
Metaprogramming in Ruby – A Pattern Catalog

Sebastian Günther, Marco Fischer

School of Computer Science, University of Magdeburg

Abstract

Modern programming languages provide extensive metaprogramming facilities. We
understand metaprogramming as the utilization and modification of available language
constructs and abstractions while staying inside the language. Metaprogramming means
to have a rich semantic model of the program that is represented as language constructs.
The careful utilization of the constructs allows changing programs and sometimes even
the semantics of other language constructs.

There are several use-cases for these kinds of extensions: Runtime adaption, pro-
gram generation, language customization or the design of Domain-Specific Languages
(DSL). However, for using metaprogramming effectively, developers need to understand
the mechanisms of metaprogramming and need a language that addresses these mech-
anisms. These are the prerequisites to communicate about metaprogramming and to
actively use it in development.

This paper’s goal is to explore and highlight the metaprogramming facilities of the
Ruby programming language. Ruby is an interpreted and fully object-oriented language.
Any class and method – even those of the built-in entities – can be modified at runtime.
We explain the mechanisms in the form of a pattern catalog that is structured along the
object’s initialization, declaration, composition, and modification. The core contribution
is the sensitive grouping of related patterns that exist in literature and to reduce them
to the dominant techniques they use. The patterns form a pattern language that can
be used to communicate about Ruby’s metaprogramming capabilities effectively. We
explain the patterns with their intent, motivation, forces, consequences, known uses, and
illustrate them in the context of a real-world application.

1. Introduction

Ruby is a dynamic and fully object-oriented programming language. Ruby’s roots go
back to Japan in 1990, and since then it has evolved from a system scripting language to
its today’s focus on web applications. Web applications such as Twitter1 and Amazon2

use Ruby. Several interpreters for Ruby exist. The two most mature ones are the original

Email addresses: sebastian.guenther@ovgu.de (Sebastian Günther), marco.fischer@st.ovgu.de
(Marco Fischer)

1http://twitter.com
2http://amazon.com

1

MRI3 written in C and JRuby4 written in Java. A complete language specification is
available: In the form of executable tests5, and as a formal specification draft6.

Ruby supports multiparadigm programming with a mix of imperative, functional, and
object-oriented expressions. Object-orientation is the basis, as classes and even methods
are objects with (re)definable properties. Ruby has extensive modification capabilities:
Module and class redefinition, method extension, saving code in the form of proc objects
or strings, evaluating code in any place, and much more. A special property is that
even the core classes like Array or String can be modified – overwriting or extending the
basic entities is a great way to customize Ruby. All these modifications are done by
metaprogramming.

The Ruby programming language offers metaprogramming facilities to a degree that
developers use it unconsciously. However, to use the full potential of the provided fa-
cilities, developers need to understand the mechanisms of metaprogramming and have a
pattern language that addresses intents and solutions. With this language, developers
can communicate effectively about metaprogramming and actively use it in development.

This paper’s goal is to present a structured catalog of metaprogramming capabilities
for the Ruby programming language. We explain the mechanisms in the form of a
pattern catalog that is structured along the core object’s (modules, classes, methods,
procs) initialization, declaration, composition, and modification. This grouping and the
patterns explanation focusing on the dominant technique they use is the core contribution
of this paper. We explain the patterns with their intent motivation, forces, consequences,
known uses, and illustrate them in the context of a real-world application.

Section 2 explains more background regarding metaprogramming, Ruby, and the used
explanation form for the patterns. Section 3 shortly lists all presented patterns. Sections
4, 5, and 6 explain the patterns. Section 7 discusses the patterns and their usage to define
alternatives. Section 8 explains related work, and finally Section 9 summarizes the paper.
We apply the following textual formats: keywords, source code, Pattern, Subpattern.

2. Background

This section first discusses some definitions of metaprogramming and then uncovers
our understanding of metaprogramming in the context of dynamic programming lan-
guages. The second part then continues with Ruby and explains the most necessary
language concepts that are used as the technical terminology in the pattern descriptions.
Finally the last part presents the structure of each pattern and a common example which
is used to illustrate the application and implementation of each pattern.

2.1. Metaprogramming

Metaprogramming is a controversially discussed term. The following metaprogram-
ming definitions demonstrate the terminological evolution:

3http://www.ruby-lang.org/en/
4http://jruby.codehaus.org/
5http://rubyspec.org/wiki/rubyspec
6http://ruby-std.netlab.jp/draft spec/draft ruby spec-20091201.pdf

2

• “the process of specifying generic software source templates from which classes of
software components, or parts thereof, can be automatically instantiated to produce
new software components” [2].

• “code that writes code” [4] or ”programs that write programs” [5].
• “the creation of new abstractions that are integrated into the host language” [13].

This terminological evolution was motivated by several new dynamic programming
languages and their metaprogramming capabilities. As these definitions are not sufficient
to describe our understanding of metaprogramming, we will use an adapted form of [13].
In the context of Ruby, we see two difficulties with this definition. First, metaprogram-
ming can be used equally at runtime and at the program’s initialization time. Second,
the execution of an expression can either be the first-time declaration of an entity or its
modification. These difficulties are shown in �Figure 1 – metaprogramming lies at the
border between declaration and modification, and between a program’s initialization and
runtime. Because of these language-specific conditions, we use the following definition:

Metaprogramming is the application of abstractions integrated with the host-language to
(typically) modify the language’s metaobjects7 or an program’s objects

(typically) at runtime.

Constants

Modules

Classes

Methods

Declaration

Initialization

Runtime

Metaprogramming

Modification

Figure 1: Applicability of metaprogramming in Ruby.

2.2. The Ruby Programming Language

This section details Ruby’s class model, core objects, eigenclass, and method invo-
cation. The information used for the following explanations stems from related work
[5, 13, 12] and our own experiences.

7[10] introduced the term metaobject protocol – the summary of all functions and methods that could
be used to introspect and modify the semantics of metaobjects (such as classes, methods, and instances)

3

2.2.1. Class Model

Five classes are the foundation of Ruby. The root is BasicObject
8. It defines just a

handful of methods needed for creating objects from it and is typically used to create
objects with minimal behavior. Object is the superclass of BasicObject from which all other
classes and modules inherit. However, most of its functionality (like to copy, freeze,
and print objects) is mixed-in from the module Kernel. Another important class is Module

that mainly provides introspection mechanisms, like getting methods and variables, and
metaprogramming capabilities, like to change module and class definitions. Finally, Class

defines methods to create instances of classes. �Figure 2 summarizes the relationships.
As shown, the relationship between Module, Kernel, and Object is circular and thus tells us
that all three objects are simultaneously brought into existence by the starting inter-
preter.

Module

Object

BasicObject

Kernel

Class

Legend

Inheritance

Is-a

Mixin

Figure 2: Ruby’s Class Model.

2.2.2. Core Objects

There are four objects in Ruby that play a fundamental part in the language: Proc,
Method, Class, and Module. Most of these objects should be familiar to readers experienced
with object-oriented programming. However, Ruby’s dynamic nature makes the following
objects more versatile compared to static languages. Moreover, we see these core objects
as metaobjects – modifications of these objects have direct impact on the behavior of the
Ruby language.

8This is true for the current Ruby 1.9 branch. In Ruby 1.8.x, Object remains the top-level entity

4

• Proc – A proc is an anonymous block of code. Like other objects, Procs can
be created either explicitly (referenced by a name) or implicitly (argument of a
method). Procs allow two kinds of usage: On the one hand they can reference
variables in their creation scope as a closure9, and on the other hand they can
reference variables that do not yet exist. Procs are executed with the call method.

