
Software Rejuvenation

ROBERT HANMER, Alcatel-Lucent

Software rejuvenation is a technique of proactive fault tolerance that designs the system for periodic reboots. This paper
contains three patterns of which Software Rejuvenation is the first. The second, Count the Black Sheep, provides a
solution to the problem of knowing precisely what fault has activated. This information is needed to recover quickly and to
be able to provide effective long-term treatment. N-Version Programming completes this collection. Multiple versions of
an implementation are created to prevent incorrect understanding of the requirements causing operational failures. All the
versions will be executed simultaneously and the correct output chosen.
Categories and Subject Descriptors: C.4: [Performance of Systems] Fault tolerance, Reliability, availability, and
serviceability, D.2.11 [Software Engineering]: Software Architecture –Patterns, K.6.3 [Management of Computing and
Information Systems]: Software Management – Software Development

General Terms: reliability, design, management

Additional Key Words and Phrases: fault tolerance, availability, patterns, software engineering

INTRODUCTION

This paper contains patterns on REJUVENATION, using ERROR COUNTING as a form of fault isolation
and N-VERSION PROGRAMMING. These three patterns supplement the set of patterns in Patterns
for Fault Tolerant Software [Hanmer 2007]. The book focused on software fault tolerance
techniques that individuals or small teams could implement themselves. REJUVENATION and
ERROR COUNTING fit within that scope, N-Version Programming requires a higher level of project
and management support to staff multiple teams, and does not fit within the initial scope of the
book. After publication of this book in 2007 I have been working on patterns that round out a
pattern-style treatment of software fault tolerance with patterns that did not fit within the context of
the book.

The terms fault, error and failure have specific meanings.

A system failure occurs when the delivered service no longer complies with the
specification, the latter being an agreed upon description of the system’s expected
function and/or service. An error is that part of the system state that is liable to lead to
subsequent failure; an error affecting the service is an indication that a failure occurs or
has occurred. The adjudged or hypothesized cause of an error is a fault. [Laprie 1991]

Software faults are classified into two types based upon their characteristics; they are either
Bohrbugs or Mandelbugs. “Bohrbugs” are faults that activate consistently in well-defined
circumstances. Bohrbugs don’t change with time. Programming faults that can be detected
during code inspection are Bohrbugs because they are constant and reproducible.

“Mandelbugs” are faults with complex activation and/or error propagation properties. This
complexity arises when there is a time lag between the activation and the occurrence of an error

Author's address: R. Hanmer, 2000 Lucent Lane, Naperville, IL 60563; email Robert.hanmer@alcatel-lucent.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior
specific permission. A preliminary version of this papers was presented in a writers' workshop at the 17th Conference on
Pattern Languages of Programs (PLoP). PLoP'10, October 16-18, Reno, Nevada, USA. Copyright 2010 is held by the
author(s). ACM 978-1-4503-0107-7

or when there are indirect factors that influence the activation. For example, interactions of the
system with its environment, the timing of inputs and operations relative to each other or the
interaction of operation sequencing. Mandelbugs, unlike Bohrbugs, are difficult to locate because
the error and failures might not be near the actual fault activation in code/operation location or
time.

Some Mandelbugs can be related to time period during which the software/system have been
operating. These result from the accumulation of internal errors or when the activation of the
Mandelbug is somehow triggered by the total time that the system has been operating. A
Mandelbug is either an “aging-related” fault or a “non-aging-related” fault. [Grottke et al. 2010]

1. REJUVENATION1 **

Used with permission.

… The software is in an application that requires high availability. Software gets
crusty/rusty/degraded over time and suffers from aging-related Mandelbugs. These eventually
lead to failure of some sort.

The cost of unplanned outages is higher than the cost of planned outages. In unplanned outages
system state is lost and needs to be rebuilt, revenue-generating activities terminate abnormally
resulting in a loss of revenue and customers are dissatisfied. Planned outages can be graceful
and often invisible from the customer’s perspective.

