
Framework Engineering

Youngsu Son1, Jemin Jeon2, Hyukjoon Lee2, Gaeyoung Lee1

1 Eco Solution Group,

Digital Media & Communication R&D Center

Samsung Electronics

arload.son@samsung.com

2 High-Performance Computing and Object-Oriented Technology lab.,

Department of Computer Science at Hanyang University,

 1271 Sa 1-dong, Sangok-gu, Ansan, Korea,

http://hpclab.hanyang.ac.kr/

Abstract

As is pretty well known, a framework is one of the most desirable products for the reusability

today. Many software vendors have released their own frameworks to solidify their position in the

platform market. And from the developer's perspective, frameworks can be utilized as useful tools

for productivity improvement. These days, frameworks are becoming a valuable asset of software

companies. This paper describes not only solutions to the problems which are encountered in

framework development, but also important factors to be considered.

Introduction

In “Designing Reusable Classes”, which is the first paper that talked about a framework, Ralph

Johnson defined a framework as follow: A framework is a set of classes that embodies an abstract

design for solutions to a family of related problems, and supports reuses at a larger granularity

than classes [RB88].

Frameworks are widely used nowadays, since it can boosts the productivity by eliminating

duplication of effort in software development. And many vendors have launched numerous

frameworks to acquire new customers. Now, this is an era of various frameworks.

There are plenty of papers on framework implementation. "Evolving Framework"[RD96], which is

written by Ralph Johnson, covers techniques for object-oriented design. This paper had great

influence on other papers. [AR06] describes step by step patterns for successful framework

implementation. And many researches have been performed on the real examples. Metadata-

based Framework [EJC09], Web Server Framework[JD04] are one of them. "Pattern Language for

framework Construction" discusses about framework development processes from the viewpoint

mailto:arload.son@samsung.com

of software development lifecycle. It proposes detailed considerations for each step: Organization

Building, Planning, Architecture, Design, and Development.

We created patterns of each process in the software lifecycle that should be considered when a

framework is built.

Target Audience

Developers, managers, and architects who want to find out important elements for each step of

framework development process.

Organization & Planning

Traditionally, there were 3 main constraints to manage projects: Scope, cost, and time. However, as

the projects become larger and complicated, the organization is also considered as an important

factor in the project management.

A complex organization requires additional path of communication and such a situation would

have negative impact on software development. This section discusses how to organize a group

before implementing a framework.

Clean State

Category

Organizational Pattern

Context

Scope, cost, and time are referred to as project management triangle that each element

represents a force to manage a project. Besides, the organization problem is emerging as a major

issue recently because the projects are becoming increasingly complex.

The more the organization becomes more complicated, the more the communication cost

increases. And it may cause bad side effects such as bureaucratism or nepotism.

Software development process has also been exposed under such circumstances. And especially,

since a framework is much more specialized than normal applications, it is very important to keep

a well-organized team. So, it has become a critical issue for successful framework development to

organize a team efficiently.

Melvin E. Conway suggested an interesting theory called Conway's law in 1968 [CW68].

According to his theory, the software structure mirrors the structure of the group that produced it.

For example, If you have four groups working on a compiler, you would get a 4-pass compiler. A

complex group is likely to have communication problems and shift responsibility and it may result

in project failure. "Mars Climate Orbiter" project of NASA is a well known example of such cases

[EJC01].

Problem

How do we can form a team effectively without losing strong code ownership?

Forces

 Since the organization grows, the software which needs to be developed became more

complex.

 Communication cost increases with complexity

Solution

If you make up a team before requirements analysis is completed, the analysis is affected by team

structure. In the result, overall software architecture is designed according to the form of the

team before extracting important features of the software.

In this step, Conway's Clean State Approach will be great guidelines.

1. Define the business mission

2. Learn the business processes from business owners

3. Re-engineer these business processes to fit the mission;

4. Structure the IT organization to support the reengineered business processes.

Resulting Context

The business processe is stabilized and it makes the boundaries between the features obvious as

well as the responsibility and the roles of the team members.

Known Use

Functional Team [JD04]

In agile practice, functional teams are organized based on scenarios resulting from business

analysis. And it helps to prevent playing politics in an office and facilitates the communication

process.

Feature Crew [KC07]

Microsoft has run a team called "Feature Crew", and they achieved the desired result, while

developing Windows 7.

Related Patterns

Conway's Law [JD04]

If the parts of organization do not closely reflect the essential parts for the product, or if the

relationships between organizations do not reflect the relationships between product parts, then

the project will be in trouble.

