
Patterns for Distributed Machine Control System Data Sharing

Marko Leppänen and Veli-Pekka Eloranta
{firstname.lastname}@tut.fi

Department of Software Systems
Tampere University of Technology

Finland

1 Introduction

In this paper we will present three patterns for sharing sensory data and other information in distributed
machine control systems. A distributed machine control system is a software entity that is specifically
designed to control a certain hardware system. This special hardware is a part of a work machine, which
can be a forest harvester, a drilling machine, elevator system etc. or some process automation system.
Some of the key attributes of such software systems are their close relation to the hardware, strict real-
time requirements, functional safety, fault tolerance, high availability and long life cycle.

Distribution plays a major part in the control systems. Different functional hardware parts of the ma-
chine are physically apart from each other and their corresponding control software is usually located in
a embedded controller node near the controlled hardware. The nodes must communicate with each other
in order to perform their functionalities. It is also common that the system nodes have very wide variety
in their computational capabilities. Usually the system has several simple embedded controllers with
limited computational abilities also known as low-end nodes. In addition to these embedded controllers
the system may contain one high-end node that has processing power that is comparable to a common
desktop PC. Due to these facts, a distributed control system needs to distribute information between
different parts of the system. The information-sharing capabilities of such systems is discussed in these
patterns in more detail.

The patterns in this paper were collected during years 2008-2011 in collaboration with industrial
partners. Real products by these companies were inspected during architectural evaluations and when-
ever a pattern idea was recognized, the initial pattern drafts were written down. These draft patterns
were then reviewed by industrial experts, who had design experience from such systems. After these ad-
ditional insights, and iterative repetitions of the previous phases, the current patterns were written down.
We hope that the final pattern language can be tested on implementation of some real system after all
patterns in the language are published.

The published patterns are a part of a larger body of literature, which is not yet publicly available. All
these patterns together form a pattern language, which consists of more than 70 patterns at the moment.
A part of the pattern language in this paper is presented in a pattern graph (Fig. 1) to give reader an idea
of how these selected patterns fit in the language. These three patterns are closely related in the pattern
language and therefore are ideal to be submitted together as a whole. In the following sections, all the
pattern names are written in SMALL CAPS.

In the second section, we will first introduce our pattern language and the pattern format. Following
this, the selected three patterns are presented in detail. Finally, the last sections contain the acknowledg-
ments and references.



2

2 Patterns

In this section, a set of three patterns is presented. Together, these patterns form a sublanguage in the
pattern language in Fig. 1. The pattern graph is read so, that a pattern is presented as a box in the graph
and an arrow presents a connection between the patterns. The connection means that the pattern from
which the arrow emerges is refined by the pattern that the arrow points to. In other words, if the designed
system still has some unresolved problems even after some pattern is applied, the designer can look to
the refining patterns for yet another solution if they want solve the current design issues. The patterns
refine each other extending the original design with other solutions.

For example, the CONTROL SYSTEM pattern is the root of the whole pattern language and it is
referenced in the following patterns. So, the CONTROL SYSTEM is the central pattern in designing
distributed control systems. It presents the first design problem the system architect will face: Is a control
system needed in this context? Table 1 presents all patterns that are shown in Fig. 1 and all the patterns
that are referenced later on in this paper.

Table 1: Patlets

Pattern Name Description
CONTROL SYSTEM Implement control system software that controls the machine and can com-

municate with other machines and systems.
ISOLATE FUNCTIONALI-
TIES

Distribute the system into subsystems according to their functionalities. In-
terconnect these subsystems with the bus. Use multiple interconnections
between subsystems if necessary.

SEPARATE REAL-TIME Divide the system into separate levels according to real-time requirements:
e.g. machine control and machine operator level. Real-time functionalities
are located on the machine control level and non real-time functionality on
the machine operator level. Levels are not directly connected, they use bus
or other medium to communicate with each other.

