
Copyright © 2009, Alcatel-Lucent. All Rights Reserved.

 1 08/17/09

N-Version Programming

Robert Hanmer

Alcatel-Lucent

1960 Lucent Lane

Naperville, IL 60566 USA

+1 630 979 4786
hanmer@alcatel-lucent.com

With N-Version Programming, NVP, independent development teams use the same

specification to generate multiple implementations. During development the design teams are kept

separate and do not share their designs nor do they discuss the specification’s meaning with each

other. The design teams should use different algorithms and different programming languages to

produce multiple versions that contain different faults from the other versions.

NVP employs redundancy at all levels from design/development to execution. NVP

enables parallel execution of computational blocks. A technique discussed in Chapter Four,

Recovery Blocks (4), provides for sequential computation of computational blocks. Serial

execution of this parallelism is possible on a uniprocessor as long as there is separation between

versions.

The fundamental principle of NVP is that there are multiple implementations done by

different development teams. The same developer cannot make multiple implementations with

multiple understandings of the same specification. The assumption is that when a latent fault

activates in one version then the other versions of the system that do not contain the same fault.

Research by Knight and Leveson [KL86][KL90] has shown that the assumption of independence

between the faults produced by the different design teams does not hold. Research into NVP

continues for example work by Cai, Lyu and Vouk [CLV05].

Because of the need for multiple design teams, NVP is not something that an individual

or small team can decide on their own to undertake. For this reason, this book does not discuss

NVP. [Hanmer07]

 This PLOP paper will provide the pattern for N-Version programming that was

not included in Patterns for Fault Tolerant Software. [Hanmer07] As a further note, the

originators of N-Version Programming were Drs. Liming Chen and Algirdas Avizienis,

who developed the technique in the late 1970’s at UCLA. Their paper [CA78] provides

one of the earliest explanations of the technique.

I’d like to acknowledge the suggestions of Anjali Das who shepherded

this paper. Also Eduardo Fernandez and Michael Pont who offered suggestions.

mailto:hanmer@alcatel-lucent.com

Copyright © 2009, Alcatel-Lucent. All Rights Reserved.

 2 08/17/09

1. N-VERSION PROGRAMMING

… The system needs to be both reliable and available. It needs to be reliable and

have as few faults as possible; Fault Prevention is of paramount importance. For

example, a spacecraft carrying astronauts on a round trip journey to space needs to

execute flawlessly to return those astronauts safely to the ground. It also needs to be

highly available so that the astronauts have access to the systems continuously.

Resources are unlimited. Reliability is so important that the project has at least an

implicit carte blanche to design and build the most reliable system possible with the

highest quality possible.

A new system is being started. Requirements specifications are being created

afresh for this system. Only the most basic parts of previous systems will be reused in the

new system, the new system is not an evolutionary product. The system will include

Redundancy (3)

 to provide for continuous availability.

Incorrect understandings of system specifications lead to faults. When

architects and designers compare notes or direct each others work incorrect

understandings can be either corrected or passed to others. How can faults due to

incorrect understandings of specifications be eliminated?

A major component of fault tolerance is Redundancy (3), either spatial or temporal

redundancy. Spatial redundancy is the redundancy of different components performing

the same task in parallel. Temporal redundancy refers to redundancy in time. The same

task is done serially, or at non-serial different times.

Redundancy can be designed into the system’s hardware or software. Hardware

redundancy involves providing multiple system components, such as multiple processors,

network interfaces or other, specific peripheral devices. Redundant hardware generally

implements spatial redundancy. Additional hardware, in the form of specialized circuits

or arbiters, is required to combine the results from the redundant hardware into the single

result that will be acted upon.

In the design of the current system, hardware redundancy will be used extensively. All

kinds of hardware will be redundant, from sensors to processing elements. To make the

system even more reliable, software redundancy is also desired.

Redundancy in software is typically done temporally. A common way of implementing

this is through a Recovery Block (4) structure. In this structure a version of the code is

executed and the results checked. The check determines if the result is correct, or within

acceptable parameters. If the check passes the system continues operation. If the result

does not pass the check then another bock of code is executed. The results of this block

are then also checked. Two or more blocks can be used.

 Numbers in parenthesis after the names of patterns refer to the index number of

the pattern within Patterns for Fault Tolerant Software [Hanmer2007].

Copyright © 2009, Alcatel-Lucent. All Rights Reserved.

 3 08/17/09

Time

Block 1 Block 2 Okay?

Y

N

Two representations of Recovery Blocks (4)

Another way of achieving software redundancy is to execute multiple versions of the

same code serially. The results are compared through Voting (21) to select the result to

be acted upon. The versions that are executed can be either the same version or different

versions. The advantage of using the same version code version is to reduce costs. The

disadvantage is that the same software when confronted with the same stimuli will

produce the same results.

Time

Version 1

Version 2
Voter

Processor 1

Multiple serial executions with voting

The serial execution of the versions takes time. All the instances execute to

completion. The assumption is that they are all executed on the same processor.

Parallel, redundant processors could be executing the different versions

simultaneously to achieve greater processing throughput, turning the temporal

redundancy into spatial redundancy. As in the case of hardware spatial redundancy, an

external voter or arbiter is required to select the result that should be acted upon. A

variation would put the voter into one of the existing processors, as another software

process. This will introduce single points of failure in case the voting processor goes

unexpectedly out of service.

Copyright © 2009, Alcatel-Lucent. All Rights Reserved.

