
Pattern-oriented Knowledge Model for Architecture Design

KIRAN KUMAR, Indian Institute of Technology Kanpur
PRABHAKAR T.V., Indian Institute of Technology Kanpur

Software design patterns document the most recommended solutions to recurring design problems. Selection of the best design
pattern in a given context involves analysis of available alternatives, which is a knowledge-intensive task. Pattern knowledge overload
(due to the large number of design patterns) makes such analysis difficult. A knowledge base to generate available alternatives can
alleviate the problem. In this paper, we propose a pattern-oriented knowledge model which considers four dimensions of the pattern
knowledge space: Pattern to Tactic relationship, Pattern to Pattern relationship, Pattern to Quality-attribute relationship and Pattern to
Application-type relationship. We perform analysis of these relationships for patterns in the two popular pattern catalogues viz GoF
and POSA1.
Categories and Subject Descriptors: D.2.11 [Software Engineering]: Software Architectures – Patterns.
General Terms: Design.
Key Words and Phrases: Patterns, Tactics, Decision view, Pattern to Tactic relationship, Pattern to Pattern relationship, Pattern to
Quality Attribute relationship, Pattern to Application Type relationship.

1. INTRODUCTION

The problem of software design (Figure 1) can be stated as how to identify and choose design alternatives
(Bass, L. 2009., Hofmeister, C., Kruchten, P., Nord, R.L., Obbink, H., Ran, A., and America, P. 2005.) †.
Since patterns document best practices built on tried and tested design experience, they play an important
role in design and documentation. Some of the benefits of using patterns are discussed in (Buschmann, F.,
Meunier, R., Rohnert, H., Sommerlad, P., and Stal, M. 1996., Buschmann, F., Henney, K., Schmidt, D. C.
2007., Harrison, N., and Avgeriou, P. 2007., Harrison, N. B., Avgeriou, P., and Zdun. U. 2007.) - these
include: Ease of knowledge transfer between designer and developer, Ease of early analysis of design
decision consequences, Well-defined support for forward-engineering, Ease of recovering design decisions
from different views etc. Hence, design alternatives are commonly extracted from pattern catalogues. The
pattern-oriented design process can be viewed as follows: Pattern alternatives analysis, Best pattern
selection and Pattern documentation.

Figure 1. Integrated view of Architecture design and development processes.

† Len Bass [5] stresses the role of design alternatives analysis during architecture design process. Hofmeister and colleagues [26]
abstracted the process commonality from five different architecture development processes

Author's address: Kiran Kumar, Department of Computer Science and Engineering, Indian Institute of Technology Kanpur, India;
email: vkirankr@iitk.ac.in; Prabhakar T.V., Department of Computer Science and Engineering, Indian Institute of Technology Kanpur,
India; email: tvp@iitk.ac.in
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first
page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission. A preliminary
version of this paper was presented in a writers' workshop at the 17th Conference on Pattern Languages of Programs (PLoP).
PLoP'10, October 16-18, Reno, Nevada, USA. Copyright 2010 is held by the author(s). ACM 978-1-4503-0107-7.

Since the design decision (best design alternative) at a particular design context is bound to one of the
analyzed set of alternatives, missing an important design alternative can sometimes impact the selected
design decision. For example, consider the following design context: Reduce response time of a web-
based system where network speed is bottleneck. As a solution, as many as three design alternatives can
be generated: Client-side caching (Bass, L., Clements, P., and Kazman R.. 2003.), Increase server
resources (Bass, L., Clements, P., and Kazman R.. 2003.) and Increase parallelism at server (Bass, L.,
Clements, P., and Kazman R.. 2003.). Since network speed is a bottleneck, Client-side caching seems to
be a better option than the other two. Suppose during the alternative analysis phase Client-side caching is
not considered, Increase server resources or Increase parallelism will emerge as solutions, which may not
be desirable.

Analysis of the design alternatives is a knowledge-intensive task; Pattern knowledge overload
(Henninger, S., and Ashokkumar P. 2006., Henninger, S., and Corrêa, V. 2007., Kampffmeyer, H., and
Zschaler, S. 2007., Rosengard, J.M., and Ursu, M.F. 2004.) hardens this analysis. Sometimes designers
choose recently used design decisions when a thorough alternative analysis is not possible. Under these
circumstances, designers can benefit by a competent knowledge base to generate available alternatives.
The tools which integrate such knowledge base as one of their components are termed Design Assistants
and are current the subject of active research (Bachmann, F., Bass, L., and Klein, M.. 2003., Booch, G.
2006., VanHilst, M., Fernandez, E.B., and Braz, F. 2009., Sarkar, K. and Verma, K. 2010.).

When architecture design knowledge is codified appropriately, the alternatives analysis problem can be
modeled as an information retrieval problem. In this paper, we focus on codifying an important part of
patterns knowledge which includes essential design concepts such as: Patterns, Tactics,
Quality requirements, Quality attributes, Application types. Figure 2 illustrates the concepts and
relationships of our knowledge model.

Figure 2. Concepts and relationships of Pattern Oriented Knowledge Model.

In addition to being intuitive, our knowledge model provides other benefits such as expressiveness
(Hepp, M. 2008.), visualization (Lee, L. and Kruchten, P. 2008.) and can be easily built using editors like
Cmap (Cmap 2010.), Protégé (Protégé 2009.), VUE (VUE 2010) etc. We term our knowledge model,
Pattern Oriented Knowledge Model (POKM).

One basic difference of our analysis and others’ is that we analyze patterns from a bottom-up
perspective; our analysis is based on an underlying tactics based formal model of patterns. When
compared with Booch’s knowledge model (Booch, G. 2006.), we focus on analyzing concepts like Pattern
relationships, Quality Requirements and Quality Attributes of patterns. The knowledge model of VanHilst et
al. (VanHilst, M., Fernandez, E.B., and Braz, F. 2009.) focus on the security aspects of different
applications; hence their knowledge model contains some specialized concepts like Code source,
Architecture layer. When our knowledge model is compared with VanHilst and colleagues, we focus on
analyzing concepts like Primitive quality requirements and Quality attributes of patterns; also, the pattern

catalogue we analyze differ from theirs. When Zimmer’s knowledge model (Zimmer, W. 1995.) is compared
with our knowledge model, we use a different analysis method to analyze relationships between patterns;
we also focus on inter-catalogue pattern relationships. Tichy’s knowledge model (Tichy, W.F. 1997.)
focuses on analyzing commonality in Quality requirement of patterns; we analyze all the underlying Quality
requirements and Quality attributes of a pattern and we classify them as Primary and Secondary Quality
attributes. Table 1 compares our knowledge model with existing popular design knowledge models.

Table 1. Comparison of our knowledge model with existing popular design knowledge models.

CONCEPTS

Knowledge models

Booch
(Booch, G.
2006.)

VanHilst et al.
(VanHilst, M.,
Fernandez, E.B., and
Braz, F. 2009.)

Zimmer
(Zimmer, W.
1995.)

Tichy (Tichy,
W.F. 1997.)

our KM

Application type ✓ ✓ ✓

Lifecycle stage ✓ ✓

Technology ✓

Design view ✓

Quality Response ✓

Code source ✓

Constraint ✓

Architecture layer ✓

Pattern relationships ✓ ✓

Quality Requirements ✓ ✓

Quality Attributes ✓

Tactics ✓

Formal analysis
approach

 ✓

Patterns catalogue Various
sources

Security patterns GoF
patterns

POSA1, PLoP
patterns

GoF, POSA1
patterns

The rest of the paper is structured as follows: Section 2 provides the required background terminology.
Section 3 presents some necessary details of the decision view of architecture. In section 4, we provide
some supporting arguments to our classification of tactics as building blocks of patterns. In section 5, we
discuss the details of our analysis and present our analysis results; we also discuss the usefulness of our
knowledge model with different design queries. Section 6 discusses related work and section 7 concludes
the paper.