DIAGNOSTICS Collect such data from a system, which allows to notice if some subsystem
starts to operate poorly or produces erroneous data. Usually all data values
have limits where they should operate and a deviation from this indicates a
risk of breakdown.

REMOTE ACCESS Add an operator level component which allows at least sending of the ma-
chine data to the operational command level.

VARIABLE MANAGER For each node, add a component, which contains all the information that
is relevant to operation of the corresponding node. This information is pre-
sented as state variables. The value of a variable is updated every time
when a message containing the information is received.

STATE VARIABLE GUARD Design a mechanism to guard the state variables. It must demand autho-
rization for other system parts to submit their own state changes to system
state information.

VARIABLE VALUE

TRANSLATOR

Add a converter layer on the top of the variable manager. This layer con-
verts the data to the correct unit, e.g. from mph to km/h or from inches to
cm, when data is requested.

SNAPSHOT Implement a mechanism to save the current state information (e.g. from
VARIABLE MANAGER) as a snapshot. This mechanism should also be able
to restore system-wide state from the snapshot.

CHECKPOINT Describe the properties which may or will change during the life cycle of
the machine as parameters. The parameters can be altered from the UI
when necessary.

PARAMETERIZABLE VAL-
UES

Describe the properties which may or will change during the life cycle of
the machine as parameters. The parameters can be altered from the UI
when necessary.

DATA STATUS Add status information to each data nugget or variable. Status information
tells the age and/or state of the information (OK, fault, invalid, etc).

COUNTERS Create a counters service that provides counting functionality for different
purposes. This makes it easy to have centralized diagnostics and logging of
different kinds of information.

Continued on next page. . .



3

Table 1: (Continued)

Pattern Name Description
ERROR COUNTER Create a counter which threshold can be set to certain value. Once the

threshold is met, an error is triggered. The error counter is increased every
time a fault is reported. The counter is decreased or reseted after certain
time from the last fault report has elapsed.

VARIABLE CACHING Store variables retrieved from other nodes locally for a certain period. Af-
ter the variable spesific predetermined period has elapsed, cached value
can not be used any more. A new value should be retrieved from the source
node.

Fig. 1. The variable sublanguage. Patterns that are presented in this paper are highlighted.

Our pattern format closely follows the widely-known Alexandrian format [1]. First we present the
context for the problem. Then, the problem is concentrated in a couple of sentences that are printed with
a bold font face. After that, a short discussion about all forces that are affecting the problem is given. In a



4

way, it is a list of things to consider when solving this problem. Then, after word "Therefore:" the quick
summarization of the solution is given. Then, after a three star transition line, the solution is discussed
in a detail. This section should answer all the forces that were left open in the previous section. Then an
another star transition marks the end of the section. This section describes briefly the consequences of
applying this pattern. After the last star transition a real life example of the usage of this pattern is given.



5

2.1 Variable Manager

...you have a distributed machine CONTROL SYSTEM which consists of several independent nodes. Be-
cause ISOLATE FUNCTIONALITIES has been applied, the nodes have their own responsibilities to attend
to. The nodes have a communication bus between them allowing them to co-operate in order to perform
the tasks initiated by the machine operator. In order to carry out these operations, the nodes gather data
from their environment using sensors and perform computations using this sensory data as inputs. In ad-
dition to this information, the performed actions alter the system state and this state information should
be stored as well. From all this information, some is purely for local use in the node itself, but some of
the information is needed also in some other nodes in the system for co-operation.

System wide information should be shared efficiently in the distributed embedded system.

In order to co-operate successfully with other nodes, a node must have access to all the required
information to carry out its own duty. However, only some of this necessary information is produced
locally, so the node needs to get complementary data from the other nodes. In addition to consuming
information from the other nodes, the node may produce information that is needed elsewhere in the
system. So, some sort of communication between nodes is necessary. As the system is distributed, the
communication can be carried out using a shared channel, a bus, allowing the nodes to share information.
However, as the bus has a limited data transfer speed and communication initialization overhead, all
communication between the nodes has some inherent latency. Because of this latency, it is not sufficient
to use simple query-and-answer based communication scheme to share the information as it is usually
too slow for real-time environment.

