoyo@nate.com

Hyukjoon Lee

Dept. of Computer Science
Hanyang University

xenoplo@gmail.com

Jemin Jeon

Dept. of Computer Science
Hanyang University

luvjjm@gmail.com

Jungsun Kim

Dept. of Computer Science
Hanyang University

jskim@cse.hanyang.ac.kr

ABSTRACT

To create constantly evolving software, the upgrading is an

essential factor. There are two ways to upgrade, pushing and

polling. Polling has the advantage of keeping the latest versions of

all the clients, but can cause heavy server load by simultaneously

connections to many clients and unnecessary network traffics. On

the other hand, push causes much less because push can upgrade

the specific clients, but there is cumbersome monitoring to keep

stopped clients on latest version. The Half-Push/Half-Polling

pattern mixes these two different ways, keeping their advantages,

eliminating their disadvantages.

Categories and Subject Descriptors

D.3.3 [Programming Languages]: Language Contructs and

Features – patterns.

D.2.11 [Software Engineering]: Software Architectures –

patterns.

General Terms

Algorithms, Design, Reliability.

Keywords

Upgrade Ticket, Push/Pull Updater

1. INTRODUCTION
Software must reflect the changes of the real world. If not,

software will decays over time. No matter how well-made,

software must always be revised based on client’s requirements

changes and the needs for new services. Due to it, many

applications currently support upgrade services in order to

improve the customer satisfaction. Through this upgrade service,

the clients can use the latest services without installing a new

program on every time.

One of the major issues to consider on upgrade service is data

transmission method. In the majority of cases, server resources are

limited. For this reason, an efficient data transmission method is

needed.

In client/server model, polling and pushing are generally used as

data transmission methods. However, the polling method can

cause server overhead when many clients request the upgrades

simultaneously. And the push method has problems such as

failure to complete the upgrade when the client is offline or when

errors occur while upgrading. So the clients that did not upgrade

must be managed to be upgraded in later time.

A more efficient data transmission method, therefore, is needed to

make up for these weak points. In this paper, we present the Half-

push/Half-polling pattern which mitigates the weak points of

polling and push methods. The pattern reduces the server

overheads. Using distributed update time and scheduling, it also

applies suitable upgrades from considering each client’s features.

2. BACKGROUND
In Client-Server Model, Push or Polling are general ways to

update clients. Push refers to actively updating clients by the

server. The server requests access to the clients and pushes data to

them. The advantage of this approach is that you can fully utilize

the server’s resources within the limit of network bandwidth.

However, this method assumes that the client will always be alive.

And it also requires the server to keep information about clients.

The figure1 shows how Push method works. When some

events(ex; upgrade) occur and the server needs to connect to the

clients, the server can control the workload autonomously in

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, to republish, to post on servers or to redistribute to lists,

requires prior specific permission. Preliminary versions of these papers

were presented in a writers’ workshop at the 16th Conference on Pattern

Languages of Programs (PLoP).

PLoP’09, August 28-30, Chicago, IL, USA. Copyright 2009 is held by

the author(s). ACM 978-1-60558-873-5

consideration of its capacity and the bandwidth. Numbers in the

picture represent a sequence of operations.

Figure 1. Push Upgrade Method

On the other hand, when using polling method, the clients have

the initiative. The clients request data transmission from the server.

Because the server is more stable and using this method

guarantees the server is alive, the chance of the problem is very

low.

However, in Polling method, as opposed to Push, the clients

check repeatedly whether any events have occurred or not. And all

of clients would attempt to access to the server at the same time in

the worst case because there is no fixed order. The figure below

shows such case.

Figure 2. Poll Upgrade Method

3. EXAMPLE
For example, let’s assume that we are developing an office

automation system for buildings located closely together in a

downtown. There are various types of devices in the system and

they are connected to a wired or wireless network. In addition,

requirement is to keep the software in each device up-to-date. The

server will provide the latest software via client-server model. In

Polling method, each client requests data from the server without

considering any other clients. So, it would cause server overload.

On the other hand, In Push method, a client that is turned off or

malfunctions at the time of the Push wouldn’t be updated.

Let’s take a specific example with the figure below. The server

has to update various types(green, yellow, red) of devices that are

placed in different location. Some office would have all types of

devices but some would not. In this situation, it is possible for the

server to manage devices in a way that groups them by device

type or location.