• Method – Method declarations consist of the method’s name, a set of optional
parameters (which can have default values), and a body. Methods belong to the
module or class they are declared in. There are two kinds of method objects. The
normal Method is bound to a certain object upon which it is defined. The UnboundMethod

has no such object, and, to be executed, it must be bound to an object of the same
class in which the method was originally defined.

• Class – A class declaration consists of a name and a body. New classes are instances
of the class Class and they can create instances with the new method. Classes can
have different relationships. First, they can form a hierarchy of related classes via
single subclassing, inheriting all methods of their parents. Second, they can mix-in
arbitrary modules.

• Module – Like classes, module declarations consist of a name and a body. Modules
cannot have subclassing like inheritance relationships – they can only mix-in other
modules.

2.2.3. Eigenclass

Ruby’s class model has a cleanly defined place in which the methods of an object
exist. Most of the methods are actually stored in an object’s superclass or its eigenclass.
Consider the case of the string "word". Calling the method capitalize invokes the method
that is defined in the String class. But if we want to add a method the "word" object, then
this method is defined in the object’s eigenclass.

�Figure 3 is an example to open the eigenclass of a string instance and define a
method privately for this instance.

�
1 word = "word"
2 class << word
3 # in the eigenclass
4 def hello
5 "hello " + self
6 end
7 end
8
9 word.hello #=> "hello word"

10 "word".hello #=> NoMethodError
� �

Figure 3: Opening the eigenclass of a String instance and define a new method

Technically, an eigenclass is an additional class in the hierarchy of classes for this
object. Following the above modification, the eigenclass is the new superclass of the
object. See �Figure 4 for a graphical representation of this.

9Closures stem from functional programming and capture values and variables in their defined context.

5

"word" eigenclass

String

"word""sentence"

Figure 4: Different class hierarchies for string objects with and without an eigenclass.

2.2.4. Method Invocation

Method invocation follows a strict protocol. Consider the case of calling object.method,
the following checks occur.

1. Check the eigenclass of object for method, and all included modules.
2. If object is an instance, check the class of object and all included modules.
3. If object is a class, check the superclass of object and all included modules.
4. Replace object with its class/superclass, and repeat step 1 to 4 until the method is

found.

If any of these checks finds the method, it is invoked and returned to the caller. If
not, the method method_missing is called with the purpose to throw an error. However,
the declaration of this method is searched in the same way like calling method at the first
place, but ultimately stops with Object.method_missing. We will later see how important this
concept is to customize method calls in Ruby.

2.3. Pattern Structure and Common Example

In the pattern catalog, we use a form which is closely related to the original introduc-
tion of patterns [6] and more recent approaches [3, 7]. The detailed structure thereby is
the following:

• Context - Explains the coarse situation in which the pattern is applied.

• Problem – A question expressing the central concern the pattern addresses.

• Forces – Short description in what circumstances this pattern should be used and
the resulting effects.

• Solution – Explanation what language mechanisms are used to provide a solution.

6

X

define_method :method do
 ...
end

Dynamically defines
New methods

Executed code attached to the
respective object using a dashed line

Additional notes attached to an object
or used to describe modified behavior

Represents the border between two
program status

Method or symbol pointer

Blocked method or symbol pointer

Class/instance relationship

Object1 Objects; changed objects are depicted
as Object’

Class/subclass relationship
Module/inclusion relationship

<<Module>>
Modules; changed modules are depic-
ted as Module’

-#local_variable
-class_variable

Class
Classes; changed classes are depicted
as Class’, and sometimes methods are
depicted likewise

Figure 5: Symbols used to explain the pattern’s structure.

• Example – The example section shows how to apply the pattern in the specific
context of Ruby and the Hydra example. First a diagram is used to show the
application of each pattern and how it affects Hydra. Each diagram shows an
abstract representation of the program, the used code to modify the program, and
the resulting modification. The in the diagrams used symbols are shown in �Figure
5. Following the diagram, we detail the implementation of the pattern by showing
the code that is utilized for each modification.

• Consequences – Explains how this pattern’s utilization impacts other parts of the
system, and also explains possible tradeoffs if other patterns are combined.

• Known Uses – List of applications that use this particular pattern. We analyzed
one or more of these applications:

– Rails – Web-Application framework with a strong Model-View-Controller de-
sign pattern, used for several open-source and commercial projects. We also
checked Builder that is used to build configuration objects representing XML-
like data structures (http://rubyonrails.com).

– ActiveRecord – Rails standard database abstraction (http://ar.rubyonrails.com).

7

– RSpec – Framework and DSL for behavior-driven development
(http://rspec.info).

– Sinatra – Lightweight Web-Framework that uses declarative expressions which
look like a DSL for web applications (http://sinatrarb.com).

• Related Pattern – Finally, a list of closely related patterns.

Except the example section, each pattern is described in a language-independent way
and can therefore be applied to other programming languages as well.

The common example we use to illustrate the patterns is called Hydra. Hydra trans-
lates and interprets several markup languages that are used to encode data for a specific
social network, for example to translate twitter messages to the format used by Facebook.
Hydra supports language to language translation and attribute mapping. Language to
language translation is a necessity for translating different data formats like XML to
JSON. Attribute mapping defines the relationships between attributes of different social
network data. Thereby Hydra uses the public API for each network.

Hydra’s architecture is shown in �Figure 6. The main class Hydra provides the core
method to evaluate a translation configuration, to validate the given configuration, and
to start the translation. Furthermore, Hydra defines the two superclasses Network and
Language from which specific classes are derived.

+create_translation()
+translate()
+valid?()

Hydra

+connect()
+post()
+fetch()
+update()
+map_attributes()

Network

+map_expressions()

Languages

XMLTwitter Facebook JSON

Figure 6: Hydra’s architecture.

One concrete example shows how to utilize Hydra for transforming data between social
networking services. Figure �Figure 7 shows the create_translation method as it is used to
transform XML markup between Twitter and Facebook. We use a proc with the do...end

notation to execute setters for various instance variables. We check all given inputs, and
if no errors are reported, the translate method is called. This method combines code from
the classes Language and Network for the language translation and attribute mapping. The
result is a custom object: it contains the specific attributes, the translation result, and
the composed method used for the translations.

In the course of the following explanation, we will focus on Hydra for the creation
and composition pattern, and then show modification patterns for the Twitter social

8

�
1 translation = Hydra.create_translation do
2 from :xml
3 to :xml
4 source_network :twitter
5 target_network :facebook
6 data "post.xml"
7 end
� �

Figure 7: Hydra initialization: translating XML markup between Twitter and Facebook.

network.

3. Pattern Overview

Here is a concise overview of the patterns grouped by their intent to create or modify
objects.

Creation

Creation patterns initially create new objects with properties that are different from
common objects.

• Blank Slate – How to provide objects with a minimal set of methods so that
arbitrarily named methods can be added? (�Section 4.1, page 10)

• Prototype – How to instantiate objects with no ties to existing classes? (�Section
4.2, page 12)

Composition

Composition patterns are concerned with the declaration and instantiation of new
objects and thereby reuse functionality that is already available in the program.

• Template – How to form an internal and mutable representation of code that
facilitates runtime creation, modification, and execution of code? (�Section 5.1,
page 15)

– Scope Declaration Template – Declaration of modules and classes.
– Function Declaration Template – Declaration of method-like entities, includ-

ing procs and lambdas

• Subclassing – How to pass method declarations and variables from one class to
another, even at runtime? (�Section 5.2, page 18)

• Function Composition – How to dynamically compose functions out of existing
building blocks? (�Section 5.3, page 20)

– Function Cloning – Store existing method-like entities in an internal repre-
sentation.

– Function Chaining – Chain several Function Cloning representations as filters
in one method call together.