As the system has strict real-time requirements, a node should have a quick access to the required
information. If the information sharing is implemented by query-and-answer based scheme, all queries
also interrupt the source node from its tasks as it has to react to the received query. This taxes the
processing capacity of the node and takes time from more urgent activities.

In addition to having latency, the communication channel also has limited bandwidth, so the remote
information cannot be accessed remotely whenever demanded as constant queries of updated informa-
tion from other nodes tax the bus capacity. The more nodes are present in the system, the more bus
capacity they consume as the number of the communicating parties grows.

It should be easy to add new nodes to the system as the core system may be extended by some
optional features that have to co-operate with the rest of the system. Some of these options may be de-
veloped long after the core system has been released. This means that the core system has to be prepared
to new consumers of the produced information. The producer and the consumer must be decoupled from
each other in such manner, that the producer does not need to know which other nodes use the informa-
tion it provides and the consumer does not need to know where the information it acquired originates
from.

In addition to vendor-made new features, some new features could be made by a third party. These
third-party components should have a way to access some of the information that is produced by the
system if they need it in order to carry out their function.

Therefore:
For each node add a component, VARIABLE MANAGER, that stores the system information as



6

variables and provides an interface for reading and writing them. Whenever this component no-
tices new information on the bus, it updates all the corresponding variables. When a variable is
locally updated through the interface, the information is also sent to the bus.

* * *

All relevant information should be presented as variables. A variable in this context is a piece of
information that is necessary for the operation of the machine, such as engine temperature or hydraulic
pressure. A variable can also present some production data, such as the amount of drilled holes or the
species of a tree in the harvester head. The variable manager component provides an access through an
interface to these variables for the node. Whenever a node processes data, receives a new sensor reading
or otherwise produces new data that is relevant to the system operation it must update its own variable
values which correspond to this new information.

In order to propagate the local variable changes, the variable manager communicates with other
nodes using the shared communication medium. This communication is carried out by broadcasting
messages which carry the values of the local variables of the source node. Depending on the message size
and allowed space for data, these messages can include several variable values or just those which have
changed since the last message. As the messages are broadcast to the bus, all the other variable managers
can listen to the communication medium and receive all the messages. In this way, the recipient node
may decide if the information in a message is relevant to its function and the producer of the data does
not know about its users. When a node receives a relevant message, the variable management component
updates the corresponding variable values. Because the nodes can use the same method for storing their
local data, there is no fundamental difference in using remote and local values.

The variable manager also stores a time stamp with every variable. This is done to prevent the usage
of outdated values. So, whenever the node needs to use a variable value, the variable manager checks
the time stamp for how old the data is. The time stamp is compared to a predefined time limit and if
the data has gotten old, the variable manager may request a new value using a broadcast message that
triggers the source node to send a new message containing the current value of the requested variable.
However, these kinds of requests take time from all participating nodes and the real-time performance
of the system may be threatened. Therefore, updating the values using a polling mechanism should
be considered only as an error handling mechanism and the polling should be an abnormal situation
which should be avoided. To prevent it from happening, all crucial data must be updated in a cyclic
manner using a high enough refresh rate. It is the responsibility of the designer to decide if the variable
is updated in a cyclic way after fixed intervals or whenever the value is changed. This configuration
requires detailed knowledge of the nature of the variables and their assumed refresh rates. For example,
a measurement with 50 ms sample rate might be needed on the bus with a similar rate in order to ensure
smooth operation of the control system. On the other hand, if the measured variable is slowly changing
one, like outside temperature, it might be reasonable to update this variable only when it changes more
than a predefined threshold. For example, in the case of CANopen bus[2], the selection can be between
a timer-driven and cyclically sent PDO frame and an event-based SDO frame.