Figure 3. Office Automation

4. CONTEXT
The Upgrade system needs a lot of servers if all of clients must be

upgraded as soon as possible, such as anti-virus programs.

However, in the case where there is no time limitation, like a

Windows Update, the server can update clients easily within the

limits of its resources regardless of the state of clients.

5. PROBLEM
Imagine we are building a data transmission system to send the

newest version continuously to the clients. In the client/server

model, polling and push methods are generally the used data

transmission methods for limited server resource. However, the

polling method can cause server and client overhead when many

clients request the upgrades simultaneously and check server

version periodically.

If we adopt push method on the system, we can get the benefit of

reducing the overhead used for the scheduling. But push method

has problems when the client cannot complete the upgrade, for

example when the client is off-line or it encounters an error during

upgrading. We, therefore, need an efficient and reliable data

transmission method to maintain the condition of clients using

scheduling methods.

6. FORECES
The following items should be regarded as forces:

 Consider that the server has limited throughput to make

upgrade possible.

 It should be possible to manage various clients by group.

 Clients who fail during the upgrade can upgrade in the

future.

 We need to balance efficiency with reliability.

7. SOLUTION
The half-push/half-polling pattern overcomes the disadvantages of

upgrading based on either push and polling method.

Pusher, the upgrade server, uses schedules to distribute the

upgrade time to Pollers(clients) which are on the upgrade list. At

distributed time, the client requests upgrade from the pusher

which then executes the upgrade service. Therefore we can avoid

the Non-Stop Talker which polling method invokes. Normally to

overcome the disadvantage of push methods, the clients who are

off-line have to be managed separately. But in our pattern, at the

time when those clients are booted, the clients request their

upgrade time. Because of that, we don’t’ need to manage the

clients separately.

7.1 Structure

Figure 4. Half-Push/Half-Polling Structure

Pusher component is the advanced component that improves

existing push functions. This component keeps a list of Pollers

that demanded an upgrade and allocates upgrade time.

 AttachPoller – This function registers new

Pollers(clients). The goal of this function is to add

Pollers to PollerList, the scheduling target list.

 DetachPoller – This function is for deleting Poller from

PollerList.

 BeginUpgrade – Entrypoint to start the upgrade. It is the

exposed interface to the external source which requested

the upgrade.

 NotifyUpgrade – Pusher notifies the upgrade process to

selected Pollers.

 GetUpgradeTimeSpan – Poller calls this function to

assign the upgrade time from pusher after receiving the

upgrade request through NotifyUpgrade from pusher.

 DoUpgrade – To call PushFiles() for upgrade when the

assigned upgrade time of Poller is 0.

 PushFiles – To forward the actual upgrade list of files to

Poller.

Poller is a component which needs the upgrade regularly. It has to

have the right Pusher address that Poller can access all the time.

 GetUpgradeTime – Receive the upgrade time from

Pusher.

 SetTimer – Set the time assigned from Pusher. However,

it does not run the upgrade directly at the assigned time.

Instead of that, the Poller calls Pusher’s

GetUpgradeTimeSpan() function to provide an upgrade

window in case the server’s throughput would reach the

limit.

The scheduler implements a scheduling strategy for distributing

the upgrade time. The scheduler component can use different

scheduling strategies[10][11] for different clients(Pollers).

7.2 Dynamics

Figure 5. Registration

As in Publisher-Subscriber[7], the Poller(client) can register or

cancel the execution of the upgrade service by passing its own

reference to the Pusher(server).

Figure 6. Upgrade Sequence Diagram

The BeginUpgrade() function is executed by the server

application to Pusher.

Then, the Pusher sends the upgrade information(version etc.)

through AreYouAlive() function to Pollers. The Poller calls the

GetUpgradeTime() function when it needs the upgrade after

comparing its version with the pusher’s version. After that, the

scheduler is called for allocating the upgrade time interval

internally. If the upgrade time, TimeSpan, is set as specific hour

such as 3:04 Pm, a complex time synchronize mechanism[2][9] is

needed between Pusher and Poller or Pollers. To avoid that, we

set the TimeSpan as time interval such as 300ms, 400ms.