• Extension – How to add functionality stemming from different sources into classes,
instances, and singletons? (�Section 5.4, page 22)

9

Modification

Finally the modification patterns take an existing object to modify it.

• Open Declaration – How to change a class or module after its initial declaration
using language syntax? (�Section 6.1, page 24)

• Dynamic Declaration – How to change a class or module after its initial decla-
ration using metaobjects? (�Section 6.2, page 26)

• Eval – How to change a class or module after its initial declaration using code
stored in strings or an internal representation? (�Section 6.3, page 28)

– Context Probe – Execute code in the context of another object to check object
properties.

• Delete Constant – How to completely delete modules and classes together with
their methods? (�Section 6.4, page 31)

• Method Alias – How to transparently change the behavior of an existing method
while preserving the old behavior? (�Section 6.5, page 33)

– Alias Decorator – Add functionality around an existing method.
– Alias Memoization – Replace a method implementation with a fixed return

value to save computational time.

• Method Missing – How to enable an object to answer arbitrarily method calls
and to forward the calls to other methods or define called method on the fly?
(�Section 6.6, page 35)

– Ghost Method – Depending on the method’s name, return a value to the caller
that simulates a complete method call.

– Dynamic Proxy – Forward the method call to another module or class.
– Missing Declaration – Check the method name and define methods on the fly.

Following sections detail the patterns.

10

4. Creation Patterns

4.1. Blank Slate

Context

Because Ruby objects initially contain more then 200 methods, they can not be
customized easily. There are utility functions like inspect (prints the object’s string repre-
sentation) or == (compares object identity). Additionally, various introspection methods
and the ability to freeze, marshal, and taint the object exist. However, we may not wish to
have all those methods defined or want to customize the meaning of those methods.

Problem

How to provide objects with a minimal set of methods so that arbitrarily named
methods can be added?

Forces

• Blank domain objects – Require objects with method names that represent the
application domain only.

• Save execution time – Require bare minimum objects to save execution time.

Solution

A Blank Slate object is created by taking an existing object and removing all
unneeded functions from it. Needed functions are language-specific, but they usually
serve to identify a concrete object and to serialize or marshal it. Once the methods from
this object are removed, methods with any name can be defined with them, which is
particularly useful for domain-specific languages.

Example

The central Hydra class serves as the API of our application, it is called for the
translation of markup data. Most of the normal methods that Ruby provides are not
necessary. So, we include the module BlankSlate inside Hydra and thus get rid of all
unwanted methods.

11

+clone()
+__id__()
+__send__()
+...()

Hydra

+__id__()
+__send__()

Hydra'

class Hydra
 include BlankSlate
end

+included()

<<BlankSlate>>

Figure 8: Blank Slate: reducing the methods of Hydra from 199 to 2 methods by including the
BlankSlate module.

The BlankSlate module uses undef_method to delete the method from its class. All methods
except __send__ and __id__ are removed in this way.

�
1 module BlankSlate
2 def self.included(base)
3 base.class_eval do
4 methods = instance_methods - [" __send__", "__id__ "]
5 methods.each { |m| undef_method m }
6 end
7 end
8 end
� �

Figure 9: Blank Slate: by including the BlankSlate module, all private and public methods of
a class except __send__ and __id__ are removed.

Blank Slate was so popular that Ruby 1.9 introduced the class BasicObject at the
top of the class hierarchy. It has some methods more then Blank Slate proposes, but
can be used alternatively.

Consequences

• To build valid Blank Slate objects, carefully select the methods that are to be
removed (removing __send__ disables all method calls on the object!).

• Provide Blank Slate objects per application namespace to avoid removing meth-
ods which are needed by Blank Slate objects in other applications.

Known Uses

• Rails/Builder (defines Blank Slate as the base class for building objects that
represent XML documents, builder-2.1.2/lib/blankslate.rb).

Related Patterns

None.
12

4.2. Prototype

Context

Creating new instances is a computational intensive operation. The new object gets
an allocated space in the computer, it receives a pointer to a class, and it stores local
information. This operation is cost intensive.

Problem

How to instantiate objects with no ties to existing classes?

Forces

• Save computing time – Prevent instantiating objects to save some computational
resources.

• Objects independent of the class hierarchy – Create objects outside the borders of
the application’s class hierarchy.

Solution

At first, a suitable base object must be found. This can be an generic object or a
object with specific behavior. The base object should already have removed all traces
to related classes because the Protoype needs to exist on its own. Finally the object is
cloned using the language-specific methods and can be used instead of creating a new
instance.

Example

Back in �Section 2.3, we explained that the create_translation method is used to specify
a particular translation. Normally, a new instance of Hydra is returned and the transla-
tion occurs within the instance. We tweak this behavior by using Prototype. The
translation stores all attributes, the translation result, and even the composed translation

method (which is specific for the used networks and languages). We use the Prototype

module for this modification.

13

translation = Hydra.create_translation do
 ...
end

+inherited()

<<Prototype>>

translation
prototype

+create_translation()

Hydra

Figure 10: Prototype: modifying Hydra to return cloned objects instead of instances.

The Prototype is a module that is mixed-into other classes. The effect is to prevent
the creation of new objects by changing the initialize method to raise an error, and to
add the create method that returns a cloned version of the class as the replacement for
instantiation.

�
1 module Prototype
2 def self.included(base)
3 base.class_eval do
4 def initialize
5 raise "InstantiationError"
6 end
7 end
8
9 base.instance_eval do

10 def create
11 prototype = self.clone
12 prototype.instance_eval { def initialize; raise "InstantiationError "; end }
13 prototype.instance_eval { def is_prototype ?; true ; end }
14 return prototype
15 end
16 end
17 end
18 end
19
20 class Hydra
21 include Prototype
22 end
� �

Figure 11: Prototype: implementing the Prototype module and using it inside the Hydra class.

When the Hydra class includes the BlankSlate module, the initialize method is overwritten
to throw an error, and the class receives a is_prototype? validator.

14

Consequences

• As independent objects, prototyped objects can’t use Subclassing to receive de-
fault behavior.

• Independent prototyped objects can’t be part of “normal” class hierarchy, but can
implement custom relationships and be extended with modules.

Known Uses

Outside Hydra, none known.

Related Patterns

• Open Declaration – customize the prototyped objects with additional methods

15

5. Composition

5.1. Template

Context

Runtime adaptation of code requires a format that can be modified internally. Such
modifications are for example methods with custom bodies, or classes and modules with
names that are determined at runtime. Anticipating all these changes with a static
supply of code is out of question, so another mechanism has to be found.

Problem

How to form an internal and mutable representation of code that facilitates runtime
creation, modification, and execution of code?

Forces

• Store functions as strings – Store parts of an application’s functionality as string
objects.

• Combine strings representing functions – Flexible combine string objects to imple-
ment modules, classes, methods, and procs.

Solution

Some programming languages can use an eval method to execute code. The argument
to eval can either be an immutable representation like Proc objects in Ruby or a mutable
form like strings. Strings are supported with several processing methods, often including
regular expressions. We suggest to see such strings as templates that embed “anchors” in
which they can be modified for a specific task. Templates can be used for the following
subpatterns:

• Scope Declaration Template – Declaration of modules and classes. The anchors are
the name of the class or module, the name of the subclass, and the entity’s body.

• Function Declaration Template – Declaration of method-like entities, including
procs and lambdas. Anchors are the function name, parameters, and the body.

Example

We use the Function Declaration Template to provide the basic form of Hydra’s
translate method. Therefore, we introduce the Template module. It contains methods
that return a string representing classes of method declarations. Passed parameters are
inserted at the template’s anchors.