7

If the node must react almost immediately to a some system state change, it may be better not to use
the variable management component to store the data at all. If an urgent message is received, the node
just interrupts the current task and carries out the actions mandated by the message. In this way, the data
that is used as the basis for the action is always fresh and the node needs not to allocate storage space
for the variables.

If SEPARATE REAL-TIME is used, it may be advisable to implement a special variable manager
on the high-end node which stores all the information in the system. This enables new services to the
system, like DIAGNOSTICS data gathering, a SNAPSHOT of all the data in the system, REMOTE ACCESS
and VARIABLE TRANSLATOR. It also makes system debugging and testing easier as one node has a
comprehensive set of all the variables in the system.

This pattern is a special version of Caching [3] and can be seen as a version of Data Repository too.
CAN Object Dictionary is a simple version of this [4].

* * *

Using the variable manager component, the system can share all the information in a uniform way
throughout the system. All shared information can be rendered location-transparent, as the receiver does
not have to know the sender of the message. The location-transparency makes it easy to add new sources
of information, as the receivers are not interested in the producing party - only the data.

However, as the variables are only updated periodically or by request, the data may be old when it
is needed. The detection of out-dated data and requesting new values takes time and thus the reaction
times may be longer. The prolonged reaction times may make this solution not suitable for event-based
systems.

As the variables are stored locally to the node, they consume storage space from the node. Usually
nodes are quite low-end devices so these resources may already be scarce.

It is easier for a developer to use a consistent interface and variable naming scheme to access data
regardless of if the original data is produced locally or remotely. It it also possible to implement tools
which can aid in data visualization and debugging when all important data is presented using variables.
However, variable namespace may become cluttered during the long life cycle of a control system,
especially if the system has many shared variables. When a new variable is introduced, the designer
must make sure that the name assigned to it is not already used. Moreover, whenever a variable is
removed, it must be made sure that no one is anymore using it.

It may be hard to design the correct updating and invalidating strategy for a variable. If a variable is
updated too often, it may cause excessive bus load. On the other hand, if the remote nodes get an update
too seldom, their calculations may be imprecise and some important events may pass unnoticed.

* * *

A forest harvester control system consists of multiple nodes, some of which are low-end control nodes
and one is a high-end control PC. These nodes are connected with a CAN bus. When the operator wants
to fell a tree, she uses the controls in the cabin to command the control PC. The operator has to feed in
some attributes of the current tree such as its specimen type and the desired length of the logs. These
attributes are shared as variables in the system, so they propagate through the connecting bus to the
nodes as periodic messages. The harvester head node uses these variables in its own operations, such as
calculating the correct feed speed of the tree in order to saw logs of the desired length. As the harvester
head node feeds the tree, it measures the length of the log and shares this as a variable. The harvester
head node uses this information in its own operation as the feeding must be stopped at the right moment.
This is fully local operation as the round trip latency for communicating this information to another node
and getting a stop command as a reply would be too great. However, the cabin PC also uses this variable
to show the operator information about the feeding process.

2.2 Variable Value Translator

...you have a distributed machine CONTROL SYSTEM which consists of several independent nodes.
These nodes must co-operate in order to perform the tasks the machine operator wants to. The nodes
gather data from the environment using sensors, perform computations from this data and the actions
of the nodes usually produce state information, which are presented as variables. Usually the measured
variables in the nodes represent different physical quantities in different resolutions. For example, a
measured length of a tree may be measured as rotations of a metering wheel in one node and an algo-
rithm in other node that calculates the center of mass uses centimeters.



8

Varying and different measuring units that the components in the system use should be sup-
ported seamlessly.

The nodes and devices of the machine control system may be acquired from multiple vendors which
may originate from different countries. The nodes may use different units in their measurements. Usually
the nodes use unscaled raw values or standard units in their measurements. Different vendors may use
different measurement systems (metric system vs. standard units etc.) This makes adding new devices to
the system challenging as the measurements and calculation parameters may be incompatible with each
other. In addition, if a component providing vendor goes out of business or otherwise has to be changed
during the life cycle of the software product, it has to be made sure that the replacement devices support
the same units as the rest of the system.