Software degrades until it breaks. Can we avoid the costs of failures from degradation?

The normal stages of software life begin with its initialization and the beginning of its processing.
It works flawlessly for a time hopefully a long time). While it is working it is slowly degrading.
Little pieces of unused memory are reserved for uses that never occur, bits of information are
saved even though they won’t be used again, etc. Eventually a software fault will activate.
Perhaps it runs out of memory or some other resource, or get confused by the existence of

1 This pattern is based on Microreboot work first published by Candea et al. [2004]. The general concept of
rejuvenation was first described from Bell Labs by Kintalla et. al [1995].

unused data. When this occurs, an error is likely to happen which might be followed by some
type of failure.

In software that is designed for high availability, there are mechanisms in place that will detect the
fault (or in many cases the error that the fault causes). The fault will be detected and isolated and
recovery mechanisms will be tried. Sometimes recovery from the fault is achieved through simple
steps; sometimes more aggressive steps will be required, which might require ESCALATION (9)2.
This all takes time, as shown in Timeline I.

Start of
Normal

operation

Fault or
Error is
detected

Fault is
isolated

Error
Recovery

starts

Resumption
of

Normal
operation

unavailability

Timeline I: Usual fault detection, isolation and recovery stages.

Rebooting or restarting is one of the many recovery actions that are possible. This sometimes
takes the place as the last step in an ESCALATION (9) path. By the time the reboot takes place, a
long time has usually passed since the error occurred; refer to the bottom part of Timeline II.
Look to the top part of Timeline II to see what happens when the restart is done proactively and
not as the result of error recovery. The cost of planned downtime (i.e. time when there isn’t a
detection and isolation phase) is lower than the cost of unplanned downtime. The graceful
shutdown and reboot is the rejuvenation of the software.

Rejuvenating

Reacting

Resumption
of normal
operation

Error
Recovery

starts

Fault is
isolated

Fault or
Error is
detected

unavailability

Reboot
begins

unavailability

Resumption
of normal
operation

unavailability

Reboot
begins

Resumption
of normal
operation

Start of
Normal

operation

Timeline II: (top) Rejuvenating, (bottom) Reacting

The usual way of reporting a system’s availability is to report its Mean Time To Failure (MTTF)
and its Mean Time to Repair (MTTR). MTTR is based upon the actions the system takes to
recover from a fault that activates. MTTF is the time between fault activations. Systems
designed for high availability have extremely high MTTF, which makes validating their actual

2 Numbers within parenthesis refer to the reference number of the pattern within Patterns for Fault
Tolerant Software [Hanmer 2007].

MTTF difficult. It is usually done by monitoring many systems for a period of time and
extrapolating the failure results, or else it is done through statistical methods. MTTR is much
easier for the customer to monitor; the customer sees how effective and timely recovery is
accomplished. The total time of short planned rejuvenations can be less than the time it takes to
recover from a single error. [Fox 2002]

Deciding when to perform a rejuvenating reboot can be done in several ways. Which method is
best will depend on the system’s context. The decision can be made during execution, for
example when resources are getting low indicating that there is a memory leak about to become
an error. [Huang et. al 1995] If the rejuvenation is triggered based on execution time detection
then SOMEONE IN CHARGE (8) is used to monitor and trigger the rejuvenation.

The open source tool Monit [Monit 2010] has the ability to monitor processes and resources and it
can be configured to take proactive action to rejuvenate the system. The example below shows
how Monit can be used to check resource usage and restart the Apache httpd daemon if resource
usage exceeds predetermined limits. Alerts are sent when the CPU usage of the http daemon
and its child processes raises beyond 60% for over two cycles. The httpd daemon is restarted if
the CPU usage is over 80% for five cycles or the memory usage over 100MB for five cycles
[Yoder 2010]:

 Monit example

check process apache with pidfile /var/run/httpd.d
start program = "/etc/init.d/httpd start"
stop program = "/etc/init.d/httpd stop"
if cpu > 40% for 2 cycles then alert
if totalcpu > 60% for 2 cycles then alert
if totalcpu > 80% for 5 cycles then restart
if mem > 100 MB for 5 cycles then stop

The planning can alternatively be done in advance either by modeling or by empirical
measurements during development testing. A hybrid approach uses SOMEONE IN CHARGE (8) to
periodically take measurements that are used to dynamically compute when rejuvenation should
occur. [Trivedi et. al 2000, Vaidyanathan and Trivedi 2005] How the decision is made is another
issue altogether which is the study of academic research.