When the assigned upgrade time becomes 0, Poller calls the

DoUpgrade() function.

The Pusher creates a list of files and transmits it to the Poller by

calling PushFiles(). The Poller doesn’t take files itself. Instead,

the Pusher sends them to the Poller in the form of notification.

The reason for this is to obtain flexibility that enables providing

different file information to the Pollers depending on version –

even if they have same type.

But if the assigned upgrade time is more than 0, the Poller waits

until it reaches 0. When it reaches 0, it does not run the upgrade

directly. Instead, Poller calls pusher’s GetUpgradeTimeSpan()

function in case of server’s throughput would reach the limit. In

such case of server’s throughput reaching the limit, the Poller

would get a new upgrade time for server availability.

8. IMPLEMENTATION
Step 1 : Collect the characteristics of upgrade targets(Pollers).

We could consider the clients (Pollers) that always connect to the

network as the upgrade target. However, we should adopt the

polling method for clients who are not often connected to the

network, such as P2P.

Step 2 : Choose the scheduling algorithm considering Quality of

Service(QoS).

The following QoS[6]should be taken into the consideration when

performing–the upgrade time.

 Flexibility; any part of system can be upgraded.

 Robustness; the risk of error and crash should be

minimized.

 Ease of use; upgrade process should be concise.

 Low overhead; it should minimize the impact on system

performance.

 Cost; it should minimize the cost of upgrading

 Independence; modules which are not related to

upgrade should not be considered.

 Reliability; Robustness is related to risk during upgrade,

Reliability is related at the end of the upgrade. In other

words, it should be able to trust that upgrade is done

correctly.

 Integrity; it should maintain one status for upgrade,

complete or nothing. Upgrading only part of files

should not be allowed. This means rollback function

should be supported when an error occurs during the

upgrade.

 Continuity; the upgrade should be run without

interruption.

It is important to understand QoS for the upgrade. The right

scheduling strategy is determined according to the system. If the

system deals with a variety of upgrade versions or deadlines, the

scheduling becomes important issue in a system like real-time

system.

Step 3 : Decide the message exchange format.

If a standard message format is used, such as XML for

interoperability, a conversion process is required like

Marshling/Unmarshaling. This is not suitable for a system that

requires quick responses due to the limited resources. In that case,

despite system dependency, we should require a message transfer

format based on protocols using Binary Method Table[7], such as

COM+, OLE, for performance guarantee.

Step 4 : Information from Poller to Pusher should allow extension.

The information sent to Pusher can be changed according to the

scheduling algorithm or Poller’s feature. Various Pollers are

added in the system and thus, the exchange information is

designed for extension. For that reason, it should consider using –

the Composite Message[1] or the Parameter Object pattern[3].

Figure 7. Composite Message Pattern

In the Composite Message pattern, the exchange message can be

added/removed through Pipes or Filters. And then, it exchanges or

extends protocol easily. Due to these flexible structures which

slow down the process, it is not suitable for embedded systems

which have limited resources and requires quick response.

Step 5 : Consider type, group, or kind of dependencies between

the Pollers.

In most cases, the system has various Pollers(For example, the

company has many different kinds of mp3 devices or the company

manages various version of electronic products). On top of it,

there are dependencies among Pollers for certain services. In this

case, to solve the problem, we can make various groups using

Event Channel[10] between Pusher and Poller as in figure 8.

Figure 8. Instance of Event Channel

class EventChannel

{

………..

// Managed poller list

private List ConsumerList;

private List FilterList;

public bool AttachConsumer();

public bool DetachConsumer();

//assign the filter for grouping of various pollers(upgrade

target)

public bool AttachFilter();

public bool DetachFilter();

//Start the EventChannel service.

public bool Run();

//send the poller’s information (i.e. device own ID, state

information, App version, Framework version information etc.)

public void NotifyUpgrade();

};

The picture and source above are the examples of Event Channel

structure.

The direct dependency between Pusher and Poller is removed

because various Pollers are managed with Event Channel as above.

In other words, this is a more flexible structure–to allow changes

when adding/removing new Pollers or when targeting the upgrade

groups. In addition, using the filters, the upgrade targets(Pollers)

can be grouped into various forms as following items.