2. TERMINOLOGY

In this section, we review some of the software architecture terminology used in this paper.
• Quality requirement (Kotonya, G., and Sommerville, I. 1998.): is a requirement which is not specifically

concerned with the functionality of the software. Quality requirements specify the external constraints the
software should meet. Fault detection, Reduce response time, Protect confidential data etc are some
examples of quality requirements.

• Quality Attribute (Bass, L., Clements, P., and Kazman R.. 2003.): is a set of related quality
requirements. Availability, Performance, Security, Usability etc are some examples of quality attributes.

• Design Alternative (Bass, L. 2009.): is one of many possible strategies that realize the given set of
requirement(s). For example, Active redundancy, Passive redundancy and Spare are different design
alternatives to increase availability of the system.

• Design Decision (Bass, L. 2009.): is a design alternative that is chosen or applied to realize the
requirement(s). For example, Active redundancy is the design decision used to ensure minimal
downtime of the system.

• Tactic (Bass, L., Clements, P., and Kazman R.. 2003.): A tactic is a design decision that influences the
control of a quality attribute parameter. For example, Increase available resources design decision
(upgrading 512 MB RAM to 1 GB RAM) controls (minimizes) the response time parameter.

• Implication/Consequence (Tyree, J., and Akerman, A. 2005.): A design decision comes with many
implications. For example, a design decision might introduce a need to make other decisions, create
new requirements, or modify existing requirements; pose additional constraints to the environment. For
example, Increase available resources tactic which is one way to achieve Reduce response time quality
requirement imposes side-effects like Increase in cost, Change in resource management (scheduling)
policy etc.

• Tactic Topology Model (TTM) (Kiran, K., and Prabhakar TV. 2010.): A graph based representation of
semantics of a pattern, where tactics are the nodes of the graph and edges are the dependencies
(based on consequences) between the tactics. The TTM of Observer pattern can be seen in Figure 4,
Section 5.1.

3. DECISION VIEW OF SOFTWARE ARCHITECTURE

Decision view provides a higher abstraction-level description to the architecture than its module view
(Dueñas, J.C., and Capilla, R. 2005., Jansen, A., and Bosch, J. 2005.). Decision view provides a first class
representation of design decisions and various relationships among them (Jansen, A., and Bosch, J. 2005.,
Dueñas, J.C., and Capilla, R. 2005.). The metamodel of a decision view defines the attributes of a design
decision and the set of relationships among design decisions. The Bosch et al. (Jansen, A., and Bosch, J.
2005.) decision view metamodel consists of dependency and refines relationships. The Kruchten
(Kruchten, P. 2004.) decision view metamodel provides a richer set of relationships such as constrains,
subsumes, comprises etc; this metamodel also provides various attributes for a design decision such as
scope, state, cost etc.

Remco and colleagues (Remco, C. de Boer, Farenhorst, R., Lago, P., van Vliet, H., Viktor, C., and
Jansen A. 2008.) analyze the core metamodel of the decision view. Dependency relationship is considered
as one of the important relationships in the core metamodel. The dependency relationship primarily
provides rationale for existence of a particular design decision. Information of design decision
dependencies becomes necessary during architecture evolution. As the architecture evolves some design
decisions need to be removed; dependency relationship allows safe-undo of a design decision (Jansen, A.,
and Bosch, J. 2005., Dueñas, J.C., and Capilla, R. 2005., Ran, A., and Kuusela, J. 1996.) i.e., when a
design decision is removed, all its dependant design decisions also need to be removed.

The design decision dependency can be captured in two types of relationships: Constrains and
Traces-from. The Constrains relationship represents the dependency between two design decisions; the
Traces-from relationship represents the dependency between a context and a design decision. Kruchten
(Kruchten, P. 2004.) defines the Constrains relationship as follows: “Decision B is tied to Decision A, if
decision A is dropped, then decision B is dropped” and Traces-from relationship is defined as follows:
“Design decisions trace from upstream technical artifacts: requirements” (Kruchten, P. 2004.).

Harrison and colleagues (Harrison, N. B., Avgeriou, P., and Zdun. U. 2007., Harrison, N., and Avgeriou,
P. 2007.) propose that patterns can be used to codify design decisions of an application. They also
mention that patterns capture one class of design decisions that are related to quality improvement. Other
types of design decisions such as those related to technology (such as selecting specific technology) and
organization (such as company guidelines or project team setup) may not be captured using design
patterns (Harrison, N. B., Avgeriou, P., and Zdun. U. 2007.).

4. SYNERGISTIC RELATIONSHIPS BETWEEN ARCHITECTURES, PATTERNS AND TACTICS

The decision view of an artifact can be understood from a different perspective as well: Decision view
represents the relationship(s) amongst the building blocks of an artifact. It is a well-agreed that patterns are
building blocks of architecture (Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., and Stal, M.
1996., Buschmann, F., Henney, K., Schmidt, D. C. 2007., Harrison, N. B., Avgeriou, P., and Zdun. U.
2007., Harrison, N., and Avgeriou, P. 2007.) †. Hence, the decision view of architecture can be built using
patterns. To build the decision view of patterns (discussed in section 5.1), we need to identify its building
blocks. We propose tactics as building blocks for patterns. First, we analyze the relationship among
architecture, patterns and tactics w.r.t. the following attributes – Similarity, Granularity, Abstraction level,
Quality attributes and Level of reusability. Then, we check whether the relationship between architecture

and patterns also holds true between patterns and tactics, to say that tactics can be used as building
blocks of patterns. The relationships are described as follows:
• Similarity. One fundamental similarity among Architecture, Pattern and Tactic is that at some level of

abstraction all three of them can be considered as an effective design-solution for the given design-
problem/requirement(s). One implication of this similarity is that the documentation mechanisms of one
artifact are applicable for other artifacts as well. It can be seen that the patterns are documented based
on various views like structural view, dynamic view, etc. (e.g. GoF (Gamma, E., Helm, R., Johnson R.,
and Vlissides, J. 1994.), POSA1 (Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., and Stal, M.
1996.)). Although tactics currently lack view-based documentation, these can be generated.

• Granularity. The relationship among Architecture, Patterns and Tactics w.r.t. this attribute can be better
understood using a module view perspective. The module view of architecture of a system can be
realized as composition of module views of multiple patterns and tactics. The module view of a pattern
can be realized as a composition of module views of multiple tactics. Thus, we can consider that
architecture is composed of patterns and tactics and a pattern is composed of tactics.

• Abstraction level. Patterns and tactics form a library of knowledge which can generally be applied in
several applications independent of the domain (Lago P., and Avgeriou, P. 2006.). Many patterns and
tactics provide architecture templates rather than concrete architecture fragments as their solution
(Buschmann, F., Henney, K., Schmidt, D. C. 2007.); when domain-specific patterns are considered, their
solution is close to the architecture fragments in that domain (Fowler, M. 1997.). During architecture
design phase, these templates are instantiated into concrete architecture fragments using application-
specific details of the requirements. Patterns and tactics are categorized as part-of application-generic
knowledge and the architecture is categorized as part-of application-specific knowledge (Lago P., and
Avgeriou, P. 2006.).