Rejuvenation can occur at any of several scopes: system, application, process, or thread. The
entire system can be restarted or the tiniest part of an execution flow can be restarted. The
fastest rejuvenation will occur at the smallest scope, but rejuvenation at that scope is not always
possible.

Rejuvenation doesn’t require REDUNDANCY (1) in the system. If the part of the system to be
rejuvenated is redundant, then it is possible to rejuvenate without losing any service.
[Vaidyanathan and Trivedi 2005)

The rejuvenation mechanisms should be surrounded by traditional fault tolerance mechanisms
such as detection and recovery to ensure that in the unlikely case that the rejuvenation does not
work that the system will still be able to recover through traditional means.

Therefore,

Periodically rejuvenate a software item by shutting it down and restarting it.

Reboot
begins

unavailability

Resumption
of normal
operation

unavailability

Reboot
begins

Resumption
of normal
operation

Start of
Normal

operation

Timeline III: Rejuvenation

If rejuvenation is not done often enough the system will have unplanned downtime as it goes
through the detection, isolation and recovery cycles associated with errors. If rejuvenation is
done too often then the system is unavailable for longer than it needs to be for optimal normal
operation.

It is easy to confuse rejuvenation with typical fault tolerance. For example, the Service
Reanimator tool [2010] watches for errors, such as when a monitored processes terminates
prematurely, and then takes action restarting the process. This is fault tolerance, where the
detection of an error (terminated process) is done and the error recovery step restarts the
process. Proactive rejuvenation anticipates errors by stopping and restarting processes before
they have a chance to stop erroneously.

Rejuvenation helps prevent errors from aging-related Mandelbugs. Rejuvenation sometimes
helps with non-aging-related Mandelbugs when the rejuvenation takes place between the fault
activation and the manifestation as an error. Rejuvenation doesn’t help cope with Bohrbugs
which occur in very specific circumstances and are not dependant upon system degradation.

Rejuvenation events will cause the software (or part of the software) to be unavailable for the
duration of the restart. In some situations this will be included within a system’s planned
downtime allocation. In other situations it will be unobservable and won’t need to be accounted
for (e. g. when there’s REDUNDANCY (1)). The duration of the rejuvenating restart must be
computed into the overall availability predictions for the system.

Rejuvenation can be implemented by mechanisms as simple as an entry in a time-related job
scheduler such as the Unix crontab [1993] scheduler. An example implementation watches for
virtual machines to run out of resources and restarts it before it fails. [Yoder 2010] Open source
tools such as Monit [Monit 2010] can be added to the system to perform the monitoring.

Businesses quite often do a regular reboot as part of a scheduled maintenance to help prevent
aging-related Mandelbugs. A database server might for example be rebooted each night during a
period of low activity to reduce the probability of errors during busy times. This is an example of a
kind of ROUTINE EXERCISE (23).

ROUTINE EXERCISES (23) are done to ensure that the fault recovery mechanisms and the
REDUNDANCY (3) elements in a system do not have latent errors and that they will operate
correctly when they are needed. Rejuvenation is closely related, but is done to proactively
eliminate aging-related Mandelbugs, not to periodically check recovery mechanisms.

Rejuvenation also does not require inherent redundancy in the system. The mechanisms and
techniques are similar, but the intent is different.