Face Reality

Alias

Know your limit.

Context

According to related researches [AR06], the framework development requires three times more

resources than general application development. It is hard to implement a framework that satisfies

every customer needs by using limited resources. The point is to reach a compromise between

the framework functionality and the amount of resources used for its development.

Problem

You should develop the framework considering various factors such as the size of the team,

customer needs, and target application. What are the points to be considered to manage the

team as a project leader or an architect?

Forces

 Every project has different magnitude, timescale, and resources. It is needed to map out

an appropriate plan considering them.

 You should develop the framework that fulfills the client's requirements.

 You should grasp customer needs.

Solution

1. Consider the size of the team.

If there are lots of clients although the team that develops the framework is small, It is nearly

impossible to meet all their demands.

So, It is reasonable to apply the pareto principle (The 80/20 rule). You should focus on the parts

that people use more frequently.

On the other hand, if the team is large enough to comply with a large number of requirements,

you need to concentrate on maintaining consistency between modules.

For example, logs can be written in various formats such as XML, plain text. But, it is better to use

same interface regardless of their formats.

Refining the design by developing prototypes frequently and getting feedback as soon as

possible is important way to maintain consistency.

2. Figure out properties of the target application.

If the organization has customer-oriented culture, extract End-2-End scenarios first and design the

framework supporting the scenarios later. For example, In Visual Studio 2008(.NET Framework 3.x)

project, the scenarios about cooperation between the developers and the designers were

extracted first, the framework was constructed towards satisfying them.

The technology-intensive company, on the other hand, should design the framework considering

extensibility to adapt the rapid change of the market environment.

3. Consider the organization's decision-making mechanism.

If your company think an individual man-power is important, the framework should be designed

focusing on supporting rapid decision-making process to reduce Time-To-Market.

And if the organization has a hierarchical structure, it is important to spend effort to get people

to communicate clearly and openly.

Resulting Context

Office politics are reduced, which can prevent the software architecture from being modified by

authorities.

Known Use

NET Framework [KC07]

Krysztof Cwalina and Brad Abrams made several frameworks including .NET Framework in

Microsoft. [KB07],[KC07] suggest that a framework should be designed considering decision-

making process or organizational cultures.

Related Pattern

Community Trust [JD04]

Software system that support to data transmission is designed for the upgrade considering

reducing server overhead and continuously upgrade service.

Architecture

After a framework is built and is used by many teams or members, it is much harder to

reconstruct architecture of it because of compatibility, redistribution problem. Considerations for

building qualified framework being able to use for long-time are described below.

Dependency Management

Context

In the course of time, requirements are occurred and the framework is evolved by reflecting these

requirements. For instance, .NET and Java add new features on it several times, and they have

evolved. In this evolution, we find a painful problem-dependency problem. We should take a look

carefully if there's collision when new requirements are added.

Moreover, modification of external interface is naturally impossible because the framework may be

used by many applications already. There's only adding.

Problem

A lot of application is using the framework. Therefore, adding new feature cause side-effect and

this can affect existing modules. How can we make the evolution of the framework easily?

Forces

 A framework needs to accept the requirements and this leads to the evolution.

 It's not easy to extend or add features because many applications are already using the

framework distributed.

Solution

Take a look what kinds of dependency first.

 API Dependency (Surface Dependency): In case Component A depend on Component B,

and some types in Component B with parameters or return values of Component A are

exposed to surface so anyone can access them.

 Implementation Dependency: In contrast, this depends on Implementation. Types of

other component are not exposed, but types or methods are used internally.

 Circular Dependency: The case Component A depends on Component B, and again B

depends on A. This includes indirect one across several steps. We should avoid this

dependency.

The most general way to solve this dependency problem is layering. Cohesion is increased by

grouping associated components into single layer, capsuling leads to less shock by modifying

between other layers. However, dependency between layers should be also managed well.

1. Layer relationship of dependency

Like above picture, it is desirable for a component of higher layer(WPF) to call a component at

lower layer(Base Class Library) However, other cases that components at same layer call each

other or a module at lower layer(Reflection) calls a module at higher layer(XML) should be

avoided.

Because of circular dependency, the biggest problem of dependency can be made directly or

indirectly. If modification of part of modules causes chain modification of other modules, then

what will happen? Finally, the problem that whole module forming the graph should be verified is

occurred.

1. Make New Package

Robert C. Martin suggests creating new package for layering or canceling changes through

interface for breaking circular dependency. The way to do this is described below.