Mixing up units, such as adding inches and centimeters together while calculating distances, may
cause extremely dangerous situations and even loss of life, so the system should be designed so that
possibility of this kind human error is minimized.

It may not be possible to change the measurement units from the producing device as the units are
not configurable by vendor-made decision. However, different consumers of the produced data may
require different format for the measured value and it is the responsibility of the consumer to use the
correct units and resolutions.

The messages that contain the measured data may contain additional information, such as same
data in other units or a metadata field containing the unit that the data uses. However, messages sent
by devices are usually not configurable. This means that if the device vendor has not enabled sending
the same information in different units or using a metadata field, it is a huge task to implement this
afterwards. The reasons why the vendors may omit this data may include the additional length to the
message caused by this information and the low processing power in the measuring devices.

The machine operator might only be familiar with her own native measuring system. She may not
be familiar with the units used by some suppliers in some parts of the systems. However, in order to
ensure that the operator can efficiently operate the machine, the user interface should present only units
that she is familiar with.

Therefore:
Add a converter service to the system. This service converts data to correct unit, e.g. from mph

to km/h or from voltage in a sensor to temperature in Fahrenheit, when the data is requested.

* * *

If both SEPARATE REAL-TIME and VARIABLE MANAGER have been applied, there can be one spe-
cial Variable Manager on the system, that collects all variable values to one place. It usually resides on
the high-end node. As the low-end nodes have limited resources, they usually don’t use physical quan-
tities, but rather some raw sensor data. In this way, they do not need any special converting services for
data that is for local use only. Thus the sending, receiving and processing the data is quicker. However,
some high end applications may need different units than the core system raw data and thus, a translation
service interface is needed. The most natural place to implement this translation interface is the variable
manager on the high end node, if such exists. This interface can output any variable it knows in other
units.



9

There are multiple strategies to resolve how the translation interface can know the correct units for
a certain variable. The converter layer can know the correct unit for a variable either by a separate con-
figuration or from a metadata field in the messages which contain the data. The metadata field requires
more space from the message and may make the data payload smaller, but it can handle easily a sit-
uation where the producer node is replaced with another that uses different units. Using the metadata
field, there is no need for reconfiguration as the message itself carries all the necessary information. It
also encapsulates all variable-specific information in one node and no other node need to know how a
variable is measured or how it is used in other nodes. However, usually this is not feasible as the low-end
devices have vendor-spesific messaging schemes which are not easily changeable. The metadata can be
used to be sure that the nodes do not inadvertently mix different units.

The other strategy to resolve the problem is some kind of configuration file that connects every
variable to a certain unit. It is easier to add new devices that send only predefined messages where there
are no room for metadata, but now someone must maintain the configuration files. There is a great risk
of failure, if some variable is configured to use wrong units. This kind of misconfiguration may have
catastrophic consequences. In a large system, there might be thousands of variables, so maintaining all
required configuration data is a gargatuan task.

The converter interface can offer services for changing a unit of some variable to a other unit. This
allows different algorithms in a certain node to use different resolutions in the calculations. In a more
extreme case, an algorithm can use different measurement system than the other parts of the system if it
only uses variables as its interface to the outside world.

* * *

All variables in the system can be in any units that the user or software modules may require.
It it easier to develop software as the developer does not need to know which units are in use in other

parts of the system as she choose freely from any convenient unit system. It is also easier to test the
system as the hardware-dependent raw values are used only locally in the nodes.

However, converting values requires some processing power and slows the system down as remote
nodes must send the values to the high-end node for conversion and wait for the result. Therefore, all
conversions take at least twice the time what sending one message does.

If the system is not properly designed, this pattern can not guarantee that all nodes always use the
same units.