Sometimes restarting a system with a mission critical section would be so disastrous that it
cannot be done. In these cases the system must be made fully redundant with seamless fault
tolerance to prevent unplanned downtime from ever occurring. With this infrastructure
rejuvenation can be implemented because the system has been provided with the ability to
seamlessly migrate or FAILOVER (36) to redundant elements. …

2. COUNT THE BLACK SHEEP3 *

Also known as “Error Counting”

Photography by Lynn Ede www.cheltenhamdailyphoto-lynn.blogspot.com

… Errors are occurring in the system. Tye system might have been processing the errors or it
might have been RIDING OVER TRANSIENTS (26) and ignoring them.

The system is in a highly reliable or highly available environment. Many different components
work together to provide the required functionality. They can be either distributed systems where
the components are geographically close together or networked systems. The components have
assigned responsibilities, and might be decomposable into smaller components. REDUNDANCY (3)
exists on some level making it difficult to identify precisely the component in the system that
contains the fault.

The system is well-understood. The kinds of errors and their common triggering faults are known
and can be categorized. Bohrbug should be corrected, Mandelbugs should be categorized. You
are designing the detection and recovery system with requirements to prevent failures.

3 This strategy is discussed in [Meyers et al 1977].

Errors keep occurring. Identification of where the errors occur and originate (i.e. what
fault activated) so that the error processing is appropriate. Faults must be identified before
they can be treated.

Faults caused by Bohrbugs and Mandelbugs reoccur and cause errors whenever their activation
conditions are met. If nothing is done to correct the faults or to avoid the conditions the errors will
reoccur. Reoccurring errors increase the likelihood that a failure will be observed. After errors
reoccur enough times the pattern emerges and they can be treated correctly.

The faults that caused the error must be identified in order to know how to correctly recover from
the error. In complex systems there can be several faults that cause the same error, or errors
that look very similar. FAULT CORRELATION (12) is one of the first steps in the detection phase of
error handling. During system development or operation error and fault correlations should be
identified.

As an example, the signature of a memory exception error should be saved and correlated with a
memory fault. There may be several types of memory exception errors, for example in different
regions of memory. There might be several different faults that cause the errors such as memory
allocation or deallocation faults, invalid operations, etc. Knowing the type of error and its causing
fault increases the probability that selected recovery actions will be appropriate and will actually
remedy the error.

The system can either process each error immediately when it occurs, using the best available
correlation of which particular fault is present, or it can RIDE OVER TRANSIENTS (26) and ignore the
error, but keep track of its occurrence for future reference. A third alternative is to combine both
options and use ESCALATION (9) techniques to extend and adapt the actions taking into
consideration the improved understanding of the error and its real triggering fault.

When an error occurs for the first time it should be processed, and a tally kept. Incrementing the
counter that a particular error occurred is sometimes called “pegging a count”. If the error
reoccurs within a short time period (which can be determined by a LEAKY BUCKET COUNTER (27))
error processing should again be performed. But if the error keeps occurring then ESCALATION (9)
to a more drastic processing technique should be tried. Error specificcounts are needed to drive
the ESCALATION.

If the error reoccurs when the LEAKY BUCKET COUNTER (27) is no longer watching for
reoccurrences there is still benefit to pegging the count and using it. Errors outside the threshold
of the LEAKY BUCKET imply that the error is occurring slowly enough that error processing won’t
ESCALATE (9) to a more drastic error processing action. Pegging a count can help the system’s
maintenance personnel and developers identify and treat the fault in a way that it can be
eliminated in a future release of the system.

The system might be logging errors but the log is probably intended for reporting purposes, rather
than for diagnostic purposes. The error processing infrastructure and the logging infrastructure
can work together though. When an error occurs and is correlated with a certain fault a record is
sent to the logging system. The logging system can provide longer term storage of what errors
have occurred.

Therefore,

The system should keep a table of errors and the number of times that each fault that
causes the error occurs. Use this table to identify the faults that need to be treated or that
should cause ESCALATION (9).