• Quality attributes. Tactics achieve a primitive quality requirement of a quality attribute (Bass, L.,
Clements, P., and Kazman R.. 2003.). Patterns generally address requirements of multiple quality
attributes (Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., and Stal, M. 1996., Buschmann, F.,
Henney, K., Schmidt, D. C. 2007.). Since architecture is influenced by concerns of various stakeholders
(Bass, L., Clements, P., and Kazman R.. 2003.), architecture addresses multiple quality attributes.

• Level of reusability. In general, an artifact is selected for reuse whose properties match maximally with
the required properties. When requirements of a system occurs in the context of an existing system e.g.
product-line application, the initial design reuses existing architecture (Bass, L. 2009.), here the level of
reusability is at architecture level. The next level of reusability is at a pattern level (Bass, L. 2009.), since
pattern requirements have a finer grain than architecture and coarser than tactics.

Table 2 shows the relationship among the three artifacts: Architecture, Pattern and Tactic. It can be noticed
that the relationships between architecture and patterns are similar to those between patterns and tactics.
We can say that tactics can be useful for describing patterns.

Table 2. Relationship among Architecture, Pattern and Tactic.

Attribute Relationship Interpretation

Similarity Architecture ≈ Pattern ≈ Tactic At some level of abstraction, they can be considered
as Problem-Solution pair.

Granularity Architecture > Pattern > Tactic Architecture realizes into multiple patterns and a
pattern realizes into multiple tactics.

Abstraction level Architecture <= Pattern = Tactic Patterns and Tactics are part-of application-generic
knowledge, and architecture is part-of application-
specific knowledge.

Quality Attributes Architecture > Pattern > Tactic A tactic generally addresses one QA, some patterns
address multiple QAs and architecture addresses
multiple QAs.

Level of reusability Architecture > Pattern > Tactic Reusability at architecture level is preferable than
pattern level and reusability at pattern level is
preferable than tactic level.

† Tactics are also building blocks of architecture. For the sake of simplicity, we relax this fact here.

5. QUAD-DIMENSIONAL KNOWLEDGE MODEL

Typically, before starting the design the application type/domain is identified and understood. Based on
that, the designer identifies the most important quality attributes and the list of design pattern alternatives.
Additionally, when choosing a pattern, the designer also has access to the tactics that compose that
pattern and relationships between patterns. Following are some of the design queries of this form:
• What are the patterns that use Rollback tactic to recover faults in Financial systems? – Memento pattern
• What are the patterns that specialize Proxy pattern to improve Scalability? – Mediator pattern

To support the queries of above type, we designed a pattern-oriented knowledge model, composed of
four dimensions (illustrated in Figure 3), that provide the designer with a view of how to best develop its
application. VanHilst et al. (VanHilst, M., Fernandez, E.B., and Braz, F. 2009.) define the dimension on a
knowledge model as follows: “A dimension is a distinct list of concerns along a single axis, with a simple
concept and a set of distinctions that define the categories”. We follow the same interpretation. Each
dimension of the knowledge model is discussed in following subsections.

Figure 3: Four dimensions of our knowledge model.

5.1 Pattern to Tactic relationship
As discussed in section 4, the design decisions of a pattern can be captured using tactics which are more
primitive solutions than patterns. Intuitively, if a pattern provides a solution to achieve multiple primitive
quality requirements, a tactic provides a solution to achieve single primitive quality requirement (Bass, L.,
Clements, P., and Kazman R.. 2003.). For example, consider Observer pattern which provides solution to
the following four quality requirements:
• State change in one object requires state change in other objects,
• Dependents of an object are known at runtime,
• Abstract interface of variant modules is used for coupling and
• Variant modules need to be exchangeable at runtime.

From a tactics perspective, Observer pattern is composition of Notify modification, Register at runtime,
Interface parameterization and Apply Polymorphism tactics, since the above quality requirements are
achieved by these four tactics respectively.

The constituent tactics of a pattern can be analyzed from the pattern description. In (Kiran, K., and
Prabhakar TV. 2010.), we discuss the analysis procedure to analyze the tactics and Tactics Topology
Model (decision view) of a pattern. In the Booch design process (Booch, G., Maksimchuk, R., Engle, M .
Young, B., Conallen, J, and Houston, K. 2007.), fundamental design decisions are classified into five types:
Mechanism design decisions, Module design decisions, Service design decisions, Parameters design

decisions, Association design decisions. This classification can be used as a checklist while analyzing the
constituent tactics of a pattern. Following our tactic analysis process, we analyzed the patterns in two
popular pattern catalogues – GoF (Gamma, E., Helm, R., Johnson R., and Vlissides, J. 1994.) and
POSA1 (Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., and Stal, M. 1996.) and recovered the
tactics of those patterns from their description. Due to space limitations, the decision views of all patterns
cannot be presented here, for discussion purpose, we present the decision view of one pattern †. Figure 4
illustrates the decision view of Observer pattern.

Figure 4. Tactic Topology Model of Observer pattern.

The interpretation of Observer pattern decision view (Figure 4) is as follows:
• The semantics of Observer pattern can be codified using four tactics: Notify modification, Register at

runtime, Interface parameterization and Apply Polymorphism.
• Notify modification tactic is considered as primary tactic, since this tactic achieves the quality

requirement closer to the context of Observer pattern.
• Notify modification tactic creates two quality requirements as its consequences: Reference to

dependants and Generic implementation of notification. The tactics Register at runtime and Interface
parameterization achieve these quality requirements respectively. Hence we consider the following two
dependencies: Notify modification constrains Register at runtime and Notify modification constrains
Interface parameterization. In decision view shown in Figure 4, constrains relationship is represented as
an edge between these tactic nodes; the edge label represents the consequence or rationale for
dependency.

• In a similar way, one consequence of Interface parameterization tactic is Exchangeability of variant
observer modules. Apply Polymorphism tactic achieves this quality requirement, hence there is
constrains relationship between Interface parameterization and Apply Polymorphism tactics.

• As discussed in section 4, a decision view supports safe-undo of a design decision during the systems
evolution. It is to be noticed that when an Observer pattern is used, if the Notify modification tactic needs
to be removed, other three dependant tactics also need to be removed, because their application context
is dependant on Notify modification tactic.

Bass and colleagues define a catalogue of tactics (Bass, L., Clements, P., and Kazman R.. 2003.) for
various quality attributes. This catalogue seems insufficient to capture precisely the semantics of the
considered patterns. Also, Bass et al. explicitly mention in (Bass, L., Clements, P., and Kazman R.. 2003.)
that “the list of tactics is necessarily incomplete”. We defined an additional set of tactics to model precisely
the tactic topologies for the considered patterns. Table 3 presents our tactics catalogue along with the
quality requirements they achieve and their quality attributes. The quality requirements of the GoF and
POSA1 patterns are mapped to the quality requirements of tactics (16 of Bass et al. and 20 additional
given by us).

† The decision view analysis document for GoF and POSA1 patterns can be found at
http://www.cse.iitk.ac.in/users/vkirankr/Pattern_to_Tactics_Analysis.pdf.

http://www.cse.iitk.ac.in/users/vkirankr/Pattern_to_Tactics_Analysis.pdf�

Table 3. Tactics (used in our analysis) capturing the Quality requirements of GoF and POSA1 patterns.
Some of the Bass et al. tactics (Bass, L., Clements, P., and Kazman R.. 2003.)

Tactic Quality requirement Quality Attribute
Restrict communication paths Hide a set of modules/services. Modifiability

Union of services Intuitive interface of complex object.
Usability Aggregation of services

Maintain multiple views Handle multiplicity in user-interface requirements.