* * *

An autonomous fork lifter uses several different sensors to carry loads from a shelf in a warehouse to
another shelf or to the loading area. These sensors include velocity sensors, limiting switches and so on.
In addition, there are many valves and electric motors that must be controlled by sending them messages
containing the proper amount of movement they have to carry out. All these sensors and actuators are
acquired from different sub-contractors and may use different units and the scaling of the raw values vary
from a device to device. The fork lifter has a long lifespan and it must be made sure that broken sensors
and actuators are easily replaceable with new devices, that are possibly provided by a different vendor.
This is achieved by using a converter service in the Variable Manager of the main node. It converts
the received messages which contain the measured values into SI units. The main node software uses
consistently SI units in all calculations. All sent control messages are then translated to correct units for
the receiving actuator. In this way, the sensors and the actuators may use freely any units they want to
as long as the converter is properly configured.

2.3 State Variable Guard

...you have a distributed machine CONTROL SYSTEM which consists of several independent nodes. The
nodes gather data from the environment using sensors, perform computations from this data and the
actions of the nodes usually produce state information. This has been remedied using VARIABLE MAN-
AGER. However, the system may have components that are made by a third party, but their operations
rely on the data produced by the the system. For example, a navigation software is made by a 3rd party,
but it needs the GPS location information from the rest of the system. This 3rd party software should
not be able to alter the location data or cause any other problems by accidentally altering the system
state variables. Furthermore, no sensitive data should be accessed by the 3rd party software.

Access or modifications to the state variables should be limited to only trusted parties



10

It is sometimes necessary and beneficial to allow third party vendors to be able to implement their
own software upon the machine control system. There can be a plethora of reasons why the machine
control system provider should open up their platform to other companies too [5]. System openness may
promote better software for the platform, as the control system vendor may focus on their core business.
New innovations and ideas are more likely to happen if others may develop their own software using the
provided platform. As the systems have long life cycles, some degree of openness may help the system
to adapt to the unforeseen requirements and usages of the system. As the VARIABLE MANAGER acts as
the normal interface to the system’s data, the variables the 3rd party software needs should be readable
for them.

In addition to developing new features, even in-house development may benefit from some degree
of openness. Testing the control system is easier when the testing platform can access the variables in
the system. Remote access systems are usually developed as separate projects from the control system,
but it needs a well-defined access to the control system variables. Thus, it resembles a trusted 3rd party
application.

However, openness must not override safety and security. The 3rd party software can not be allowed
to access sensitive information (personal information of the operator, business-critical data and such)
and it may not alter the basic data in the machine control system as this might compromise overall
system safety. Even if the 3rd party is trusted, it is easier to test the system safety conformance so that
the 3rd party software can not even accidentally alter any safety related state variables.

Therefore:
Design a mechanism to guard the state variables, which checks if an application is allowed to

read variable values or submit their own changes to system state information. The mechanism is
the only component that can directly access Variable Manager.

* * *

When both SEPARATE REAL-TIME and VARIABLE MANAGER have been applied, the system can
support one special Variable Manager, that collects all variable values to one place. It resides on the high
end node, which also has more processing power than the low-end nodes. Therefore it is used to provide
a platform for 3rd party software. If a 3rd party software wishes to read variables from the Variable
Manager, its developers are given a special interface and documentation how to use it. The interface can
be implemented for example by using a dynamic library file and a interface description, so the inner
workings of the variable manager need not to be exposed to the 3rd party developers. An other way to



11

implement this pattern is to add an additional node to the system which communicates only with the
high-end node using a dedicated bus and has only a read-only access to all the data. In this way no
malicious changes to the machine data are possible.

