

Patterns for Evaluating Usability of Domain-Specific Languages
ANKICA BARIŠIĆ, Universidade Nova de Lisboa
PEDRO MONTEIRO, Universidade Nova de Lisboa

VASCO AMARAL, Universidade Nova de Lisboa

MIGUEL GOULÃO, Universidade Nova de Lisboa

MIGUEL MONTEIRO, Universidade Nova de Lisboa

For years the development of software artifacts was the sole domain of developers and project managers. However, experience has
taught us that the users play a very important role in software development and construction. The inclusion of the Domain Experts
directly in the development cycle is a very important characteristic of Domain-Specific Languages, as they have often an important
role in making and constraining the domain of the language.

DSLs are credited with increased productivity and ease of use, but this fact is hardly ever proven. Moreover, Usability tests are
frequently only performed at the final stages of the project when changes have a significant impact on the budget. To help prevent
this, in this paper we present a pattern language for evaluating the usability of DSLs. These patterns can help show how to use an
iterative usability validation development strategy to produce DSLs that can achieve a high degree of Usability.
Categories and Subject Descriptors: H.5.2 [Information Interfaces and Presentation]: User Interfaces—Evaluation/methodology;
H.1.2 [Models and Principles]: User/Machine Systems—Human Information Processing; D.3.3 [PROGRAMMING LANGUAGES]:
Language Constructs and Features—Patterns, Specialized application languages; D.2.9 [SOFTWARE ENGINEERING]:
Management - Software quality assurance (SQA), Productivity, D.2.13 [SOFTWARE ENGINEERING]: Reusable Software - Domain
engineering;

General Terms: Usability Evaluation of Domain-Specific Language

Additional Key Words and Phrases: Pattern Language, Domain-Specific Language, Usability Evaluation

ACM Reference Format:
Barišić, A., Monteiro, P., Amaral, V., Goulão, M. and Monteiro, M. P. 2012. Patterns for Evaluating Usability of Domain-Specific
Languages. In Proceedings of the 19th ACM Conference on Pattern Languages of Programs (PLoP 2012) (SPLASH, Tucson,
Arizona, USA, October 19-21 2012).

1. INTRODUCTION
An increasing number of people rely on software systems to perform their daily routines, work-related

and personal tasks. As such, the number of software systems has risen greatly in the last few years and
new products need to be developed rapidly so as to satisfy the demand. Domain-Specific Languages
(DSLs) arise in this context as a way to speed up the development of software by restricting the
application domain and reusing domain abstractions. Thus, DSLs are claimed to contribute to a
productivity increase in software systems development, while reducing the required maintenance and
programming expertise.

The main purpose of DSLs is to bridge the gap between the Problem Domain (essential concepts,
domain knowledge, techniques, and paradigms) and the Solution Domain (technical space, middleware,
platforms and programming languages)[Barišić et al. 2012]. In order to accomplish and validate the
desired outcome, we need to have means to assess the quality and success of the developed languages.
Not embracing quality assessment is to accept the risk of building inappropriate languages that could
even decrease productivity or increase maintenance costs.

Author's address: Ankica Bariši, CITI, Departamento de Informática, Faculdade de Ciências e Tecnologia, Universidade Nova de
Lisboa, 2829-516 Caparica, Portugal; email: a.barisic@campus.fct.unl.pt; Pedro Monteiro, CITI, Departamento de Informática,
Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; email: pmfcm@campus.fct.unl.pt;
Vasco Amaral, CITI, Departamento de Informática, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516
Caparica, Portugal; email: vma@fct.unl.pt; Miguel Goulão, CITI, Departamento de Informática, Faculdade de Ciências e Tecnologia,
Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; email: mgoul@fct.unl.pt; Miguel P. Monteiro, CITI, Departamento de
Informática, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; email:
mtpm@fct.unl.pt

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first
page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission. A preliminary
version of this paper was presented in a writers' workshop at the 18th Conference on Pattern Languages of Programs (PLoP).
PLoP'12, October 19-21, Tucson, Arizona, USA. Copyright 2012 is held by the author(s). ACM 978-1-4503-2786-2

Software Language Engineering (SLE) is the application of a systematic, disciplined and quantifiable
approach to the development, usage, and maintenance of software languages. One of the crucial steps in
the construction of DSLs is their validation. Nevertheless, this step is frequently neglected [Gabriel et al.
2010]. The lack of systematic approaches to evaluation, and the lack of guidelines and a comprehensive
set of tools may explain this shortcoming in the current state of practice. To assess the impact of new
DSLs we could reuse experimental validation techniques based on User Interfaces (UIs) evaluation as
DSLs can be regarded as communication interfaces between humans and computers. In that sense,
using a DSL is a form of Human-Computer Interaction (HCI). As such, evaluating DSLs could benefit from
techniques used for evaluating regular UIs.

We reviewed current methodologies and tools for the evaluation of UIs and General Purpose
Languages (GPLs), in order to identify their current shortcomings as opportunities for improving the
current state of practice [Barišić et al. 2011]. That brought us closer to providing adequate techniques for
supporting the evaluation process which, we argue, should be based on methods for assessing user
experience and customer satisfaction. Applying these methods to DSL end users enables us to promote
DSL usability as a priority in the DSL development. It follows that usability must then be considered from
the beginning of the development cycle.