 4 08/17/09

Time

Voter

Version 1

Processor 1

Version 2

Processor 2

Multiple parallel executions with voting

Faults in the processor hardware will result in the versions behaving differently.

But if the processors are error free, and the inputs are identical, then the same version of

the software code will produce the same results. Those results might be either correct or

incorrect. Fault prevention in the software development will have resulted in high quality

software which is nearly error free. So these two versions should always compute

identical and correct results. However, it is widely believed that no software is 100%

fault free [CITE]. When a software defect is encountered both versions will make the

same errors.

To reduce this risk of all the software containing the same faults, use different

versions of the software. This concept of multiple versions was proposed as early as

1837:

When the formula to be computed is complicated, it may be algebraically arranged for

computation in two or more totally distinct ways, and two or more sets of cards [versions of

software] may be made. If the same constants are now employed with each set, and if under these

circumstances the results agree, we may then be quite secure of the accuracy of them all.
[Babbage37]

At a its simplest, the same development team produces two (or more) versions of

the software without copying anything from one version to another. But this can still

result in the same fault being present in the multiple versions, since the fault might have

come from a misunderstanding of the system’s specification. Unless the

misunderstanding is corrected then all the versions will have the same incorrect design

and implementation.

To further reduce the risk of the same fault being introduced into multiple

versions, use different development teams to produce the different versions of the

software. If they are allowed to collaborate and share their understanding of the

specifications however then misunderstandings and errors can still result.

If the same implementation language is used for the multiple versions, certain

faults that are in some way language-specific might be introduced. For example, in a

language that relies on garbage collection failing to properly account for the frequency of

garbage collection may result in performance requirements not being met. If multiple

Copyright © 2009, Alcatel-Lucent. All Rights Reserved.

 5 08/17/09

versions are created in this same language the versions might all have similar

performance faults.

Therefore,

Build the system using “n” different development teams that interpret the

specification and implement it without sharing their notes. Using different

languages and different development techniques prevents the teams from

introducing language-specific faults into the system.

Add a Voter element that will mediate and decide choose between the

different versions at execution time.

Time

Voter

Version 1

Processor 1

Version 2

Processor 2

Specification
s

N-Version Programming, N=2

N-version programming was first invented by Chen and Avizienis in the late

1970’s [CA78]. It has been much discussed in the literature; the references contain only

a snapshot of the related publications. The pattern Active Replication by Titos Saridakis

mentions N-version programming as a way of masking even Byzantine failures.

[Saridakis02] The Reliable Hybrid Pattern by Fonda Daniels, et. al, describes a way of

designing a system that can take advantage of multiple software redundancy techniques,

such as variations of Recovery Blocks (4) and N-version programming. [DKV97]

Once the decision to employ N-version programming has been made there are a

number of parameters of the system design process that must be determined. These

include: how many versions of the software should be created? How will the

differences between the different versions be measured and quantified? How will the

development teams be isolated from each other to reduce the probability of common

misunderstandings? Will a separate team be created to monitor the N teams creating the

versions? [Torres00]

Research ([KL86] [KL90]) has shown that the reliability of N-version systems

might not be as high as the theory predicts for some applications. The experiment

Copyright © 2009, Alcatel-Lucent. All Rights Reserved.

 6 08/17/09

described in these papers had the same or similar software faults 50% of the time in more

than one program. Even given this criticism the technique is still widely viewed as

effective. …

[Babbage37] Babbage, C. “On the mathematical powers of the calculating

engine,” December 1837 (unpublished manuscript) Buxton MS7, Museum of the History

off Science, Oxford. In B. Randell, editor. The Origins of Digital Computers: Selected

Papers. Springer, New York, pages 17-52, 1974.

[CA78] Chen, L., and A. Avizienis, “N-Version Programming: A Fault-

Tolerance Approach to Reliability of Software Operation,” Digest of Papers FTCS-8:

Eight Annual International Conference on Fault-Tolerant Computing, Toulouse, pp. 3-9

(June 1978).

[CLV05] Cai, X, M. R. Lyu and M. A. Vouk. “Experimental Evaluation of

Reliability Features of N-Version Programming.” Proc. 16
th

 IEEE Intl. Symp. on

Software Reliability Engineering, Nov. 2005, pp 161-170.

[DKV97] Daniels, F., K. Kim and M. Vouk. The Reliable Hybrid Pattern: A

Generalized Software Fault Tolerant Design Pattern. Presented at PLoP 1997,

Monticello, IL. September 1997. [http://hillside.net/plop/plop97/Workshops.html]

[Hanmer07] Hanmer, R. Patterns for Fault Tolerant Software. Chichester, UK:

John Wiley & Sons, 2007.

[KL86] Knight, J. C. and N. G. Leveson, “An Experimental Evaluation of the

Assumption of Independence in Multi-version Programming,” IEEE Transactions on

Software Engineering, Vol. SE-12, No. 1 (January 1986), pp 96-109.

[KL90] Knight, J. C. and N. G. Leveson, “A reply to the criticisms of the Knight

& Leveson experiment,” SIGSOFT Softw. Eng. Notes 15, 1 (Jan. 1990), 24-35.

[Saridakis02] Saridakis, T. A System of Patterns for Fault Tolerance,

Proceedings of EuroPLoP 2002, Kloster Irsee, Germany, July 2002, pp 535-582.

[Torres00] Torres-Pomales, w., Software Fault Tolerance: A Tutorial, Technical

Report, Report No. NASA-2000-tm210616, 2000.