Maintain hierarchy of views

Apply polymorphism Variant modules need to be exchangeable at runtime. Substitutability

Interface parameterization Abstraction based on variation points. Reusability

Generalize service commonality

Checkpoint Persistence of consistent object state. Availability

Rollback Recovery of object state faults.

Register at runtime Dependents of an object are known at runtime.
Adaptability Parameter based behavior

selection
Support modification of the behavior at runtime.

Multiple abstraction levels High-level decomposition of an application. Modularity

Multiple specialized modules

Work partitioning Efficient execution of computationally-intensive task. Performance

Credentials based access Authenticated access to the object. Security

Additional tactics (abstracted from GoF and POSA1 patterns)
Compose whole from parts Design complex object from smaller parts. Composability

Object cloning Allow self object creation and initialization.
Performance Object sharing Reduce data duplication.

Count number of references Delete object when there are no references to it.

Smart reference Additional actions when an object is accessed.

Intelligence

Null value based object creation Additional functionality to control object creation

Object pool search based creation

Heuristics based chaining Nondeterministic selection of strategies

Preprocessing module Add new functionality without affecting existing object
structure.

Extensibility Add an individual module

Subclass delegation

Static access type An object needs to be accessible from well-known access
point.

Accessibility

Interface mapping Overcome mismatch in interface signature. Integrability

Chaining Integration of independent modules.

Container interface Add/remove parts of composite at runtime.
Adaptability Notify modification State change in one object requires state change in other

objects.

Library operation Common functionality encapsulation. Reusability

Grammar Represent statements in the language. Usability

Traversal Sequential access to the elements of aggregate object.

Remote messaging Support for distributed object communication. Scalability

5.2 Pattern to Pattern relationship
In (Kiran, K., and Prabhakar TV. 2010.), we discussed how pattern relationships can be analyzed using
graph properties when semantics of patterns are modeled using Tactic Topology Model (TTM). Table 4
presents the description and graph predicates for the five relationships used in our POKM. A brief
discussion of the relationships is as follows:
• Is-Similar-to relationship is analyzed using graph equivalence property.
• Is-an-Alternative-to relationship is analyzed in two steps. The source node in a TTM resembles the

context quality requirement of the pattern. Hence, to infer whether two patterns are addressing the same
problem, one of the two following conditions need to be satisfied: source nodes of the two patterns need
to be same, or source node of one pattern is alternative of source node of other pattern. When it is
known that the two patterns are addressing the same problem, we need to check whether they propose
different choices, this is inferred using graph non-equivalence property.

• Uses relationship is analyzed using proper subgraph property.
• Refines relationship is analyzed in two steps. Firstly, we need to ensure that both patterns provide same

initial solution; this condition is formulated as source nodes of the two patterns need to be same.
Secondly, we check whether a pattern extends the solution of other pattern using proper subgraph
property.

• Specializes relationship is based on graph homomorphism property. First, we transform graph of a
pattern using generalization (inverse of special case) relationship. Next, we check whether the graph of
other pattern is subgraph of generalized graph.

Table 4. Description of pattern relationships in our POKM.

Relationship Description / Graph predicate

Is-Similar-to

Description:
Patterns A and B provide same solution to similar problem. (Henninger, S., and Corrêa, V. 2007.)

Graph predicate:
Graph(P1) ≡ Graph(P2).

Is-an-Alternative-to

Description:
Patterns A and B solve the same problem, but propose different choices. (Kruchten, P. 2004.,
Zimmer, W. 1995.)
Graph predicate:
(Source-node(P1) = Source-node(P2) OR
is-alternative(Source-node(P1), Source-node(P2))) AND

Graph(P1) ≠ Graph(P2).

Uses

Description:
When building a solution for the problem addressed by pattern A, one sub-problem is similar to
the problem addressed by B. Therefore, the pattern A uses the pattern B in its solution. (Kruchten,
P. 2004., Zimmer, W. 1995.)
Graph predicate:

Graph(P2) ⊃ Graph(P1).

Refines

Description:
Pattern A provides more wider/detailed solution than B. (Kruchten, P. 2004., Zimmer, W. 1995.)
Graph predicate:
Source-node(P1) = Source-node(P2) AND

Graph(P2) ⊃ Graph(P1).

Specializes

Description:
The solution of pattern A indicates a special case of solution of pattern B. (Kruchten, P. 2004.)
Graph predicate:

generalization: Graph(P1) → Generalized-graph(P1) AND
Graph(P2) ⊇ Generalized-graph(P1)

After analyzing the decision views (or TTMs) of the GoF and POSA1 patterns, we applied the relationship
predicates in Table 4 on pattern decision views to assess various relationships among GoF and POSA1

patterns. Figure 5 illustrates the result of our relationship analysis (GoF and POSA1 patterns are denoted
with different colors), the commutative relationships such as is-similar-to and is-alternative-to are
represented as undirected edges where as the non-commutative relationships such as uses, refines and
specializes are represented as directed edges. Comparing our pattern relationship result with existing
results, such as (Zimmer, W. 1995.) and (Avgeriou, P., and Zdun, U. 2005.), we find that there is some
amount of mismatch between the results. We figure out that following are some of the primary reasons:
• Since we recover tactics strictly based on essential sections of pattern description, our decision views

can be considered as more restricted form. Sometimes we may not recover all the underlying tactics of a
pattern because pattern description may not always provide all the details to implement the pattern.

• We believe that design experience also plays an important role during tactic recovery analysis.
Experienced designers can analyze the given description from various perspectives with their design
experience and perform tactic analysis at more fundamental level. Since we compare our result with
highly experienced designers’ result, some level of mismatch occurs.

• Also, their analysis details are unavailable or very brief. Hence, the scope of improving our result to their
results remains limited.

In our analysis, we also found some unidentified relationships when compared with (Zimmer, W. 1995.)
and (Avgeriou, P., and Zdun, U. 2005.) such as:
• Mediator is-similar-to Client-Dispatcher-Server.
• Flyweight is-alternative-to Singleton.
• Interpreter uses Builder.
• Bridge refines Decorator.
• Blackboard specializes Pipes-and-Filters.

Some of the well-known pattern relationships are also identified such as:
• Layers is-alternative-to Pipes-and-Filters.
• Model-View-Controller uses Observer.
• Publisher-Subscriber refines Observer.
• Microkernel specializes Layers.

Figure 5. Pattern relationships for GoF and POSA1 patterns.

Figure 6. Statistics of pattern relationships.

Following are some of the conclusions that can be inferred from Figure 6:
• Majority of pattern relationships are captured by specializes, uses and is-alternative-to.
• The high frequency of specializes relationship shows that many patterns achieve different design

problems with similar underlying architecture.
• Number(Intra-GoF relationships) > Number(Inter-catalogue relationships) > Number(Intra-POSA1

relationships).

5.3 Pattern to Quality Attribute relationship
When patterns are represented as a constituent set of tactics, the quality attributes of a pattern can be
analyzed through the quality attributes of tactics. Table 3 lists the quality attributes of tactics used in our
analysis. One simple method to obtain quality attributes of a pattern is by the union of all the quality
attributes of its tactics. For example, consider Observer pattern, when this method is applied we obtain
three quality attributes such as: Adaptability, Reusability and Exchangeability tactics. This method does not
explicitly represent following information:
• Observer pattern is a more appropriate alternative to improve Adaptability of the system rather than

improve Reusability or Exchangeability of the system.
• With Observer pattern, the quality attributes Reusability or Exchangeability cannot be improved solely

without improving Adaptability quality attribute.