The Variable Guard interface is one-way access to the all core information and keeps track that
no sensitive (personal or businesswise) information is allowed to be read. If the 3rd party developers
wish to store their own data in the Variable Manager, they should be able have some own variables.
This is by using the Variable Guard’s interface to reserve new named variables. These variables have
unlimited reading and writing rights for the 3rd party software. This helps the developers as they can
use an uniform way to access data regardless of its origin. However, if the 3rd party software developers
may freely allocate new variables, they may excessively tax the storage space on the high-end node and
the access times may become longer as the Variable Manager must handle a large amount of variables.
Therefore, some kind of limit to amount of 3rd party variables should be enforced in the Variable Guard
interface.

This pattern is similar to the EXECUTION DOMAIN pattern [6] and PROTECTION PROXY [7].

* * *

The system can have 3rd party software without any fear of malicious or erroneous changes to the
system variables. Also all sensitive data is hidden from the 3rd party software developers. The 3rd party
software ecosystem may be built in order to generate more revenue. However, this pattern does not
provide a way to protect data from a 3rd party software that should execute on a low-end node.

The 3rd party developers may use in an uniform way both their own data and the system core data.
Testing and remote access systems can have an access to control system data.
However, special care should be taken when designing the interface, so that the guard really protects

the variables. Feelings of false security may rise when a guard is applied, but badly designed interface
may leak information due to a buffer overflow.

* * *

A mining drill has to communicate with a fleet management software. The fleet management software
resides on a server that is physically far apart from the drill machine. The communication is carried
out using a GPRS modem. The fleet management only needs some production and location information
from the drill and does not need minute details about the sensor values etc. on the system. Therefore,
the it has been sensible to add an additional node with a GPRS modem to the mining drill bus. This
node communicates with the high-end node using a variable guard system to access a limited amount of
data in the system. This node then transmits this data with an integrated modem to the fleet management
server. In this way, the mining drill cannot not send any sensitive data to the fleet management and the
machine operator does not have access to the management data in the fleet management server.



12

3 Acknowledgements

We wish to especially thank our colleagues Dr. Johannes Koskinen and Ville Reijonen for their valu-
able help and input during the gathering process of these patterns. We also wish to thank all industrial
partners for their willingness to provide the opportunities for the pattern mining. These companies in-
clude Areva T&D, John Deere Forestry, Kone, Metso Automation, Sandvik Mining and Construction,
Creanex, Rocla, SKS Control and Tana. In addition, we would also wish to thank Nokia Foundation
and Pirkanmaan rahasto for their scholarships and grants which have aided us in writing these patterns.
Finally, huge thanks to our shepherd, Robert S. Hanmer, for his valuable suggestions and help in im-
proving this paper.

References

1. Alexander, C.: The Timeless Way of Building. Oxford University Press, New York (1979)
2. CiA: CANopen Specification. CiA, NÃ 1

4
rnberg, Germany. http://www.can-cia.org/.

3. Kircher, M., Jain, P.: Pattern-Oriented Software Architecture, Volume 3: Patterns for Resource Management.
Wiley, Chichester, UK (2004)

4. ISO 11898: Road vehicles – Controller Area Network (CAN). ISO, Geneva, Switzerland. (2003) http:
//www.iso.org/.

5. Eklund, U., Bosch, J.: Introducing software ecosystems for mass-produced embedded systems. In: Lecture
Notes in Business Information Processing, 1, Volume 114, Software Business, Part 2, Part 7. (2012) 248–254

6. Schumacher, M., Fernandez-Buglioni, E., Hybertson, D., Buschmann, F., Sommerlad, P.: Security Patterns :
Integrating Security and Systems Engineering (Wiley Software Patterns Series). John Wiley & Sons (mar 2006)

7. Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., Stal, M.: Pattern-Oriented Software Architecture,
Volume 1: A System of Patterns. Wiley, Chichester, UK (1996)

http://www.can-cia.org/
http://www.iso.org/
http://www.iso.org/

	Patterns for Distributed Machine Control System Data Sharing
	Marko Leppänen and Veli-Pekka Eloranta {firstname.lastname}@tut.fi
	Introduction
	Patterns
	Variable Manager
	Variable Value Translator
	State Variable Guard 

	Acknowledgements
	References