 In case of appoingting type of upgrade Poller. For

example, the type is 3536 and 3836 – “NodeType:3536”,

“NodeType:3836”

 In case of appointing resident such as PLoP Apartment

Number 101 – “AptNum:0101”

 In the event of appointing ouprade Poller group. For

example, the range of group is between PLoP

Apartment Number 101 and PLoP Apartment Number

112 – “Range:AptNum:AptNum:0101:AptNum:0112”

 In case of appointing type for permission access to

Apartment. For example, the type is 3536 as entrance

system at PLoP Apartment Number 101 –

“RangeAptNum:AptNum:0101:NodeType:3536”

Step 6 : Check Poller’s status periodically.

When the server(Pusher) distributes the upgrade time though the

scheduler, some of the clients are often off-line. Then the server

waits for response from clients for a certain time. Because the

client is off-line, an incorrect schedule is made which increase

total upgrade time.

To solve this problem, Alive Check Manager that distinguishes

whether the target Pollers(clients) are alive or not is needed as a

separate upgrade module. Alive Check Manager sends cycle to the

Pollers which are registered. Then those Pollers send the Alive

message to the server according to the assigned cycle. For

example, if the alive message does not come over the cycle * N

times, it is necessary to change the state of Poller to dead and the

Poller is removed from the upgrade target list.

Step 7 : Use the Timer or WatchDog to manage the time

information from the pusher.

If Pusher and Poller have absolute time as TimeSpan, a complex

time synchronization mechanism is needed. However, the interval

of time is used as TimeSpan in the Half-Push/Half-Polling pattern.

Instead of that, either Timer or Watcher(WatchDog)[4]is needed

to control the time interval. In addition, current time and the time

interval(TimeSpan) must be stored in a file or DB in case of

system failure. So, we can know whether the upgrade request is

needed when the system restarts. If the current time is greater than

the time that we stored on the file or DB, the Poller rechecks

whether the upgrade is possible to Pusher.

Step 8 : Consider appropriate File Transmission Mechanisms.

All systems have to use appropriate mechanisms depending on

domain or situation. The optimal solution for every

situation(Silver Bullet) does not exist. When you need to

upgrade/patch many different kinds of devices, it is necessary to

consider a variety of network environments. Either the Pollers

which request mass file transfer may exist or the Pollers which

periodically request small amounts of data may exist. To consider

this situation, the File Transmission Strategy is chosen according

to the type of Poller. To resolve these problems, “JAWS:A

Framework for High-Performance Web Servers”[5] provides good

solutions. In that study, the asynchronous transfer

mechanism(Proactor)[8] like IOCP has bad performance for

transferring small files.

9. KNOWN USES
– OMG CORBA Event Service

The Event service of RealTime CORBA it is not for upgrading,

but the Event Channel method that replaces push method with

pull(polling) method as data transmission method.

– Hybrid Push/Pull Download Model in Software Defined Radios

A Software-Defined Radio(SDR) system is a radio

communication system where components that have typically

been implemented in hardware(e.g. mixers, filters, amplifiers,

modulators/demodulators, detectors. etc.) are instead implemented

using software on a personal computer or other embedded

computing devices. When a new way of service starts, it is natural

to replace existing terminals with new ones. However, the SDR

performs mostly on Software instead of the existing

semiconductor. Hybrid Push and Pull[12] which is one of the

down models SDR offers is a good example of Half-Push/Half-

Polling pattern.

– Samsung Homevita

Homevita, a home networking system from Samsung electronics,

adopted the upgrade methods with a mixture of push and polling

method. In the Homvita 1.0 version, it took the polling method for

upgrade. However, it had big overhead by the request of many

devices simultaneously. To avoid the problem, the system adopted

the push upgrade method in the Homevita 2.0 version. After that,

overhead was reduced. But the system needed a way to monitor

dead devices. In the 2.5 version, a mixture of push and polling

method are adopted. It reduces server overhead. And the devices

which are alive keep the newest version.

10. RESULTING CONTEXT
The advantages of this pattern include:

– Solving the problem of heavy loads in very short

periods of time caused by the Polling-based upgrade

method and benefiting from the Push method which

only upgrades specific clients.

– Reducing network traffic and load of the server/client

because it doesn’t need to check the version of the

server periodically.

– Being able to upgrade specifically selected clients by

grouping them.