In order to explicitly represent such information for a pattern, we add an additional level of refinement to
the above method. Using the TTM of a pattern, we can easily classify the tactics of a pattern into two
types (discussed in section 5.1): Primary tactic (root node tactic in TTM) and Secondary tactics (non-root
node tactics in TTM). With this classification, we can also classify the quality attributes of a pattern into two
types: Primary quality attribute (quality attribute of primary tactic) and Secondary quality attributes (quality
attribute of subsequent tactics).

Reconsidering the Observer pattern, its quality attributes can now be classified as: Adaptability is
primary quality attribute and Reusability and Exchangeability are secondary quality attributes. We applied
TTM based quality attribute analysis to other GoF and POSA1 patterns to obtain this primary and
secondary quality attributes for each of the patterns. Figure 7 presents the primary quality attributes of GoF
and POSA1 patterns; in this figure, the patterns are grouped based on their primary quality attributes.
Table A1 (in appendix) presents the secondary quality attributes of GoF and POSA1 patterns after
normalization. The quality attributes used in our analysis can be referred from (Kayed, A., Hirzalla, N.,
Samhan, A.A., and Alfayoumi, M. 2009., 13, 36, 48).

Figure 7. Primary quality attribute of GoF and POSA1 patterns.

Following are some of the conclusions that can be inferred from Figure 7:
• The quality requirements of Performance, Composability and Usability seem to be well-addressed,

whereas quality requirements of Availability and Security are almost not addressed.
• Code-centric quality attributes like Extensibility, Integrability are especially addressed by GoF patterns;

whereas organization-centric quality attributes like Modularity are especially addressed by POSA1
patterns.

• For quality attributes like Performance, Composability GoF patterns provide more alternatives than
POSA1; whereas for quality attributes like Scalability, Usability POSA1 patterns provide more
alternatives than GoF.

5.4 Pattern to Application Type relationship
The properties of an application can be characterized by the quality attributes it achieves; different
applications focus on different quality attributes. For example, a Product-line application focuses on
Reusability quality attribute, whereas Gaming system focuses on Intelligence and Adaptability quality
attributes. Hence, we relate patterns to application-types using quality attributes they achieve.

Based on the primary quality attributes of the patterns, we selected six relevant application types such
as: Financial system, Operating system, Gaming system, Web service and Product-line application from
two application-type catalogues (Booch, G. 2006.) and (Glass, R.L., and Vessey, I. 1995.). We then related
the quality attributes to the appropriate application-type; Figure 8 illustrates our quality-attribute to
application-type relationship analysis result. Combining the pattern to primary quality attribute knowledge
given in Figure 6 (a) with Figure 8, we obtain the pattern to application-type relationship; Table A2 (in
appendix) presents this analysis result after normalization. We concede that this taxonomy of application
types may not be comprehensive, but this list illustrates a dimension that is important for a Design
Assistant.

Figure 8. Pattern to Application Type relationship for GoF and POSA1 patterns.

5.5 Usefulness of our knowledge model
The usefulness of the knowledge base is to generate available pattern alternatives for a given design
context. Table 6 presents a set of thirteen design queries and the pattern alternatives for each query. The
pattern alternatives are generated based on our analysis results (subsections 5.1 to 5.4.) on GoF and
POSA1 patterns.

Table 6. Some design queries and their pattern alternatives of our knowledge model.
 Design query Pattern alternatives

1 What are the patterns that use Notify-modification tactic?
(refer section 5.1)

Observer,
Model-View-Controller,
Publisher-Subscriber

2 What are the patterns that are built-using Compose whole from parts tactic?
(refer section 5.1)

Composite ,
Whole-part,
Façade,
Abstract factory,
Builder

3 What are the patterns similar-to Mediator pattern? (refer section 5.2) Client-Dispatcher-Server

4 What are the patterns alternative-to Layers pattern? (refer section 5.2) Pipes-and-Filters

5 What are the patterns that use Layers pattern? (refer section 5.2) Reflection

6 What are the patterns that refine Observer pattern? (refer section 5.2) Publisher-Subscriber

7 What are the patterns that specialize Layers pattern? (refer section 5.2) Broker,
Microkernel

8 What are the patterns that improve Performance quality attribute?
(refer section 5.3)

Master-Slave,
Singleton,
Flyweight,
Prototype,
Reference count proxy,
Command processor.

9 What are the patterns that primarily improve Performance and improve
Reusability as well? (refer section 5.3)

Master-Slave,
Flyweight,
Prototype.

10 What are the patterns that apply-for Web service application?
(refer section 5.4)

Reflection,
Observer,
Publisher-Subscriber,
Composite ,
Whole-part,
Façade,
Abstract factory,
Builder,
Adapter,
Chain of Responsibility

11 What are the patterns that apply-for Adaptability aspects of Web service
application? (refer section 5.4)

Reflection,
Observer,
Publisher-Subscriber

12 What are the patterns which use Object-sharing tactic to improve Performance
quality attribute? (refer section 5.1 and 5.3)

Singleton,
Flyweight

13 What are the patterns that specialize Layers pattern for Product-line
application? (refer sections 5.2 and 5.4)

Microkernel

6. RELATED WORK

Wu and Kelly (Wu, W., and Kelly, T. 2004.) extend the Bass et al. tactic set (Bass, L., Clements, P., and
Kazman R.. 2003.) by adding 17 tactics for Safety quality attribute; these tactics are classified into three
categories – Failure Avoidance, Failure Detection and Failure containment. They also propose a template
similar to pattern description template to describe a tactic in a structured way.

Harrison and Avgeriou (Harrison, N., and Avgeriou, P. 2008.) discuss that many general patterns
cannot be directly applied when designing reliable systems because these patterns do not address the
fault-tolerance issues in their solutions; in this case, the pattern solution needs to be further refined to
incorporate fault-tolerance tactics. They discuss how the existing pattern solutions can be transformed to
incorporate fault-tolerance tactics; they also analyzed the difficulty levels to implement tactics into patterns.

Khomh et al. (Khomh, F., Gueheneuc, Y.G. 2007., Khomh, F., Gueheneuc, Y.G. 2008.) performed an
empirical analysis relating GoF patterns to the following three quality attributes: Expandability,
Understandability and Reusability. They interviewed 20 designers regarding the impact of patterns on the
above three quality attributes; the impact is assessed in three levels: positive, neutral, and negative. We
analyzed the GoF patterns using a richer set of quality attribute which includes other quality attributes such
as Performance, Adaptability etc. We analyzed the quality attributes of a pattern using the constituent
tactics of a pattern, some of the tactics in a pattern neutralize the side-effect caused by other tactic which
can also be considered as positive impact. The mapping between Khomh et al. quality attributes and our
quality attributes is as follows: Expandability maps to Extensibility and Composability quality attributes,
Understandability maps to Modifiability and Substitutability quality attributes, Reusability maps to
Reusability and Integratability quality attributes. Comparing our result with their empirical result, we find a
strong correlation between our conclusions and theirs: 78% (54/69).

Zhao and colleagues (Zhao, Y., Dong, J., and Peng, T. 2009.) discuss 19 dimensions of software
engineering knowledge such as: process knowledge, pattern knowledge, version knowledge, technology
knowledge etc. Their definition of pattern knowledge is similar to one of the dimension in our knowledge
model - Pattern to Pattern relationships. Our knowledge model differs from theirs as follows: in their
knowledge model, each dimension is independent of other dimensions; whereas in our knowledge model,
each dimension is related to patterns. For example, consider Application domain knowledge, their definition
for this knowledge includes codifying the business requirements; whereas in our knowledge model, this
knowledge includes codifying various pattern alternatives that are applicable for an application domain.