16

Hydra

+translate()

Hydra'

class Hydra
 eval Template.gen_method(Hash[:name => "translate", ...]
end

+gen_class()
+gen_method()

<<Template>>

Figure 12: Function Declaration Template: declaring the translate method in the Hydra class.

The Function Declaration Template show in the following figure uses a Ruby multiline
string, its begin and end are marked with the token “RUBY”. The template contains
anchors for the method name, parameter, and body. Passed parameters are inserted in
the place of the anchors.

�
1 module Template
2 def gen_method(hash)
3 <<-RUBY
4 def #{hash[:name]}(#{ hash[: params]})
5 #{hash[:body]}
6 end
7 RUBY
8 end
9 end
� �

Figure 13: Function Declaration Template: declaration of a method template with anchors for
the name, parameter, and body.

The Scope Declaration Template can be implemented likewise, it has inline expres-
sions for the anchors class name and class body.

�
1 module Templates
2 def gen_class(hash)
3 <<-RUBY
4 class #{hash[:name]}
5 #{hash[:body]}
6 end
7 RUBY
8 end
9 end
� �

Figure 14: Scope Declaration Template: declaration of a class template with anchors for the
name and body.

17

Consequences

• Code embedded in strings is currently not supported by IDE’s for code checks etc.
• String code requires rigorous testing to protect against errors.

Known Uses

• Sinatra (create a method with a passed method name, delegate the method call and
make the method private, sinatra-0.9.4/lib/sinatra/base.rb, Lines 1077 – 1082).

• RSpec (define a method which is automatically registered if it is called and not
found, rspec-1.3.0/lib/spec/mocks/proxy.rb, Lines 177 – 179).

Related Patterns

• Eval – required by Template to actually execute the created code.
• Function Composition – compose methods and procs out of existing code ob-
jects without using strings.

18

5.2. Subclassing

Context

A common goal in object-oriented programming is to reuse existing code with sub-
classing. From a compositional perspective, this allows to define which entities of the
program have a set of default methods and values which determine their behavior. Also
the hierarchy of classes represents the structure of the application entities.

Problem

How to pass method declarations and variables from one class to another, even at
runtime?

Forces

• Use existing classes – Subclasses inherit their parent’s functionality and variables.
• Show class relationships – Show relationships between different classes, such as the
hierarchy of domain objects.

Solution

Subclassing is a common operation in object-oriented languages. For dynamic
languages like Ruby and Python, subclassing can be used even at runtime which makes
it a metaprogramming operation according to our definition. Depending on the used
programming language, different properties are transferred from the parent to the child.
The child can gain methods of its parent class, including protected and private methods,
as well as fields and attributes.

Example

We explained Hydra’s architecture in �Section 2.3. The classes Network and Language

are common superclasses. Network defines a minimal API used to communicate with the
respective service. By using Subclassing, the specific network gains these methods too.

+connect()
+post()
+fetch()
+update()
+map_attributes()

Twitter

class Twitter < Network
end

+connect()
+post()
+fetch()
+update()
+map_attributes()

Network

Figure 15: Subclassing Pattern: the Twitter class inherits all methods and variables of the
Network class.

Subclassing is invoked by using the interpreter syntax Subclass < Superclass or by using
the Class metaobject in an expression like Subclass = Class.new(Superclass)do... end.

19

Consequences

• Subclassing is a coarse-grained reuse mechanism, it cannot copy individual methods
out of a collection to another class.

• For the child classes, be careful with method naming – method definitions in the
child class can overwrite methods inherited by the parent class.

• Although class relationships show the hierarchical structure of the objects, avoid
too deep inheritance because code understanding is severely impacted.

Known Uses

• Rake (the Filetask class inherits from the Task class, rake-0.8.7/lib/rake.rb, Line 766).
• Rails (the Rails::OrderedOptions class inherits from the Array class,
rails-2.3.4/lib/initializer.rb, Line 1097).

Related Patterns

• Eigenclass Extension – adding methods to a specific object (mostly instances)
by using Ruby’s eigenclass concept.

• Module/Class Extension – embedding methods in classes or modules by using
Ruby’s built-in extend or include statements.

• Function Composition – compose and copy individual methods.

20

5.3. Function Composition

Context

The functionality available inside an application can be used for building new func-
tions at runtime. A running application provides several methods on a global scope or
narrow scope (inside modules or classes). These methods are the building block of the
application’s behavior. Reacting to runtime changes, the existing functionality can be
used to compose new functions at runtime.

Problem

How to dynamically compose functions out of existing building blocks?

Forces

• Copy existing functionality and store it with an object.
• Compose functions out of several existing functions and use them like filters oper-
ating on common data.

Solution

Once a programs runs, a huge amount of functionality is already available. This
functionality can be reused when the language allows obtaining representations of the
code, for example as Ruby Proc objects or Python’s Code objects. Once detached from its
original context, it can be called independently and reused in other functions too.

With this technique, we see the following use cases:

• Function Cloning – Store existing method-like entities in an internal representation.
• Function Chaining – Chain several Function Cloning representations as filters in
one method call together.

Example

Hydra’s central translate method uses Function Cloning to copy existing transfor-
mation methods as Proc objects and returns them to the caller to be stored with the
transformation object.

21

class Hydra
 def create_translate(from, to)
 if from == "Twitter"
 proc = Utils.copy_methods :from => Twitter, :method => "map_attributes"
 ...
end

+map_attributes()

Twitter

+create_translate()

Hydra

+copy_method()

<<Utils>>

+create_translation'()

Hydra'

Figure 16: Function Composition: Using Function Cloning.

The translate method is generated depending on the passed parameters. We check the
parameters, and copy the existing methods from the Network and Language subclasses. The
created procs are returned to the caller.

�
1 class Hydra
2 def create_translation(from , to)
3 from_proc = nil
4 if from == "Twitter"
5 proc = Utils.copy :from => Twitter , :method => "map_attributes"
6 elsif from == "Facebook"
7 ...
8 end
9 return [from_proc , to_proc]

10 end
� �

Figure 17: Function Composition: the create_translation method creates two procs using
Method Cloning, which are returned and used in the created instance for a custom
method.

We could use a simple function call too, but there is one decisive reason for this
particular approach. Whenever Hydra’s translation method is called, it will create an
instance using the Prototype pattern. The instance then stores a fixed version of the
composed translation method.

Consequences

• Calling cloned functions that modify variables of the surrounding scope may provide
unintended state changes.

• Since code objects are not readable in the source code, understanding their true
semantics may be difficult.

Known Uses

• RSpec (used to define a method chain(methods that always return the same ob-
jects), rspec-1.3.0/lib/spec/matchers/matcher.rb, Lines 84 – 87).

22

Related Patterns

• Subclassing – using subclasses to pass functionality and variables to other classes.
• Dynamic Declaration – often used to actually declare the Dynamic Methods.

23

5.4. Extension

Context

Subclassing ties parent and child to a fixed relationship. All methods from the parent
are copied to the child. To use subclassing just for providing functionality is not good
for those cases where a complex hierarchy of domain objects needs to be represented.
Another problem is that only methods from one source can be copied.

Problem

How to add functionality stemming from different sources into classes, instances, and
singletons?

Forces

• Enhance existing objects – Enhance modules, classes, instances, and eigenclasses
with functionality from different sources.

Solution

Modules are the “better” container then classes for shared functionality. Modules
can serve functions available in the global scope. And the functions they provide can be
copied to other modules, classes, and instances, and even eigenclasses. The relationship
of an entity and its class is orthogonal to the subclassing structure which should be used
to model the domain.

Dependent on the language, including a module can also work just like a pointer.
Changing the module then immediately changes all objects that included the module –
this facilitates coarse-grained runtime adaptation. Dependent on the target of including
modules, we speak of Module Extension, Class Extension, and Eigenclass Extension.