2. Circular Dependency

Every developer has the experience to print errors occurred by Try... Catch statement with

MessageBox on the screen. This causes the circular dependency like above picture.

Figure 2 depicts an example that modules have dependency between each other because error

messages needed for communication modules are output through GUI related module.

If the component related to protocol is modified, every component of circular structure need to

be checked.

To break this relationship, Robert C. Martin suggests creating new package like a picture below.

3. Breaking Circular Dependency Using New Package

In this picture, we can find that having a Manager managing every messages (including error

messages) used in the system and GUI and communication module having same, one way

dependency break circular dependency.

Other way to break the circular dependency is managing messages as a way minimizing influence

to existing modules using Attribute(AOP) like Log4X(NET, J). Otherwise, constructing

IoC(Inversion of Controller) with Listener is good choice too.

2. Invert Dependency

Let's see another type of Circular Dependency.

4. Inverting Dependency

Figure 4 is the case that indirect Circular Dependency is occurred between inner modules

consisting two packages.

In this case, we can solve this problem by using interface as shock absorbing layer. Y does not use

B directly, and let the package having Y have BY which is interface of B. This changes the way of

dependency to same direction.

3. Use DSM(Dependency Structure Matrix)

It is impossible realistically to understand dependency by reading source code of huge framework

line by line. Therefore, we understand dependency by using DSM(Dependency Structure

matrix)[NEVD05].

Table 1. exampel of simple DSM

Refer table 1. There are tasks from A to D. Task can be Namespace or Class. The way reading

dependency is to read by its column. According to table 1, 1 depends on 3(means 1 has

dependency to 3) and 3 depends on 1 and 2. 4(Task D) depends on 1(Task A) and 3(Task C).

Look at the table in detail, we can see TASK A of #1 has dependency to Task C and Task C of #3

has dependency to Task A. In other words, Circular Dependency is occurred. Changing A causes

changing B and changing B causes changing A. Changes are propagated in circular chain.

However, we can eliminate the part causing Circular Dependency through the way mentioned

early.

There are variety of commercial tools extracting dependency like JDepend, NDepend, XDepend,

and CDepend. We suggest using suitable tool fitting your developing environment. you refer an

applied-example using commercial DSM, refer [PAT07].

Resulting Context

Using this pattern has an advantage that the dependency can be found easily in same platform.

In software developing, the range supporting DSM is limited to almost programming languages.

There is a weak point that it does not support tools understanding other application

block(understanding association between inner SP or tables of database) or associations between

them(for example, ...?).

Known Use

.NET Framework - Microsoft .NET Framework manages dependency by using this way.

JUnit - This is commercial Java Testing Framework designed with DSM.

Related Pattern

Publisher-Subscriber

Publisher-Subscriber Also called the Observer pattern, it is used to synchronize the information

between two components-Publisher and Subscriber. Replicating the database from Publisher to

Subscriber can be a typical example. It is used when the pattern encounters a non-stop talker

object,

in other words, when overload occurs because of non-stop polling.

And it is a primary pattern for dependency management, especially in dependency injection.

Pakcage Principle -

Package Principle[RCM00] suggests following principles to resolve dependency problems.

Package Cohesion Principles deal with following principles.

 Release Reuse Equivalency Principle (REP) - The unit of release is the unit of reuse.

 Common Closure Principle (CCP) - Classes that change together are packaged

together.

 Common Reuse Principle (CRP) - Classes which are not reused together are not in a

package.

Package Coupling Principles also address following principles.

 Acyclic Dependencies Principle (ADP) - The dependency structure between packages

should not be cyclic.

 Stable Dependencies Principle (SDP) - Dependencies between released categories must

run in the direction of stability.

 Stable Abstraction Principle (SAP) - Packages that are stable should be abstract.

Compatibility.

Context

Framework is updated continuously for reflecting market requirements. Updated framework

should guarantee compatibility that applications based on previous version framework works well

on it. For lowering entry barrier, subset framework can be made from existing and popular

framework with essential features. For example, .NET Compact Framework offers a part of .NET

Framework.

Problem

When you build a framework, what kind of compatibility should be considered, and how much

does it support compatibility?

Forces

 Variety of compatibility should be figured out.

 Suitable compatibility should be supported considering requirements and market

condition.

Solution

1. Figure out kind of compatibility.

 Cross-Version Compatibility

This means that the code written for same product and different version has compatibility.

For example, SQL script used at Microsoft SQL 2000 works well on Microsoft SQL 2005

and vice versa.