Santonu and Kunal (Sarkar, K. and Verma, K. 2010.) discuss an industrial application of design
knowledge models like ours and others like (Booch, G. 2006.), (VanHilst, M., Fernandez, E.B., and Braz, F.
2009.), (Zimmer, W. 1995.), (Tichy, W.F. 1997.) etc. They discuss that in reality, to optimize budgets, the
project team often involves inexperienced designers; in this case, the inexperienced designers can be
assisted with knowledge-based design assistant tools during architecture design. They also explain the
producer-consumer relationship between design experts and inexperienced designers – design experts
codify the design knowledge with appropriate knowledge models and the Design assistant tool supports
the inexperienced designers during architecture design phase.

The applications of ontologies in various software engineering activities are discussed in (Happel, H..J.,
and Seedorf, S. 2006.) and (Gaševic, D., Kaviani N., and Milanovic, M. 2009.). Tom Gruber (Gruber, T.
1992.) defines Ontology as representation of domain as set of concepts and relationships between those
concepts. Under this definition, our knowledge model can also be considered as ontology-based
knowledge model. Also, our knowledge model satisfies the concept-instance property of the ontology; for
example, in our knowledge model, Quality Attribute is a concept and Reusability, Performance etc are its
instances.

Linguistics based pattern properties analysis is also under research: Hironori and colleagues (Kubo, A.,
Washizaki, H., and Fukazawa, Y. 2007., Washizaki, H., Kubo, A., Takasu, A., and Fukazawa, Y. 2005.)
propose Natural Language Processing (NLP) based methodology for pattern relationship analysis from
pattern description; Hasso and Carlson (Hasso, S., and Carlson, C.R. 2004.) classify patterns using NLP.
We use decision view as underlying model for our analysis. One direct benefit of NLP based methodology
over our methodology is automated solution for pattern analysis. We believe that the state-of-the-art of
NLP technology is insufficient for rigorous pattern analysis. Since NLP is an active research area, as the
maturity of NLP technology increases, the maturity of NLP-based techniques also increase accordingly.

In recent years, in addition to existing pattern description, compact high-level representations of a
pattern are also gaining interest. Hseuh et al. (Hsueh, N.L., Chu, P.H., and Chu, W. 2008.) propose a 6-
tuple representation to specify the essence of the pattern description: <Functional Requirement (FR),
Nonfunctional requirement (NFR), Impact on different quality metrics, Structure realizing FR (S-FR),
Structure realizing NFR (S-NFR), Transformation function from S-FR to S-NFR>. Buschmann et al.
(Buschmann, F., Henney, K., Schmidt, D. C. 2007.) propose a rule-based (if-then) representation; the
rule-based representation offers a clear separation between problem and solution parts of the pattern. In
this representation, the problem and solution of a pattern are decomposed into multiple simpler parts; the
problem part is represented as a Boolean formula and solution as a sequence of steps. Our Tactic
Topology Model (decision view) can also be considered as a compact representation of a pattern, because
the fewer constituent tactics denote what the pattern is and what it is not. In other words, constituent tactics

denote what quality requirements are addressed and what quality requirements are not addressed in a
pattern.

ArchE (Bachmann, F., Bass, L., and Klein, M.. 2003., Diaz-Pace, A., Kim, H., Bass, L., Bianco, P., and
Bachmann, F. 2008.) is a research prototype design assistant developed by Bachmann and colleagues at
SEI. Currently, this tool is based on reasoning frameworks or mathematical models of the quality attributes.
For example, Rate Monotonic Analysis, Queuing Theory etc are reasoning frameworks for Performance
quality attribute. One constraint in using reasoning framework is that designer needs to specify (accurately)
the current state of architecture and required state of architecture using a set of quality attribute
parameters/metrics. At initial stages of architecture design, this information may not be available or hard to
analyze these values. In such cases, designer needs assistance for quality requirements in abstract form.
Our knowledge model is suitable in this case. An orthogonal dimension of knowledge can be added to
ArchE using ontology-based knowledge models.

Architecture knowledge management is classified into types: application-generic knowledge
management and application-specific knowledge management (Lago P., and Avgeriou, P. 2006.). Our
knowledge dimensions fall under the application-generic knowledge management category. Application-
specific knowledge management involves managing the knowledge of a specific application during the
initial development or evolution of that application. This involves managing design decisions such as:
Structural design decisions, Deployment design decisions, Integration design decisions, Presentation
design decisions, Technology selection design decisions etc (Tyree, J., and Akerman, A. 2005.). In
addition to managing design decisions, other views of the application such as Logical view, Process view
etc also needs to be maintained. Rambabu and Prabhakar (Duddukuri R, and Prabhakar T.V. 2005.)
discuss different attributes to annotate architectures. This annotation helps the architect in searching
efficiently the previous architectures to find an architecture suitable for reuse or to find the design decisions
used to resolve similar design problems.

The competency level of an ontology is evaluated using competency questions - these are a set of
queries the ontology can be able to answer (Kampffmeyer, H., and Zschaler, S. 2007., Noy, N.F., and
McGuinness, D.L. 2001.). Combining our knowledge model with other different knowledge models like
(Booch, G. 2006.), (VanHilst, M., Fernandez, E.B., and Braz, F. 2009.), (Zimmer, W. 1995.), (Tichy, W.F.
1997.) etc can improve the competency level of a design assistant so that many of the common design
queries can be answered. Lee and Kruchten provide efficient visualization support for browsing the
ontology based knowledge models (Lee, L. and Kruchten, P. 2008.).

7. CONCLUSIONS

Software design patterns document the most recommended solutions to recurring design problems. Since
the design decision at a particular design context is bound to one of the analyzed set of alternatives,
missing an important alternative can sometimes impact the selected decision. Analysis of alternative
patterns for a given set of requirements is a knowledge-intensive task; pattern knowledge overload
hardens the alternative analysis. Providing a knowledge base to analyze pattern alternatives can alleviate
this problem to a greater extent. When architecture design knowledge is codified appropriately, design
alternative analysis problem can be modeled as an information retrieval problem. We used the classic
concepts-and-relationships model to codify knowledge of patterns in four different dimensions - Pattern to
Tactic relationship, Pattern to Pattern relationship, Pattern to Quality-attribute relationship and Pattern to
Application-type relationship.

When compared to others, one basic difference is that in our knowledge model we analyze patterns
from the decision view perspective. Different formal approaches based on mathematical structures exist to
describe a pattern formally; we focus on intuitive graph models for pattern description. We discussed the
usefulness of our knowledge model with various design queries along with their pattern alternatives. Our
contributions for the GoF and POSA1 patterns knowledge can be summarized as follows:
• we analyzed the decision views for each of these patterns,
• we analyzed five types of relationships (is-similar-to, is-alternative-to, uses, refines and specializes)

among these patterns by applying different graph rules on decision views of these patterns,
• we analyzed the primary and secondary quality attributes for each these patterns based on their decision

views and
• for different application types, we analyzed the set of patterns applicable for them based on the primary

quality attributes of the patterns.

Our analysis results can be used in at least two ways: to build a competent knowledge base to assist

the designer during analysis phase and to train the novice designers. Since the competency level of a
knowledge base is evaluated using different competency questions, combining our knowledge model with
other existing knowledge models can improve the competency level of a knowledge base.

With this analysis as experience, we intend to broaden our future research in two directions: adding
additional dimensions to our knowledge model and extending the analysis of this knowledge model to other
POSA patterns, Enterprise patterns, Berkeley OPL etc.