Error ID
Correlated

Fault

Count of
Error

Processing
correlated to

fault

Errors
before

Escalation?
A fa1 1 1
B fb1 3 5
B fb2 0 5
C fc1 0 10
D fd1 15 20
D fd2 6 10
D fd3 0 1
E fe1 2 2
F ff2 5 10

Figure 1. Example error and fault correlation table

From the data, the pattern of which fault is causing the most errors begins to appear. The
table can also be used a priori to specify whether escalation should occur whenever the error
occurs. The number of times that an error occurs and that a particular fault is identified as the
most likely cause of the error is an indication of when the fault should be treated and removed
from the system.

FAULT INSERTION TESTING [not written] and accelerated life testing are both effective
techniques to create the list of faults which should be counted and proactively treated. If
neither technique is available the list of faults can be accumulated over time through logs of
errors and error recovery.

The errors that occur might be totally unexpected. The assumption here has been that the
faults and the errors that they caused were known and as a result they could be “covered” by
detection and recovery. The coverage factor indicates the percentage of errors that occur that
are recovered automatically within a specified time period given that an error has occurred.
High coverage factors are desirable, but are more expensive to develop and to test. Fault
insertion testing is also helpful to improve and to quantify a system’s coverage factor. The
record of error and fault occurrences must be able to record that unexpected errors have
occurred.

A process of recording errors and faults to aid correlation and to aid the prioritization of
treatment must not lead to a false sense of security or to delays in error processing. Error
tabulating and error processing must be done in parallel to maximize the system reliability.

The faults that cause errors repeatedly should be the target of fault treatment activities and
corrected in the next release of the software. Tests that can recreate the error are excellent
candidates for the system’s regression test suites. The table of observed errors and faults that
are correlated with the errors will give a ranking that can be used to select which faults to
treat. This is a benefit even if the pattern of errors and faults remains hidden. …

3. N-VERSION PROGRAMMING

… The system needs to be both reliable and available with as few latent faults as possible; Fault
Prevention is of paramount importance. For example, a spacecraft carrying astronauts on a round
trip journey to space needs to execute flawlessly to return those astronauts safely to the ground.

It also needs to be highly available so that the astronauts have access to the systems
continuously. The system will include REDUNDANCY (3) to provide for continuous availability.

A new system is being started. Requirements specifications are being created afresh for this
system. Only the most basic parts of previous systems will be reused in the new system, the new
system is not the evolution of an existing system.

Resources are unlimited. Reliability is so important that the project has at least an implicit carte
blanche to design and build the most reliable system possible with the highest quality possible.

Incorrect understandings of system specifications lead to faults. Incorrect
understandings can be either corrected or passed to others whenever architects and
designers compare notes or direct each others work. How can faults due to incorrect
understandings of specifications be eliminated?

A major component of fault tolerance is REDUNDANCY (3), either spatial or temporal redundancy.
Spatial redundancy is the redundancy of different components performing the same task in
parallel. Temporal redundancy refers to redundancy in time. The same task is done serially, or
at non-serial different times.

Redundancy can be designed into the system’s hardware or software. Hardware redundancy
involves providing multiple system components, such as multiple processors, network interfaces
or other, specific peripheral devices. Redundant hardware generally implements spatial
redundancy. Additional hardware, in the form of specialized circuits or arbiters, is required to
combine the results from the redundant hardware into the single result that will be acted upon.

Redundancy in software is typically done temporally. A common way of implementing this is
through a RECOVERY BLOCK (4) structure. In this structure a version of the code is executed and
the results checked. The check determines if the result is correct, or within acceptable
parameters. If the check passes, the system continues operation. If the result does not pass the
check, then another bock of code is executed. The results of this block are then also checked.
Two or more blocks can be used.

 Time

Block 1 Block 2 Okay?