 Backward Compatibility and Forward Compatibility

Backward Compatibility means that source, format, etc of previous product are

compatible with latest product. Forward Compatibility means that source, format, etc of

latest product are compatible with previous product. Usually, many frameworks or

softwares support backward compatibility, but supporting forward compatibility is

difficult.

 Cross-Redistribution Compatibility

This means that the code is compatible with different product. For example, is the query

used on Oracle compatible with Microsoft SQL? Does the code working on Turbo C work

well on Visual C++?

 Binary Compatibility

It is the case that binary file of previous version is compatible with new version without

recompile.

 Source Compatibility

It is the case that the source code can be compiled for different version without

modification.

 API Compatibility

Stronger than source. Weaker than binary. Source compatibility allows for some changes

in APIs (e.g. covariant changes to input parameters).

2. Choose compatibility level considering marketability and usability.

Every framework has responsibility to keep Backward Compatibility. Because the application that

use previous version of the framework should work correctly on latest version of the framework.

Cross-Redistribution Compatibility can be offered considering marketability.

For example, Bill Gates makes the syntax of ASP(Active Server Page) similar with Visual Basic's and

this leads the developers of VB to become the developers of ASP easily. Because of this, ASP

could make debut at web-programming market successfully.

3. Prepare in case not offering compatibility.

Sometimes there is case that we give up the compatibility. The case is described below.

 By environment changing too fast(for example, PC to Web)

 When new technology is better more than ten times

 After usability test, productivity is decreased too much because of low

intuitivity/consistency

 When keep using previous technique because of custom even though better technique is

added

If you cannot offer compatibility like this, you should offer Automatic Migration Tool if possible, or

Code based migration manual in worst case at least.

Resulting Context

Offering compatibility for framework means that numerous applications working on previous

version of framework work correctly. This offers the benefit that users of previous framework

keep use of same framework. Sometimes, Compatibility, however, has a drawback that it makes

framework users not to learn better technique, makes them use old technique by custom.

It is important to keep balance between these two, to add new features with consistent design

philosophy.

Known Use

.NET Framework

The result of usability test for .NET Framework 1.0 shows too low productivity, so backward

compatibility is ignored on developing 2.0 version(Base Class Library). However, .NET Framework

keeps its backward compatibility from version 2.0 and offers higher version.

Java

Java keeps legacy IO Features, and offers NewIO Features so that it keeps backward compatibility.

Related Pattern

Forward Compatibility [TD09]

In SOA, Service consumers are unable to process documents generated by newer services

because they have not been updated to understand new content.

So, Consumers must accept and either preserve or ignore unknown extensions using a space of

identifiers that are compatible with the previous version.

Design

When Microsoft .NET Framework team developed the .NET Framework, they conducted a usability

test making a simple application without any user manual. Unfortunately, most of the participants

failed the test, So their opinions were reflected in next version of the .NET Framework.

It is very important for the framework users to take less time to be able to use a framework. In

this section, we describe how to make an intuitive framework.

You need feedback.

Context

After building the framework, getting feedback from users is like driving at desert without destiny.

While developing, we want to know if the framework is what users really want.

Krzysztof Cwalina who designed .NET Framework without feedbacks of users does usability test

of .NET Framework 1.0. After the test, he felt huge guilty about building the framework not able

to use without documents. Finally, he destroyed .NET Framework 1.0. So, we are going to build

intuitive framework which is easily used by users.

Problem

How can we build the intuitive framework that users can use it easily?

Forces

 Need to be easy to use

 Intuitive framework should be built.

Solution

Before implementing the framework, write the code supporting main scenario first, and then get

feedback from users. After that, define object models based on the code sample given from

feedback.

For example, a framework designer familiar with C/C++ made a file reading scenario like below.

--- List 1. file reading scenario --------------------

static void Main(string[] args)

{

 StreamReader sr = File.OpenText("MyFile.txt");

 string s = sr.ReadLine();

 while (s != null)

 {

 s = sr.ReadLine();

 Console.WriteLine(s);

 }

}

The designer thought that the code above was natural.

However, other designers familiar with other language gave feedback with more intuitive code

sample.

--- list 2. file reading scenario as a feedback ---------------------

static void Main(string[] args)

{

 foreach (string s in File.ReadAllLines("MyFiles.text"))

 Console.WriteLine(s);

 }

}

This is just the power of feedback. Framework designers sometimes make mistakes which is

building a framework with culture of familiar custom or language.