8. ACKNOWLEDGEMENTS

We are heartily thankful to Prof. Hans van Vliet and Prof. Patricia Lago, whose encouragement, guidance
and support at the initial level enabled us to develop an understanding of the this work. We are very
grateful to our shepherd Pedro Monteiro who had tirelessly read and re-read many versions of the paper
and improved both the form and content. The comments and suggestions given by our shepherd have
been very effective and helped a lot in improving the quality of our paper. We also thank our program
committee member Rosana Teresinha Vaccare Braga. The shepherding process is indeed a very useful
practice. We are also thankful to the members of our writer’s workshop - Robert Hanmer, Ernst Oberortner,
Cédric Bouhours, Matt, they gave several useful and important suggestions which greatly helped.

REFERENCES
Avgeriou, P., and Zdun, U. 2005. Architectural patterns revisited - a pattern language. In Proceedings of 10th European Conference
on Pattern Languages of Programs (EuroPLoP’05).

Bachmann, F., Bass, L., and Klein, M.. 2003. Preliminary Design of ArchE: A Software Architecture Design Assistant. (CMU/SEI-
2003-TR-021, ADA421618). Pittsburgh, PA: Software Engineering Institute, Carnegie Mellon University.

Balfagih, Z., and Hassan, M.F. 2009. Quality Model for Web Services from Multi-stakeholders' Perspective. In Proceedings of the 3rd
International Conference on Information Management and Engineering (ICIME’09). 287--291.

Bass, L., Clements, P., and Kazman R.. 2003. Software Architecture in Practice, Second Edition. Addison-Wesley.

Bass, L. 2009. Generate and Test as a Software Architecture Design Approach. In Proceedings of 8th Working IEEE/IFIP Conference
on Software Architecture (WICSA’09), 309--312.

Booch, G. 2006. On Design, Handbook of Software Architecture blog.
http://www.handbookofsoftwarearchitecture.com/index.jsp?page=Main

Booch, G., Maksimchuk, R., Engle, M . Young, B., Conallen, J, and Houston, K. 2007. Object-oriented analysis and design with
applications. Third Edition, Addison-Wesley.

Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., and Stal, M. 1996. Pattern-Oriented System Architecture: A System of
Patterns, John Wiley & Sons.

Buschmann, F., Henney, K., Schmidt, D. C. 2007. Pattern-Oriented Software Architecture, Volume 5: On Patterns and Pattern
Languages. Wiley & Sons.

Cmap 2010. http://cmap.ihmc.us/ accessed on February 2010

Diaz-Pace, A., Kim, H., Bass, L., Bianco, P., and Bachmann, F. 2008. Integrating Quality-attribute Reasoning Frameworks in the
ArchE Design Assistant. In Proceedings of 4th International Conference on the Quality of Software Architecture (QoSA’08), 171--188.

Duddukuri R, and Prabhakar T.V. 2005. On archiving architecture documents. In Proceedings of 12th Asia-Pacific Software
Engineering Conference (APSEC’05), 351--358.

Dueñas, J.C., and Capilla, R. 2005. The Decision View of Software Architecture. In Proceedings of the 2nd European Workshop on
Software Architecture (EWSA’05), 222--230.

Elias, G., and Jain, R. 2007. Exploring Attributes for Systems Architecture Evaluation. In Proceedings of the 5th Conference on
Systems Engineering Research (CSER’07).

Fowler, M. 1997. Analysis patterns: reusable object models. Addison-Wesley.

http://www.handbookofsoftwarearchitecture.com/index.jsp?page=Main�
http://cmap.ihmc.us/�

Gamma, E., Helm, R., Johnson R., and Vlissides, J. 1994. Design Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley.

Gaševic, D., Kaviani N., and Milanovic, M. 2009. Ontologies and Software Engineering. Handbook on Ontologies, Springer. 1155--
1161.

Glass, R.L., and Vessey, I. 1995. Contemporary Application-Domain Taxonomies. IEEE Software, vol. 12. 63--76.

Gruber, T. 1992. What-is-an-ontology?, http://www-ksl.stanford.edu/kst/what-is-an-ontology.html

Happel, H..J., and Seedorf, S. 2006. Applications of Ontologies in Software Engineering, In Proceedings of 2nd International
Workshop on Semantic Web Enabled Software Engineering (SWESE’06).

Harrison, N., and Avgeriou, P. 2007. Leveraging Architecture Patterns to Satisfy Quality Attributes. In Proceedings of 1st European
Conference on Software Architecture (ECSA’07). 263--270.

Harrison, N. B., Avgeriou, P., and Zdun. U. 2007. Using patterns to capture architectural decisions. In Proceedings of IEEE Software.
38--45.

Harrison, N., and Avgeriou, P. 2008 . Incorporating Fault Tolerance Tactics in Software Architecture Patterns. In Proceedings of 2008
RISE/EFTS Joint International Workshop on Software Engineering for Resilient Systems (SERENE'08). 9--18.

Hasso, S., and Carlson, C.R. 2004. Linguistics-based Software Design Patterns Classification, In Proceedings of the 37th Annual
Hawaii International Conference on System Science (HICSS’04).

Henninger, S., and Ashokkumar P. 2006. An Ontology-Based Metamodel for Software Patterns. In Proceedings of the 18th
International Conference on Software Engineering and Knowledge Engineering (SEKE’06).

Henninger, S., and Corrêa, V. 2007. Software Pattern Communities: Current Practices and Challenges. In Proceedings of the 14th
International Conference on Pattern Languages of Programs (PLoP’ 07).

Hepp, M. 2008. Ontologies: State of the Art, Business Potential and Grand Challenges. Ontology Management. Springer. 3--22.

Hofmeister, C., Kruchten, P., Nord, R.L., Obbink, H., Ran, A., and America, P. 2005. Generalizing a model of software architecture
design from five industrial approaches. In Proceedings of the 5th Working IEEE/IFIP Conference on Software Architecture
(WICSA’05). 77--88.

Hsueh, N.L., Chu, P.H., and Chu, W. 2008. A Quantitative Approach for Evaluating the Quality of Design Patterns. Journal of Systems
and Software. 1430—1439.

Jansen, A., and Bosch, J. 2005. Software Architecture as a Set of Architectural Design Decisions In Proceedings of the 5th Working
IEEE/IFIP Conference on Software Architecture (WICSA’05). 109--120.

Kampffmeyer, H., and Zschaler, S. 2007. Finding the Pattern You Need: The Design Pattern Intent Ontology. In Proceedings of the
8th International Conference on Model Driven Engineering Languages and Systems (MoDELS’05). 211--225.

Kayed, A., Hirzalla, N., Samhan, A.A., and Alfayoumi, M. 2009. Towards an Ontology for Software Product Quality Attributes. In
Proceedings of the Fourth International Conference on Internet and Web Applications and Services (ICIW'09), 200--204.

Khomh, F., Gueheneuc, Y.G. 2007. Perception and Reality: What are Design Patterns Good For? In Proceedings of the 11th ECOOP
Workshop on Quantitative Approaches in Object-Oriented Software Engineering (QAOOSE’07).

Khomh, F., Gueheneuc, Y.G. 2008. Do Design Patterns Impact Software Quality Positively? In Proceedings of the 12th European
Conference on Software Maintenance and Reengineering (CSMR’08). 274--278.

Kiran, K., and Prabhakar TV. 2010. Design Decision Topology Model for Pattern Relationship Analysis. In Proceedings of the 1st
Asian Conference on Pattern Languages of Programs (AsianPLoP’10).

Kotonya, G., and Sommerville, I. 1998. Requirements Engineering: Processes and Techniques. John Wiley & Sons.

Kruchten, P. 2004. An ontology of architectural design decisions in software intensive systems. In Proceedings of the 2nd Groningen
Workshop on Software Variability Management. 54--61.