Example

Hydra defines several helper methods. Some configuration entities (objects that are
prototyped from Hydra and define a specific translation) receive the print_config method
defined in the module PrintUtils. We use Eigenclass Extension for this purpose.

24

class << configuration
 include PrintUtils
end

configuration

+print_config()

Eigenclass

-from
-...

Hydra

configuration

-from
-...

Hydra

+print_config()

<<PrintUtils>>

+print_config()

<<PrintUtils>>

Figure 18: Eigenclass Extension: adding the method print_config to the configuration entitie’s
eigenclass.

There are two different methods for extending an entity with a module’s methods.
The extend and include methods can be used to embed a module into a class or another
module. By using include, the methods of a module are embedded as instance methods. If
extend is used, the methods of the module are embedded as class methods. The respective
statements have just to be executed in the context of the module, class, or eigenclass.

Consequences

• Extending other entities will inevitably overwrite existing methods that have the
same name.

• If not composed properly, extending an object with modules may lead to methods
being overwritten by modules imported later.

Known Uses

• Sinatra (including Rack::Utils, Helpers and Templates in the Base class,
sinatra-0.9.4/lib/sinatra/base.rb, Lines 351 – 353).

• RSpec (extending the Spec::Runner modules eigenclass with configuration options,
RSpec1.30/lib/spec/runner.rb, Lines 24 – 64).

• RSpec Rails (extending the Rake modules eigenclass with getters and setters for a
Rake application, rspec-rails-1.2.9/lib/spec/rails.rb, Lines 267 – 281).

Related Patterns

• Functions Composition – Reuse methods defined in modules or only add fine-
grained methods.

25

6. Modification

6.1. Open Declaration

Also known as: Open Classes, Monkeypatching.

Context

Classes and modules provide the scope for an application’s methods. Many are stem-
ming from the standard library or from custom extensions loaded into the application.
However, these classes and modules may not exhibit the correct behavior or names for
methods, and need to be changed therefore.

Problem

How to change a class or module after its initial declaration using language syntax?

Forces

• Modify behavior of methods – Modify the methods of built-in, external, or applica-
tion specific classes and modules.

• Modify the declaration place or visibility of methods – Adapt existing methods to
the environment by copying them to another context or change their visibility.

Solution

To change a class or module at runtime, the important prerequisite is that a suitable
language mechanism is found to facilitate this change. For example in Ruby, executing
a class declaration again opens the scope of the class and executes any contained code
in the context of this class. Some languages even allow modifying built-in classes.

Example

In this example, we add the translate_text method to the Twitter class. This allows us
to call an external service that translates the Twitter text into another natural language.
We use the normal class expressions for the Open Declaration.

+id()
+date()
+text()
+user()

Tweet

+id()
+date()
+text()
+translate_text()
+user()

Tweet'

class Tweet
 def translate_text(options)
 ...
 end
end

Figure 19: Open Declaration: extending the Tweet class to include a translate_text method.

26

Open Declaration works as the pattern name suggests – we use the same class
expression again, and the body changes the class definition. For opening the eigenclass
of Tweet, we would use the expression class << Tweet.

�
1 class Tweet
2 def translate_text(options)
3 TranslationWebServer.translate :to => options [: target], :from => self.language
4 end
5 end
� �

Figure 20: Open Declaration: extending the Tweet class to contain the translate_text method.

Consequences

• Modifying the behavior of built-in classes may lead to incompatibilities with other
libraries, unexecutable programs, or even crashing the running Ruby interpreter.

• Changing the visibility of methods may open them for unintended changes.

Known Uses

• RSpec (extension of Object with Spec::Mocks::Methods,
rspec-1.3.0/lib/spec/mocks/extensions/object.rb, Lines 1 – 3).

• Sinatra (modifies the built-in String class by using the Alias Method pattern to
copy the each_line to the each method and the bytesize to length method,
sinatra-0.9.4/lib/sinatra/base.rb, Lines 1111 – 1119).

Related Patterns

• Dynamic Declaration – Modify classes with altered scope behavior.
• Eval – Execute Proc objects or strings containing declarations at arbitrary scopes.

27

6.2. Dynamic Declaration

Also know as: Flat Scope, Nested Lexical Scoping.

Context

Dynamic declaration uses the metaobjects of method, class, and modules to define
new entities. Therefore, declarations can use another form which provides additional
expressions. In general such entities provide access to their behavior using the same
language they are defined in. The available modifications are called the metaobject pro-
tocol [10]. Using metaobjects allows more fine-grained access to an entitys contents and
behavior, as well as using more objects from the surrounding scope in the modification
process.

Problem

How to change a class or module after its initial declaration using metaobjects?

Forces

• Use metaobjects for object creation – Use the metaobjects Class, Module, and Method

for modification instead of language given expressions.
• Shared Scope – Share the scope of multiple declarations between each other using
metaobjects.

• Provide invisible local variables – Provide protected access to local variables to
include them in declarations.

• Scope Closure – Conserve local variables in a closure.

Example

Ruby metaobjects are invoked like follows: (i) Classes can be defined with Class.new,
(ii), Modules are defined with Module.new, and (iii) methods can be added with define_method.
This has several differences in comparison to Open Declaration. The class statement
returns a class object that is bound to the variable of the left-hand. As such, if the
constant given on the left side is already defined, its declaration is not extended, but
overwritten. Secondly, we must always define a receiving object, or else the class decla-
ration will not be bound to any object.

Using metaobjects also modifies the scope in which declarations occur. Normal
method declarations using the language given def expression changes the execution scope
of the expressions, prohibiting access to the surrounding scope. However, by using the
metaobjects, code in the surrounding scope, for example local variables are visible in the
declaration too. Following usage type can be derived:

• Shared Scope – Share the scope of multiple declarations between each other, pro-
viding access to local variables for including them in declarations.

• Scope Closure – Conserve local variables in declarations, completely hiding the
variables from any outside access.

28

+list_retweets()
+...()

#retweets

Tweet'

+...()

Tweet

class Tweet
 retweets = Twitter.find_retweets(self)
 define_method :list_retweets do
 ...
 end
end

Figure 21: Dynamic Declaration: utilizing Scope Closure to define an inaccessible retweets

variable that only exists within an accessor method.

In the following example, we want to extend the Tweet class with a retweet variable.
Retweets are tweets that cite or link other tweets, and thus are an indicator of popularity.
This variable shall be invisible to any other method, but still be usable in the method
declaration.

For this purpose, we use Shared Scope to include the local variable retweets within the
list_retweets methods, and at the same time use Scope Closure to protect this variable
from any outside access. We use the method define_method for this implementation. The
methods to create metaobjects for the other entities are Module.new and Class.new.

Consequences

• Using metaobjects for creating new classes can not be used for open declaration
because the existing object will be overwritten.

• When sharing the scope, one could use a local variable that unintentionally refers
to variables in the surrounding scope

• The Scope Closure is destroyed when the scope containing method is overwritten.

Known Uses

• RSpec-Rails (Access local defined model variable in a returned class object,
rspec-rails-1.3.2/lib/spec/rails/mocks.rb, Lines 98 – 111).

Related Patterns

• Open Declaration – Declaration using language built-in constructs.
• Eval – Execute Proc objects or strings containing declarations at arbitrary scopes.

29

6.3. Eval

Context

Similar to Open Declaration and Dynamic Declaration, this pattern modifies
an existing module, class, or instance – but reuses existing code. The code stems from
existing methods and is put in a form that is modifiable and executable at runtime.

Problem

How to change a class or module after its initial declaration using code stored in
strings or an internal representation?

Forces

• Evaluate code in an object – Evaluate code in the context of a class, module, or
instance.