Y

N

Figure 2. Two representations of Recovery Blocks (4)

Another way of achieving software redundancy is to execute multiple versions of the same code
serially. The results are compared through VOTING (21) to select the result to be acted upon.
This concept of multiple versions was proposed as early as 1837:

When the formula to be computed is complicated, it may be algebraically arranged for
computation in two or more totally distinct ways, and two or more sets of cards
[software programs] may be made. If the same constants are now employed with
each set, and if under these circumstances the results agree, we may then be quite
secure of the accuracy of them all. [Babbage 1837]

The versions that are executed can be either the same version or different versions. The
advantage of using the same version code version is to reduce costs. The disadvantage is that
the same software when confronted with the same stimuli will produce the same results, which
may be erroneous.

 Time

Version 1

Version 2
Voter

Processor 1

Figure 3. Multiple serial executions with voting

The serial execution of the versions takes time. All the instances execute to completion. The
assumption is that they are all executed on the same processor.

To speed up processing, parallel processors (or processor cores) could be executing the different
versions simultaneously, turning the temporal redundancy into spatial redundancy. As in the
case of hardware spatial redundancy, an external voter or arbiter is required to select the result
that should be acted upon. A variation would put the voter into one of the existing processors, as
another software process. This will introduce single points of failure in case the voting processor
goes unexpectedly out of service.

Time

Voter

Version 1

Processor 1

Version 2

Processor 2

Figure 4. Multiple parallel executions with voting

Faults in the processor hardware will result in the versions behaving differently. But if the
processors are error free, and the inputs are identical, then the same version of the software code
will produce the same results. Those results might be either correct or incorrect. Fault
prevention in the software development will have resulted in high quality software which is nearly
error free. So these two versions should always compute identical and correct results. However,
it is widely believed that no software is 100% fault free. When a software defect is encountered
both versions will make the same errors.

To reduce this risk of all the software containing the same faults, use different versions of the
software. At its simplest, have the same development team produce two (or more) versions of
the software without copying anything from one version to another. This can still result in the
same fault being present in the multiple versions, since the fault might have come from a
misunderstanding of the system’s specification. Unless this misunderstanding is corrected then
all the versions will have the same incorrect design and implementation.

To further reduce the risk of the same fault being introduced into multiple versions, use different
development teams to produce the different versions of the software. If they are allowed to
collaborate and share their understanding of the specifications however then misunderstandings
and errors can still result.

Therefore,

Build the system using “n” different development teams to interpret the specification and
to implement it. Use different programming languages and different implementation
systems to prevent language specific faults from being present in the completed system.

Time

Voter

Version 1

Processor 1

Version 2

Processor 2

Specification

Figure 5. N-Version Programming

N-version programming was first invented by Chen and Avizienis [1978]. It has been much
discussed in the literatures; the references contain only a snapshot of the related publications.

Serious questions about the effectiveness have been raised in different published studies,
showing that common errors do occur between separate, different development teams. [Knight
and Leveson 1986; Knight and Leveson 1990; Cai et. Al 2005] Even given this criticism the
technique is still widely viewed as effective. …

ACKNOWLEDGEMENTS

Rejuvenation

Thanks to shepherd Joe Yoder and the PLoP Reliability and Trust workshop group of Eunsak
Kang, Christof Hannebauer, Cedric Bouhours, Kiran Kumar, Ernst Oberortner, Matt Hansen and
Vivek Gondi for their helpful suggestions.

Count the Black Sheep

Thanks to shepherd Wolfgang Herzner and the PLoP Security and Quality writer’s workshop
group of Ed Fernandez, Amir Raveh, James Nobel, Brian Foote, David Pearce, Steven Hill, Yuji
Kobayashi, Hironari Washizaki, and Takao Okubo for their helpful suggestions.

N-Version Programming

Thanks to Anjali Das who shepherded N-VERSION PROGRAMMING. Also Eduardo Fernandez and
Michael Pont who offered suggestions during shepherding and to my PLoP Writer’s Workshop
group.