Kubo, A., Washizaki, H., and Fukazawa, Y. 2007. Extracting relations among security patterns. In Proceedings of the 2nd Workshop
on Software Patterns and Quality (SPAQu’07).

Lago P., and Avgeriou, P. 2006. FinalWorkshop Report. In Proceedings of the 1st Workshop on SHaring and Reusing ARchitectural
Knowledge (SHARK’06). 32--36.

http://www-ksl.stanford.edu/kst/what-is-an-ontology.html�

Lee, L. and Kruchten, P. 2008. A Tool to Visualize Architectural Design Decisions. In Proceedings of the 4th International Conference
on the Quality of Software Architectures (QoSA’08). 43--54.

O'Brien, L., Merson, P., and Bass, L. 2007. Quality Attributes for Service-Oriented Architectures. In Proceedings of the International
Workshop on Systems Development in SOA Environments (SDSOA'07: ICSE Workshops 2007).

Noy, N.F., and McGuinness, D.L. 2001. Ontology development 101: A guide to creating your first ontology. Technical Report KSL-01-
05. Knowledge Systems Laboratory. Stanford University, Stanford, CA, 94305.

Protégé 2009. http://protege.stanford.edu/ accessed on October 2009

Ran, A., and Kuusela, J. 1996 . Design Decision Trees. In Proceedings of the 8th International Workshop on Software Specification
and Design (IWSSD’96). 172--175.

Remco, C. de Boer, Farenhorst, R., Lago, P., van Vliet, H., Viktor, C., and Jansen A. 2008. Architectural Knowledge: Getting to the
Core. In Proceedings of the 3rd International Conference on the Quality of Software Architectures (QoSA’07). Springer LNCS 4880.
197--214.

Rosengard, J.M., and Ursu, M.F. 2004. Ontological representations of software patterns. In Proceedings of the Knowledge-Based
Intelligent Information and Engineering Systems (KES’04). 31--37.

Sarkar, K. and Verma, K. 2010. Accelerating technical design of business applications: a knowledge-based approach. In Proceedings
of the 3rd India software engineering conference (ISEC’10). 43--50.

Tichy, W.F. 1997. A catalogue of general-purpose software design patterns. In Proceedings of the Technology of Object-Oriented
Languages and Systems (TOOLS’97). 330--339.

Tyree, J., and Akerman, A. 2005. Architecture Decisions: Demystifying Architecture. IEEE Software, vol. 22. 19--27.

VanHilst, M., Fernandez, E.B., and Braz, F. 2009. A Multi-dimensional Classification for Users of Security Patterns. Journal of
Research and Practice in Information Technology. 87--97.

VUE 2010. http://vue.tufts.edu/ accessed on May 2010

Washizaki, H., Kubo, A., Takasu, A., and Fukazawa, Y. 2005. Relation Analysis among Patterns on Software Development Process.
In Proceedings of the 6th International Conference on Product Focused Software Process Improvement (PROFES’05). 315--339.

Wu, W., and Kelly, T. 2004. Safety Tactics for Software Architecture Design. In Proceedings of the 28th International Computer
Software and Applications Conference (COMPSAC’04). 368--375.

Zhao, Y., Dong, J., and Peng, T. 2009. Ontology Classification for Semantic-Web-Based Software Engineering. In Proceedings of the
IEEE Transactions on Services Computing (TSC’09). 303-317.

Zimmer, W. 1995. Relationships Between Design Patterns. J. Coplien and D. Schmidt, editors, Pattern Languages of Program
Design. 345--364.

http://protege.stanford.edu/�
http://vue.tufts.edu/�

Appendix
Table A1. Secondary quality attributes of GoF and POSA1 patterns.

Patterns

Su
bs

tit
ut

ab
ilit

y

R
eu

sa
bi

lit
y

M
od

ifi
ab

ilit
y

Ex
te

ns
ib

ilit
y

U
sa

bi
lit

y

Ad
ap

ta
bi

lit
y

M
od

ul
ar

ity

C
om

po
sa

bi
lit

y

In
te

gr
ab

ili
ty

Se
cu

rit
y

Ac
ce

ss
ib

ilit
y

Flyweight ✓ ✓ ✓ ✓

Master-slave ✓ ✓ ✓ ✓ ✓

Model-View-Controller ✓ ✓ ✓ ✓ ✓

Pipes and Filters ✓ ✓ ✓ ✓

Bridge ✓ ✓ ✓

Chain of Responsibility ✓ ✓ ✓

Blackboard ✓ ✓ ✓

Mediator ✓ ✓ ✓ ✓

Client-Dispatcher-Server ✓ ✓ ✓ ✓

Publisher-Subscriber ✓ ✓ ✓

Composite ✓ ✓ ✓ ✓

Builder ✓ ✓ ✓

Visitor ✓ ✓ ✓

Forwarder-Receiver ✓ ✓ ✓ ✓

Interpreter ✓ ✓ ✓

Prototype ✓ ✓

Decorator ✓ ✓

Iterator ✓ ✓

Observer ✓ ✓

State ✓ ✓

Strategy ✓ ✓

Abstract factory ✓ ✓ ✓

Reflection ✓ ✓ ✓

Layers ✓ ✓

Microkernel ✓ ✓

Broker ✓ ✓

Factory method ✓

Command ✓

Template method ✓

Command processor ✓

View Handler ✓

Adapter ✓ ✓

Proxy ✓ ✓

Protection proxy ✓ ✓

Reference count proxy ✓ ✓

Façade ✓ ✓

Whole-part ✓ ✓

Presentation-Abstraction-Control ✓ ✓

Singleton ✓ ✓ ✓

Memento ✓ ✓

Table A2. Different application types and their suitable GoF and POSA1 patterns.
Pattern Financial

system
Operating
System

Gaming
system

Web
service

Product-line
application

Prototype ✓ ✓ ✓

Singleton ✓ ✓ ✓

Flyweight ✓ ✓ ✓

Reference count proxy ✓ ✓ ✓

Master-slave ✓ ✓ ✓

Command processor ✓ ✓ ✓

Interpreter ✓ ✓ ✓

Iterator ✓ ✓ ✓

Model-View-Controller ✓ ✓ ✓

Presentation-Abstraction-Control ✓ ✓ ✓

View Handler ✓ ✓ ✓

Protection proxy ✓ ✓

Mediator ✓

Memento ✓

Broker ✓

Forwarder-Receiver ✓

Client-Dispatcher-Server ✓

Observer ✓ ✓ ✓

State ✓ ✓ ✓

Strategy ✓ ✓ ✓

Reflection ✓ ✓ ✓

Publisher-Subscriber ✓ ✓ ✓

Layers ✓

Pipes and Filters ✓

Proxy ✓

Blackboard ✓

Adapter ✓ ✓

Chain of Responsibility ✓ ✓

Abstract factory ✓

Builder ✓

Composite ✓

Façade ✓

Whole-part ✓

Factory method ✓

Bridge ✓

Decorator ✓

Command ✓

Template method ✓

Visitor ✓

Microkernel ✓

	1. INTRODUCTION
	2. Terminology
	3. Decision view of software architecture
	4. Synergistic relationships between Architectures, Patterns and Tactics
	5. Quad-dimensional Knowledge model
	5.1 Pattern to Tactic relationship
	5.2 Pattern to Pattern relationship
	5.3 Pattern to Quality Attribute relationship
	5.4 Pattern to Application Type relationship
	5.5 Usefulness of our knowledge model

	6. Related work
	7. Conclusions
	8. Acknowledgements