• Define objects contained in strings – Define objects and methods that are expressed
in a string template.

• Context Probe – Examine an arbitrary object by executing code in it.

Solution

Finding a suitable code representation usually takes the form of either a string or a
built-in object. Using strings has more advantages because they can be processed with
the mechanisms of the language. This facilitates powerful adaptation and transformation
approaches. Independent of the form, the code can express any operation. One inter-
esting subpattern is called Context Probe [12]: Execute code in the context of another
object to check object properties. We can for example access local variables or call pri-
vate methods by just putting some of this code in a string and executing it in the context
of the object.

Example

The Tweet class receives two different introspection methods. The public_introspection

method is defined for the Tweet class and all its instances, it returns a hash of a tweet’s
id, text, user. The private_introspection method is defined for selected Tweet instances only,
and provides more detailed information such as the date when the tweet was inserted
into the database.

30

+public_introspection()
+...()

Tweet'

+private_introspection()

tweet' eigenclass

Tweet.class_eval &public_method_decl

+public_introspection()
+private_introspection()

tweet'

+public_introspection()

other_tweet

+...()

Tweet

+public_introspection()
+...()

Tweet

+...()

tweet

tweet.instance_eval &private_method_decl

+public_introspection()
+...()

tweet

Figure 22: Eval: Applying class_eval to the Twitter class adds a method to the class that can
be used from all other instances, but using the instance_eval executes a method dec-
laration in the instance’s private eigenclass, thereby only changing one instance.

There are three Evalmethods: eval, class_eval (and its alias module_eval), and instance_eval.
They differ in the following properties:

• class_eval changes the two pointers self and class to the object’s class, and executes
the code in this context.

• instance_eval changes the two pointers self and class to the object’s eigenclass, and
executes the code in this context.

• eval only accepts string objects, and can receive an optional binding (represents
a certain program state, like a specific execution context that contains scope and
local variable information) that is used as the execution context.

We use Proc objects together with class_eval to modify the Tweet class and instance_eval

to modify the instances.

31

�
1 pub_method = lambda do
2 def public_introspect
3 Hash[:id => self.id ,
4 :text => self.text ,
5 ...]
6 end
7 end
8
9 priv_method = lambda do

10 def private_introspect
11 Hash[: creation_date => self.timestamp ,
12 ...]
13 end
14 end
� �

Figure 23: Eval: Using class_eval to change the Tweet class globally, and use instance_eval to
change a single Tweet instance (but not all instances of the class).

Consequences

• The evaluated code can unintentionally change the objects semantics.
• In Ruby, using string objects for defining new methods is a very slow operation
compared to the common declaration using text written in a compiler.

• Using context probe may break the encapsulation principle.

Known Uses

• Sinatra (Uses eval with a string object to define delegation methods that forward
the call to Sinatra::Application, sinatra-0.9.4/lib/sinatra/base.rb, Lines 1077 – 1082).

• RSpec (uses class_eval with a string to define a method that registers the method
call with an internal proxy, rspec-1.3.0/lib/spec/mocks/proxy.rb, Lines 176 – 181).

Related Patterns

• Open Declaration – Declaration using language built-in constructs.
• Dynamic Declaration – Modify classes with altered scope behavior.

32

6.4. Delete Constant

Context

Systems with a high data throughput will create several objects inside the Ruby VM,
and these methods occupy memory space. Although the garbage collector may eventually
remove these objects, they may occupy space far longer then necessary. Dependent
on the programming language, some may explicitly represent class and method objects
that are only deleted when all references to them vanish. Instead to wait for garbage
collection, we need an explicit operation to delete constants and their defined method
objects immediately.

Problem

How to completely delete modules and classes together with their methods?

Forces

• Cleanly remove objects – Remove a class or module completely with its methods
so that calling its methods fails.

Solution

In order to completely remove a module or class and its defined methods, we need
to access the language-dependent mechanisms that are used to store entities in the first
place. In Ruby, we can use the built-in remove_const method to remove the entity, and
extend this method to also delete referenced methods.

Example

In the course of Hydra’s implementation, we use several social networks for a one-
time synchronization, but soon after, we do not need the instance anymore and want to
remove it completely.

Twitter

Object.send :delete_const, :Twitter

X

Twitter Twitter

Figure 24: Delete Constant: after using a Twitter instance to synchronize some messages, we
delete this class from our application.

33

Using the built-in Object.remove_const :Twitter method does not completely remove all
traces of the instance. The solution is to use a custom method that first deletes all
methods of the class, and then the symbol. Here is the implementation:

�
1 class Object
2 def delete_const(con)
3 object = const_get(con)
4 object.instance_methods.each { |m| object.send :undef_method , m }
5 remove_const(con)
6 end
7 end
8
9 Object.delete_const :Twitter
� �

Figure 25: Delete Constant: removal of the constant and deletion of all its methods.

Consequences

• Use with care as the changes to the current program is irreversible.

Known Uses

Outside of Hydra, none known.

Related Patterns

• BlankSlate – Removes existing methods, but not the object.
• Dynamic Declaration – Allows to overwrite an existing class or module, but
instances, subclasses, or mixins still reference the original methods.

34

6.5. Method Alias

Context

The lure to change the built-in classes traps developers into risking compatibility
breaks with other libraries. Ruby’s flexibility allows customization of external libraries
or the core language itself. However, compatibility needs to be ensured especially when
the application is used as a library in the future. This demands an approach of careful
aliasing existing methods.

Problem

How to transparently change the behavior of an existing method while preserving the
old behavior?

Forces

• Transparently wrap methods – Modify built-in classes while staying compatible to
other libraries.

• Hide existing methods – Hide a method from being called.
• Define a method dispatcher – Use an existing method as a dispatcher and forward
the call to another method.

• Alias Memoization – Memoize a complex computation.

Solution

Aliasing an existing method is done by copying an existing method under a new name
to the original object and then redefine the original method. This operation is common
in Ruby so that it even got it’s own name: alias. The Method Alias pattern allows to
shield the original method from being called and to insert custom logic how such method
calls should be treated properly. This can be used for the following two reasons:

• Alias Decorator – Add functionality around an existing method. For example,
enhance the original methods functionality by calling an additional logger or aug-
menting the return value.

• Alias Memoization – Replace a method implementation with a fixed return value
to save computational time. For example, complex computations that are based
on static data waste computational resources when they are calculated each time.
With alias memorization, the original method is replaced by a fixed return value.
The alias checks from time to time whether changes in the data occurred, and
updates its return value.

Example

The translate_text method of Tweet is used more frequently in the course of the applica-
tions utilization since we want to use the translated version of a Tweet to be synchronized
with other social networks. But the modification should not be stored in the database,
and we do not want the translation service to be called every time. Method Alias comes
to the rescue. We alias the original method as old_translate, and redefine the method to

35

+translate_text()
+...()

Tweet

class Tweet
 alias_method :old_translate_text, :translate_text
 def translate_text(option)
 #...
end

+translate_text()
+old_translate_text()
+...()

Tweet'

Figure 26: Method Alias – Executing an Alias Memoization to store the translation result of
a tweet’s text.

return a local variable each time it is called. Only at the very first time the method is
called, we call the original method and then store its result in the local variable.

The Ruby language defines two alternatives for this kind of modifications: alias and
alias_method. Their difference is that alias is a keyword of the language, while alias_method

is defined in Module and thus modifiable too.

�
1 class Tweet
2 alias_method :old_translate_text , :translate_text
3 @text_translation = ""
4 def translate_text(options)
5 @text_translation ||= old_translate(options)
6 end
7 end
� �

Figure 27: Method Alias: using Alias Memoization to memoize the translate_text method for
a specific Tweet instance.