REFERENCES
Babbage, C. “On the mathematical powers of the calculating engine,” December 1837 (unpublished manuscript) Buxton
MS7, Museum of the History off Science, Oxford. In B. Randell, editor. The Origins of Digital Computers: Selected
Papers. Springer, New York, pages 17-52, 1974.
Chen, L., and A. Avizienis, “N-Version Programming: A Fault-Tolerance Approach to Reliability of Software Operation,”
Digest of Papers FTCS-8: Eight Annual International Conference on Fault-Tolerant Computing, Toulouse, pp. 3-9 (June
1978).
G. Candea, S. Kawamoto, Y. Fujiki, G. Friedman, and A. Fox, 2004. Microreboot — A technique for cheap recovery. In
Proceedings of the 6th Conference on Symposium on Opearting Systems Design & Implementation - Volume 6 (San
Francisco, CA, December 06 - 08, 2004). Operating Systems Design and Implementation. USENIX ssociation, Berkeley,
CA, pp 3-3.
Cai, X, M. R. Lyu and M. A. Vouk. “Experimental Evaluation of Reliability Features of N-Version Programming.” Proc.
16th IEEE Intl. Symp. on Software Reliability Engineering, Nov. 2005, pp 161-170.
crontab. Linux crontab(1) manual page. http://www.linuxmanpages.com/man1/crontab.1.php
 “MTTR ‘>>’ MTTF”, Armando Fox, June 2002 ROC Retreat, http://roc.cs.berkeley.edu/retreats/summer_02/slides/fox.pdf,
accessed August 30, 2010, unpublished.
M.Grottke, A. P. Nikora and K. S. Trivedi, 2010, “An Empirical Investigation of Fault Types in Space Mission System
Software,” Proceedings of the 2010 IEEE/IFIP International Conference on Dependable Systems and Networks (DSN),
IEEE/IFIP, Chicago, IL, 2010, pp 447-456.
Hanmer, R. Patterns for Fault Tolerant Software. Chichester, UK: John Wiley & Sons, 2007.
Y. Huang, C. Kintala, N. Kolettis, N. D. Fulton, 1995, Software Rejuvenation: Analysis, Module and Applications, Twenty-
Fifth International Symposium on Fault-Tolerant Computing (Pasadena, CA, IEEE Computer Society, 381-390
R. Hanmer, V. Mendiratta, 2010, Rejuvenation with workload migration, proceedings of 2nd Workshop on Proactive
Failure Avoidance, Recovery, and Maintenance (PFARM), Dependable Systems and Networks, IEEE/IFIP, Chicago, IL,
IEEE/IFIPS, 2010, pp 80-85.
Knight, J. C. and N. G. Leveson, “An Experimental Evaluation of the Assumption of Independence in Multi-version
Programming,” IEEE Transactions on Software Engineering, Vol. SE-12, No. 1 (January 1986), pp 96-109.
Knight, J. C. and N. G. Leveson, “A reply to the criticisms of the Knight & Leveson experiment,” SIGSOFT Softw. Eng.
Notes 15, 1 (Jan. 1990), 24-35.
K. S. Trivedi, K. Vaidyanathan, and K. Goseva-Popstojanova. 2000. Modeling and Analysis of Software Aging and
Rejuvenation. In Proceedings of the 33rd Annual Simulation Symposium (April 16 - 22, 2000). IEEE Computer Society,
Washington, DC, pp. 270-279.
Laprie, J. C. Dependability: Basic Concepts and Terminology. New York: Springer-Verlag, 1991, p 4.
Monit. http://mmonit.com/monit/ accessed July 24, 2010.
Meyers, M. N., W. A. Routt, and K. W. Yoder, “Maintenance Software,” Bell System Technical Journal, Vol. 56, No. 7,
September 1977, pp 1139-1167.
Service Reanimator: http://www.veloci.dk/index.asp?visnu=srea/srea.htm accessed Sept. 12, 2010.
K. Vaidyanathan, K.S. Trivedi. 2005. A Comprehensive Model for Software Rejuvenation. IEEE Trans. Dependable Secur.
Comput. 2, 2 (Apr. 2005), 124-137.
J. Yoder, personal communication, July 23, 2010.