Possible disadvantages are:

– It is not suitable for systems like vaccines that require

all devices to be upgraded in case of emergency because

the scheduling method used takes server load into

account.

– It is impossible to upgrade clients if a problem occurs

on the server(Pusher) while the program is running.

Reliability must be guaranteed by copying Pusher

components or using various fault tolerance methods[4].

– It is difficult to apply to a system such as P2P, where

server and client information changes frequently.

11. RELATED PATTERNS
Publisher-Subscriber[7]

Also called the Observer pattern, it is used to synchronize the

information between two components-Publisher and Subscriber.

Copying the database from publisher to Subscriber can be a

typical example. It is used when the pattern encounters a non-stop

talker object, in other words, when overload occurs because of

non-stop Polling.

Composite Message[1]

This pattern is used for marshaling/un-marshaling data, extending

and adding messages you want to transfer while passing through

layers. It is also used to create a transmission protocol for each

device(Poller) in environments heterogeneous to the Half-

Push/Half-Polling pattern. It is used in various distributed

middleware.

Pipe & Filter[7]

This pattern is used when adding or filtering messages you want

to transmit flexibly according to the circumstance, used internally

in the aforementioned Composite Message. It is also used to filter

unwanted data when building an Event Channel.

Broker[7]

This pattern removes direct dependency(location information,

platform restrictions, etc.) between server and client. By

delegating the location information of Pusher, which is in Poller,

to Broker, Poller can remove itself of its direct dependency on the

Pusher.

ACKNOWLEDGMENTS
We thank our shepherd Robert Hanmer for his valuable comments

that contributed to improve this paper. The EVA (Pattern

Evangelist Group), James Chang provided useful improvements

and corrections.

REFERENCES
[1] Aamond Sane, Roy Campbell, “Composite Messages: A

Structural Pattern for Communication between

Components”, OOPSLA’95 Workshop on Design Patterns

for Concurrent, Distributed, and Parallel Object-Oriented

Systems, 1995.

[2] F.Cristian, “Probabilistic Clock Synchronization”,

Distributed Computing, vol.3., pp.146-158, 1989.

[3] Martin Fowler, Kent Beck, John Brant, William Opdyke,

Don Roberts, “Refactoring : Improving the Design of

Existing Code”, Addison-Wesley Professional, 1999

[4] Robert S. Hanmer, “WatchDog”, Patterns for Fault Tolerant

Software, John Wiley & Sons, October, 2007

[5] James C. Hu, Douglas Schmidt, “JAWS: A Framework for

High-Performance Web Servers”, Domain-Specific

Application Frameworks: Frameworks Experience By

Industry, John Wiley & Sons, October, 1999

[6] Michael Hicks, Jonathan T. Moore, Scott Nettles, “Dynamic

Software Updating”, ACM Transactions on Programming

Laguages and Systems(TOPLAS), Voume 27, Issue 6

[7] Frank Buschmann, Regine Meunier, Hans Rohnert, Peter

Sommerlad, Michael Stal, “Pattern-Oriented Software

Architecture Volume 1: A System of Patterns”, John Wiley

& Sons, 1996

[8] Douglas C. Schmidt, Michael Stal, Hans Rohert, and Frank

Buschmann, “Pattern-Oriented Software Architecure Volum

2: Patterns for Concurrent and Networked Objects”, ,John

Wiley & Sons, 2000

[9] R. Gusella, S. Zatti: “The Accuracy of the Clock

Synchronization Achieved by TEMPO in Berkeley UNIX

4.3 BSD”, IEEE Transactions on Software Engineering,

Vol.15, July 1989

[10] Timothy H. Harrison, David L. Levine, and Douglas C.

Schmidt, “The Design and Performance of a Real-time

CORBA Event Service”, Proceedings of OOPSLA’97,

Atlanta, Georgia, October, 1997

[11] Sameer Ajmani, Barbara Liskov, Liuba Shrira, “Scheduling

and Simulation: How to Upgrade Distributed Systems”, In

Proceedings of the 9th Workshop on Hot Topics in

Operating Systems(HotOS IX)

[12] Jamadagni, Satish, Umesh M.N., “A PUSH download

architecture for software defined radios”, 2000 IEEE

international symposium on personal wireless

communication