Consequences

• If methods are hidden from direct call, then the comparability with other classes
has to be ensured.

• Memoization requires a careful implementation, because values stalled for too long
can result in logical bugs.

Known Uses

• RSpec (uses alias to create temporary proxies for methods, and removes them later,
rspec-1.3.0/lib/spec/mocks/proxy.rb, Lines 172 – 236)

Related Patterns

• Method Composition – Clone the bodies of existing methods.
• Method Missing (Dynamic Proxy) – Provide a proxy of method calls.

36

6.6. Method Missing

Context

Developers that wish to flexibilize their application need to provide a dynamic inter-
face that allows not yet defined methods to be called. This interface does not strictly
define the available methods, but is open to respond to any method calls and can then
even define methods on the fly.

Problem

How to enable an object to answer arbitrarily method calls and to forward the calls
to other methods or define called methods on the fly?

Forces

• Missing Declaration – Add a called method at runtime.
• Contextualized method dispatch – Use regular expressions to check the methods
string, dynamically deciding which method to call.

• Dynamic Proxy – Forward the method call to another object.
• Ghost Method – Return values so that it looks like an existing method was called.

Solution

Method call semantics are a fixed part of the language. Some languages allow inter-
cepting method calls directly by overriding a hook method. This is the preferred way
to extend the method to which an object responses without actually implementing the
methods. Using such a mechanism allows the following patterns as they are explained in
[12]:

• Ghost Method – Depending on the method’s name, a value is returned to the caller
and a normal method call is simulated.

• Dynamic Proxy – Forward the method call to another module or class (or
method_missing of another object).

• Missing Declaration – Check the method name and define methods on the fly. For
example, Rails Dynamic Matcher checks the method name by applying regular
expressions, and if they reference correct fields in the database, define this method
with a body that executes a database query.

For checking the method name, we can compare it to a fixed string or use regular
expressions to check for certain parts of the method call [12].

37

Example

The Twitter class should be augmented with the Missing Declaration pattern for defin-
ing assessors to its values on the fly. Methods that we would like to use start with find_by,
and then mix attributes and the and keyword. The method checks whether the attributes
contained in the called method exist in the class. Only if all methods are defined, we
define the new method.

+method_missing()
+...()

Twitter

def method_missing()
 ...
 define_method :find_tweets_by ...
 ...
 end
end

find_tweets_by_user()

+method_missing()
+find_tweets_by_user()
+...()

Twitter'

find_tweets_by_user()

Figure 28: Method Missing: using Missing Declaration to define find_by_* methods for Twitter.

Here is the prototypical implementation of theMissing Declaration pattern. We check
whether the called method starts with find_by. Then the other tokens of the method call
are analyzed and checked if they correspond to attributes of Tweet. We use the attributes
to construct a custom return value, and use a Dynamic Declaration for the actual
method declaration.

�
1 class Twitter
2 def method_missing(name ,*args , &block)
3 if name.to_s =~ /^ find_by/
4 parts = name.to_s.split ("_")
5 parts.each do |part|
6 case part
7 when "find" then
8 #...
9 define_method name do

10 ...
11 end
12 else
13 super(name , *args , &block)
14 end
15 end
� �

Figure 29: Method Missing: usingMissing Declaration to create a method searching for tweets
by an username.

The Dynamic Proxy can be used to add convenience functions to Hydra. Method calls
that start with translate_ are further analyzed for languages, and then we call the normal
translate method with the other parts of the method call as parameters.

38

�
1 class Hydra
2 def method_missing(name , *args , &block)
3 if name.to_s =~ /^ translate_/
4 from , to = nil , nil
5 parts = name.to_s.split ("_")
6 parts.each do |part|
7 if part == "twitter"
8 from = "Twitter"
9 ...

10 translate from , to
11 end
12 end
13 end
� �

Figure 30: Method Missing: declaration of Dynamic Proxy in Hydras Core, that forwards and
orchestrates method calls.

Consequences

• Missing Declarations should be checked to not accidentally overwrite an existing
method.

• When Ghost Methods are explicitly defined as part of an object’s interface, it is
difficult to document them with tools that parse an application’s source code

• Ghost Methods are not supported by current IDE’s in terms of syntax highlighting,
error detection and more.

Known Uses

• ActiveRecord (Missing Declaration for database queries,
activerecord-2.3.5/lib/active record/base.rb, Lines 1839 – 1961).

Related Patterns

• Alias Method – if the method names are known in advance, we can define them
using alias_method and a combination of Open Declaration and Dynamic Dec-
laration.

39

7. Discussion

This sections broadly discusses when and how to use the explained patterns and the
differences between them. We also explain security considerations about applying some
metaprogramming techniques.

7.1. Creation Pattern

There are two creation patterns: Blank Slate and Prototype. They target dif-
ferent concerns of creating objects, but they have a similar goal to provide minor savings
of computational resources.
Prototype modifies Ruby’s semantic to a greater extend then Blank Slate. The

received objects are outside of the application’s class hierarchy. They cannot use Sub-
classing to compose methods. Blank Slate instead creates normal objects that can
fully use normal subclassing mechanisms to enhance their functionality. We suggest to
use Blank Slate if the need arises to use objects with methods that are completely
customized to the domain. Prototype is best used to save computational resources.
Another option is to combine them in one object, inheriting the strength of both concepts.

7.2. Composition Patterns

We group the composition patterns along the amount of objects and methods they
can define.
Template is a very powerful pattern. Strings are common objects in Ruby, and

many manipulation mechanisms exist, including regular expressions. This facilitates
composing strings from very different sources: local text files, environment variables,
databases, or web services. Strings are appended to each other and they can contain
arbitrary object declarations, methods definitions, and modifications of existing objects.
Template should be used wisely by the developers, and it requires careful integration
with the other techniques.

The role of Subclassing and Extension is to reuse existing methods. Subclassing
is a very restricted mechanism: It can only be used during the initial class declaration,
and cannot be changed once set. Indeed, this is one of the rare cases where Ruby does not
allow further modification. Since only one superclass can exist, method reusing would
be severely limited in Ruby. And this is the particular motivation for using modules.
Extension allows to mix-in methods of several modules. Also, only Extension allows
to augment the eigenclass of objects. We argue to use Subclassing for representing
object-hierarchies similar to the application’s domain, and Extension for the purpose
of reusing existing sets of grouped methods.

The final composition pattern is Function Composition. This pattern is con-
cerned with reuse too. It combines several existing methods into one new method. The
combination is not as flexible as using Template, because procs are immutable. But
we can chain the result of several procs in functional programming style. Function
Composition is also finer grained since only a single method is composed.

40

7.3. Modification Patterns

For the modification patterns, we see one group that is about class and module
modifications (Open Declaration, Dynamic Declaration, and Eval), and one
group to modify methods (Method Alias, Method Missing).

In the first group, the different techniques synthesize parts of the same goal. We
suggest to use Dynamic Declaration and Eval for the initial declaration of entities.
If developers want to hide local variables in closures, or need to share variables in different
scopes, then Dynamic Declaration (Scope Closure) can be used. That is the only
option to truly hide a local variable, since the Eval (Context Probe) pattern can be
used to access class variables or instance variables. Using Eval with procs has a similar
effect of sharing local variables. Both patterns can be used in conjunction with Function
Composition to reuse existing functionality. For very dynamic and adaptive code, Eval
with the Template pattern can be used. Once the entities are created by these patterns,
developers should stick with Open Declaration and Eval for further customizations,
since Dynamic Declaration overwrites the definition of existing entities.