When you design actual framework API, if you verify the framework scenario before

implementation and get feedback, you can get refined scenario naturally. Finally, you can design

good API by putting these together and constructing actual object model with that.

Resulting Context

We can get better code samples by user's feedback. However, if the knowledge of users are

biased towards specific language or technique, the feedback is also biased. To get various

feedbacks, we should choose people working in various fields.

There is a case neglecting the quality of services because of too much focusing on usability. For

this case, interested parties need to decide priority order of quality of services using ATM[LBR03].

Known Use

Microsoft .NET

Since .NET Framework 2.0, they have got feedback from users previously and then construct

object models from the code samples. They offers tool-Framework Design Studio for supporting

this process.

Java

To increase reliability of the framework, Joshua Bloch, the designer of Java Framework, suggests

doing 3 example refining the framework with target application at least 3 times.

Samsung Smart Grid Framework.

Smart Grid Solution of Samsung Electrics built frameworks with feedback of numerous users using

the framework.

The Power of Sameness

Context

A client of a framework needs to use a new feature that he or she has not seen before.

Problem

A new feature requires a painful time for learning it.

Forces

 It should be able to learn how to use the new module of a framework as little time as

possible.

Solution

Use the power of sameness. If possible, related features should have same interface model.

You may not read a manual when you rent a car in a foreign country. Why? There are instructions

such as how to open and close a door, how to start a car, and how to fasten a seat belt in the

manual.

But they are almost the same in anywhere. It's the power of sameness. Clients can feel more

comfortable if there are no difference between the interfaces for manipulating text files and XML

files. If you design a framework that enables users to reuse their experiences gained from other

domains or projects, clients can be familiar with the framework with less learning time.

To maintain this consistency, a manager should keep a close watch on whether the team members

are following the guidelines like naming convention by using a Static Analysis Tool.

Resulting Context

It saves learning time to use a framework.

Framework users can easily use the features similar to those they have experienced before. As a

result, It saves learning time to use a framework.

Known Use

FxCop

Microsoft imposes severe constraints on .NET framework development. These constraints are

made by FxCop which is a static analysis tool.

For example, one of them is that the compile error occurs when you don't observe the naming

convention even if there isn't any logical error.

Development

In this section, we discuss about team building and development process for successful

framework implementation.

Skyscraper Team.

Alias

Function Team, Feature Crew

Context

Peanut butter means a process in which a software is made based on features from the bottom.

We use bottom-up process when there is nothing to compare and you have to start building

software from scratch.

In this process, resources are distributed evenly across the full range of a product rather than

focusing on a few key features like peanut buttered bread. So, it is possible to make all features

improved gradually at the same time.

Each team is constructed based on the features. For example, there can be two teams and one is

responsible for implementing multimedia feature. And the other is in charge of the area of

network. Most system block tends to be divided up according to the way by which teams are

separated. This is preferred when you develop a low-level library or framework. However, this is

not appropriate for a domain-based framework that uses more than one feature to construct a

scenario.

Problem

Although all features could be improved gradually in this way, it is likely that each team shifts the

responsibility when a scenario that uses more than one feature is created during the project.

Furthermore, they may lose the concentration on key feature areas as all resources are spread

out.

Forces

 A number of teams have to cooperate for a scenario.

 People only associate with their team members and don't mingle with the others.

 People think it is important to make personal connections with someone higher up.

Solution

Construct low-level infrastructure layer first. And then build teams based on extracted scenarios

when you are implementing a scenario-based framework.

A team made through this process is called a skyscraper team.

For example, a skyscraper team can be made up of one architect, one project manager, two UX

designers, three developers, five QA members, and one DBA who have sufficient domain

knowledge for that scenario. A scenario-based approach facilitates the communication between

team members. And it mitigates relying on personal connections.

Architects and project managers of each team mediate between the teams and there is a chief

architect and a chief project manager to lead entire project team if the project is huge.

Resulting Context

Applying this pattern to a scenario-based development helps to reduce the problems caused by

personal connections and to facilitate the communication between team members.

On the other hand, it may miss the opportunity to develop all features gradually and evenly,

which is an advantage of feature-based team building approach (peanut-buttering).

To solve this problem, we use the milestone approach which mixes peanut-buttering and the

skyscraper together.

5. Milestone Approach

As shown above, the milestone approach has focus on building infrastructure by using peanut

buttering at the initial stage. After that, it basically keeps peanut buttering to implement

additional features on the basic features and mixes the skyscraper concept that tests available

scenarios which is increased gradually as a product release.