The techniques of the second group form alternatives to each other. Method Alias
premier role is to customize existing functionality. The modification is transparent and
reversible since the original method remains – to “un-alias” an aliased method is sim-
ple. As long as the modification happens around the original method, this technique is
sufficient. For inner method modification however, we recommend to combine Method
Alias to save the original methods, and then to use Function Composition or Tem-
plates for the method modification. Alternatively, one can use a richer semantic model
as provided by rbFeatures [9] or even holistic manipulations including an abstract-syntax
tree like representation of code [8] to customize method bodies.
Method Missing is the alternative toMethod Alias because it eliminates the need

to define actual methods. In order to proxy method invocation, Method Alias could
be used too, but this change would bloat the implementation since we need to define a
method for each call that should be proxied. Method Missing does not only centralize
the declaration of this behavior, but it is also the sole solution for answering any method
call or to define called methods on the fly. It is crucial to define Method Missing
precisely inside the application only, not for global entities, and inside eigenclasses so
this method is called first.

7.4. Security Considerations

All presented patterns work on the metaobject layer of a program’s model. They allow
coarse and fine grained modifications and extensions of all program entities, including
built-in classes. It is important to thoughtfully restrict the changes to only those parts
of the program where they are needed. Developers need to structure and architect
changes precisely. Another important point is to carefully check what is produced by the
Template and Function Composition patterns. User input should be examined at
any case and never executed directly. For example, if system input is directly evaluated,
users could insert any code in the string and thus get internal access to the system where
they can read data or manipulate the system. Instead, the input should be checked for
certain patterns – for example with the help of regular expressions – and only execute
code dependent on thoughtfully defined conditions.

41

Additionally to these design consideration, Ruby provides another mechanism: Safe
levels and tainted objects [13]. The safe level is an interpreter process specific variable.
There are five different safe levels in total. Higher levels disallow to read code from global
writable locations, prohibit introspection like listing methods of an object, or disallow to
evaluate tainted strings. Per default, all objects that stem from an environment variable
or all strings read from the surrounding system are considered tainted. If objects are
created out of those objects, they are considered tainted too. Using safe levels and tainted
objects purposely supports security of applications altogether and can be used effectively
with the explained patterns.

8. Related Work

Books about Ruby, like [13, 5] also explain several Ruby metaprogramming capabili-
ties. The presentation is oriented at the methods and their occurrence within the class
model. They are not providing a pattern catalog like we did, so that the understanding
of the bigger context and utilization of the techniques is not provided. Furthermore,
the explanation is not structured into creation, composition, and modification, making
it difficult to see when and where the techniques should be used best.

The original design patterns explained in [6] were ported to Ruby in [11]. The book
showed how easy structural patterns are expressed with Ruby since the language is so
open to customization. Our perception was that most design patterns do not need
a structure of collaborators, but can be expresses with a single entity using several
programming techniques. We see these design patterns as providing the coarse structure
of a program, and our metaprogramming patterns for more fine-grained design decisions.

Finally, there is one book giving a practical-oriented introduction to metaprogram-
ming in Ruby [12]. The book uses the metaphor of a spell to explain a certain metapro-
gramming mechanisms together with an intent. Our work differs in several points. First,
we used the classical form of presenting patterns while [12] sticks to name, intent, ex-
amples, and only sometimes provides known uses. Second, we group the patterns into
creation, composition, and modification instead of providing a list oriented at the book’s
narrative content, which is better to pinpoint the patterns utilization. And third, we dis-
cuss the explained patterns and their alternatives to each other to detail the application
of pattern combinations.

For metaprogramming in other languages, several articles and work exist. For C++,
[4, 14] explains template metaprogramming. Templates allow defining functionality in-
dependent for the used type. In the compilation phase, a preprocessor uses the templates
to generate and link code for specific types. The books do not identify patterns for tem-
plate metaprogramming, but they differentiate into class and function templates. One
article explains how the traditional design patterns in [6] can be flexibilized with C++
metaprogramming [1]. This work uses a pattern explanation similar to ours and groups
the patterns according to the structural intents of the original design patterns. A similar
approach for Lisp is explained in [15]. This work shows that the classical design patterns
can be implemented using functions that encapsulate the creation and modification of
structured classes and methods.

42

9. Summary

Metaprogramming is an important property of the Ruby programming language.
Many libraries use several metaprogramming techniques: The definition of classes and
methods out of string templates, the provision of method invocation proxies, and runtime
adaptation including the composition of new method calls out of or around existing
functionality. Because many mechanisms are built into the language, they can be used
for the declaration and modification of entities both at the program’s initialization and
runtime. We identified 23 patterns and subpatterns which are grouped along their main
usage creation, composition, and modification of entities. The patterns build a rich
language that can be used to plan and explain the implementation of a program.

Acknowledgements

We thank Maximilian Haupt, Matthias Splieth, and the shepherd for feedback on
earlier drafts of this paper. Sebastian Günther and Marco Fischer work with the Very
Large Business Applications Lab, School of Computer Science, at the Otto-von-Guericke
University of Magdeburg. The Very Large Business Applications Lab is supported by
SAP AG.

References

[1] P. Bachmann. Static and Metaprogramming Patterns and Static Frameworks. In Proceedings of
the the 13th Conference on Pattern Languages of Programs (PLOP). ACM, 2006.

[2] J. R. Cordy and M. Shukla. Practical Metaprogramming. In Proceedings of the Conference of
the Centre for Advanced Studies on Collaborative research (CASCON), pages 215–224. IBM Press,
1992.

[3] F. F. Correia, H. S. Ferreira, N. Flores, and A. Aguiar. Patterns for Consistent Software Documen-
tation. In Proceedings of the 16th Conference for Pattern Langauges of Programs (PloP).

[4] K. Czarnecki and U. W. Eisenecker. Generative Programming: Methods, Tools, and Applications.
Addison-Wesley, Boston, San Franciso et al., 2000.

[5] D. Flanagan and Y. Matsumoto. The Ruby Programming Language. O-Reilly Media, Sebastopol,
2008.

[6] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns - Elements of Reusable Object-
Oriented Software. Addison-Wesley, Reading, Harlow et al., 10th edition, 1997.

[7] E. Guerra, J. Souza, and C. Fernandes. A Pattern Language for Metadata-based Frameworks. In
Proceedings of the 16th COnference on Pattern Languages of Programs (PLOP). ACM, 2009.

[8] S. Günther and S. Sunkle. Enabling Feature-Oriented Programming in Ruby. Technical report
(Internet) FIN-016-2009, Otto-von-Guericke-Universität Magdeburg, 2009.

[9] S. Günther and S. Sunkle. Feature-Oriented Programming with Ruby. In Proceedings of the First
International Workshop on Feature-Oriented Software Development (FOSD), pages 11–18, New
York, 2009. ACM.

[10] G. Kiczales, J. d. Rivières, and D. G. Bobrow. The Art of the Metaobject Protocol. The MIT Press,
Cambridge, London, 4th edition, 1995.

[11] R. Olsen. Design Patterns in Ruby. Addison-Wesley, Upper Saddle River, Boston et al., 2007.
[12] P. Perrotta. Metaprogramming Ruby. The Pragmatic Bookshelf, Raleigh, 2010.
[13] D. Thomas, C. Fowler, and A. Hunt. Programming Ruby 1.9 - The Pragmatic Programmers’ Guide.

The Pragmatic Bookshelf, Raleigh, 2009.
[14] D. Vandevoorde and N. M. Josuttis. C++ Templates: The Complete Guide. Pearson Education,

Boston, 2003.
[15] D. von Dincklage. Making Patterns Explicit with Metaprogramming. In Proceedings of the 2nd

international conference on Generative Programming and Component Engineering (GPCE), pages
287–306, New York, 2003. Springer-Verlag.

43