Known Use

Feature Crew

Microsoft has run a team called "Feature Crew", and they achieved the desired result, while

developing Windows 7.

Cross Functional Team

A Cross-functional team is a group of people with different functional expertise working toward

a common goal. It may include people from product manager, architect, designer, developer

and DBA. Typically, it includes employees from all levels of an development organization.

Related Pattern

Diverse Groups [JD04]

Consider temperaments and diverse experience backgrounds when assembling a team. this

diversity sometimes corresponds with social classification like age and gender, but more generally

can be assessed on a personal level.

Quality Gate.

Context

A framework consists of various features. It should be decided very carefully which features to

include into a framework.

If they are integrated into a framework once, it is inevitable that dependency on that features is

further intensified.

Therefore, you should check the quality of each feature strictly before applying them.

Problem

What qualities should be considered when implementing features within a framework with regard

to compatibility with other features?

Forces

 Framework should be fault tolerance and reliable.

 After the features are integrated into a framework, It is hard to eliminate them at once.

Solution

Make sure that only strict Quality Gate allows features to be included into a framework.

To ensure high quality of a framework, it is important to follow the standards that determine the

deadline of each feature implementation rigorously.

 Functional Specification

 Developer Design Specification

 Test Plan

 Threat Model

 API Review

 Architectural Review

 Dependency Management

 Static Analysis

 Code Coverage

 Testing (Unit and Integration Tests)

 Bug free

 Performance

Embedded systems that run with limited hardware resources often set a restriction on resource

usage.

Resulting Context

Individual test of feature quality can ensure framework reliability.

However, Excessive quality tests may result in the waste of resources.

Therefore, Quality Gate should be established based on the characteristics of target application

you are developing.

Known Use

MadDog and FxCop:

Microsoft strongly assure the quality of a system with the Quality Gate established by MadDog

and FxCop.

Originator

Krzysztof Cwalina, Brad Abrams [KB09]

References

[AR06] Adreas Ruping, Patterns for Successful Framework Development, Pattern Language of

Program Design 5, p401, 2006

[CW68] Conway, Melvin E, "How do Committees Invent?", Datamation ,1968

[EJC01] Euler, E.E., Jolly, S.D., and Curtis, H.H. "The Failures of the Mars Climate Orbiter and Mars

Polar Lander: A Perspective from the People Involved." Proceedings of Guidance and Control 2001,

American Astronautical Society, paper AAS 01-074, 2001

[EJC09] Eduardo M.Guerra, Jerffeson T. de Souza, Clovis T. Fernandes, “A Pattern Language for

Metadata-based Frameworks”, Pattern Languages of Programs Conference 2009

[FC10] Wikepedia "Feature Creep" , http://en.wikipedia.org/wiki/Feature_creep, 2010

[JB07] Joshua Bloch, "How to Design a Good API and Why it Matter",

[JD04] James O. Coplien,Neil B. Harrison, "Organizational Pattern of Agile Software Development

Team" , Prentice Hall , 2004

[KB09] Krysztof Cwalina, Brad Abrams, "Framework Design Guidelines : Conventions, Idioms, and

Patterns for Reusable .NET Libraries (2nd Edition) ", Addison-Wesley Professional

[KC07] Krysztof Cwalina, "Framework Engineering" , TechED 2007 Europe, 2007

[LBR03] Len Bass, Paul Clements, Rick Kazman , "Software Architecture in Practice", Addison-

Wesley Professional, 2003

[NEVD05] Neeraj Sangal, Ev Jordan, Vineet Sinha, Daniel Jackson, "Using Dependency Models to

Manage Complex Software Architecture" , OOPSLA 2005, 2005

[RB88] Ralph E. Johnson, Brian Foote, “Designing Reusable Classes”, Journal of Object-Oriented

Programming, June/July 1988

[RCM00] Robert C. Martin, "Design Principles and Design Patterns", Object Mentor ,

http://www.objectmentor.com/resources/articles/Principles_and_Patterns.pdf , 2000

[RD96] Ralph Johnson, Don Roberts, "Evolving Frameworks: A Pattern Language for Developing

Object-Oriented Frameworks.", In Proceedings of the Third Conference on Pattern Languages and

Programming, Vol. 3 (1996)

[PAT07] Patrick Smacchia , "Control component dependencies to gain clean architecture"

[TD09] Thomas Erl , David Orchard , "SOA Design Patterns" , Prentice Hall, 2009