One way of doing this is through user-centered methods [Rubin and Chisnell 2008], i.e. placing the
intended end users of a language as the focal aspect of its design and conception, thus making sure the
language will satisfy the user requirements. In order to tailor such methods to DSL development, we need
to establish formal correspondences for all iteration stages between the DSL development process and
the usability evaluation process [Barišić, Amaral, Goulão and Barroca 2011]. Following an agile
development approach focused on usability will allow us to track usability requirements and the impact of
recommendations with a well-prepared evaluation process, by that allowing management to control
budget and scope of language evaluation.

Patterns represent tangible solutions to problems in a well-defined context within a specific domain
and provide support for wide reuse of well proven concepts and techniques, independent from
methodology, language, paradigm and architecture [Buschmann et al. 1996]. Thus, using patterns, we
aim to disseminate the knowledge of these best practices to both expert and non-expert developers,
easing the adoption of good solutions in other systems.

The rest of this paper is organized as follows: in Section 2 we present our pattern language and the
patterns that compose it. In Section 3, we describe related work, while in Section 4 we conclude and
discuss future work.

2. PATTERNS
A pattern language is a set of inter-dependent patterns that provide a complete solution to a complex
problem [Buschmann, Meunier, Rohnert, Sommerlad and Stal 1996]. The main purpose of these patterns
is to identify which commonly and successfully-used techniques for usability evaluation can be effectively
applied in DSL design and guide the reader on the process of applying said techniques. As such, apart
from the provided examples, the main core of Known Uses and examples we provide exist outside the
realm of DSLs. This ensures the reader has a wide range of documented examples and case studies to
choose from.

Our inter-dependent set of patterns is divided into the following three design spaces (see Figure 1):

Agile Development Process. This design space considers patterns devoted to project management and
engineering of a DSL. This is the most important design space because it is through it that the
development team (i.e. Language Engineers, Usability Engineers and Domain Experts) accesses the
remaining design spaces.
- USER AND CONTEXT MODEL EXTRACTION. Before building a new DSL we should identify all

intended user profiles and target context of use.
- EVALUATION PROCESS AND DESIGN PLANNING. Usability evaluations and experimental designs

should be carefully planned through an experimental process model.
- ITERATIVE USER-CENTERED DSL DESIGN. Introducing DSLs User-Centered methods allows us to

achieve a productivity increase.
- ITERATION VALIDATION. By validating the iterations in time-box fixed intervals we can monitor

progress and check if development is going in the desirable direction.

- CONTEXT SCOPE TRADING. Short iterations require short and well scoped contexts.
- FIXED BUDGET USABILITY EVALUATION. In order to reduce the cost of Usability validation and

increase the validity of design decisions, the development team should plan development
budgets according to the scope of iteration.

Figure 1. Patterns for Evaluating Usability of Domain-Specific Languages

Iterative User-Centered Design. The users are the central part of a DSL. This design space considers
how to engage the users (both Domain Experts and End Users) in the development process. Also, it
describes the roles and responsibilities of the Usability and Language Engineers in collecting valuable
information about the DSL and its level of usability while it is being developed.
− USABILITY REQUIREMENTS DEFINITION. While building domain concepts, through direct interaction

with Domain Experts, it is valuable to collect background information of the target users of each
language concepts, in order to specify what usability means to them.

− CONCEPTUAL DISTANCE ASSESSMENT. In order to understand how the design of the language’s
architecture impacts usability requirements, it is necessary to elect quality indicators and relate
them to domain concepts

− DOMAIN CONCEPT USABILITY EVALUATION. Using metrics to analyze the metamodel’s concepts
representation allows the Language Engineer to reason on how different concept models impact
the DSL’s quality in use.

− USABILITY REQUIREMENTS TESTING. It is necessary to provide tests and evaluate if the current
implemented features contribute to the defined goals.

− Experimental DSL Evaluation Design. When a release candidate version of the DSL for a specific
target user group seems to be ready for deployment, an experimental usability validation should
be performed with real users and real test case scenarios.

EXPERIMENTAL EVALUATION MODEL. This design space indicates adoption of experimental software
engineering practices to the Usability evaluation of DSLs. As these practices are generally known we are
not describing them in scope of this paper. However, example of its application and systematic
comparison of best DSLs evaluation experiments is given in .

2.1. Key concepts (Lexicon)
Language Engineer is a professional who is skilled in the application of the engineering discipline to

the creation of software languages. They manage implementation priorities, design the software language
and are responsible for making it functional at the system level. Language Engineers are involved in the
language specification, implementation, and evaluation, as well as providing templates and scripts
[Kleppe 2009].

End User is someone who uses software languages to create applications [Kleppe 2009] (e.g.
application developers). In domain-specific modeling the possible user base of the models can easily be
broader, as it allows application users to be better involved in the application development process. In
that case customers, other than typical application developers, can read, accept and in some cases
change application specifications, being directly involved in the application development process. End
User can work with models that apply concepts directly related to specific characteristics of configuration,
like specifying deployment of software units to hardware or describing high-availability settings for
uninterrupted services with redundancy and reparability for various fault-recovery scenarios. Yet another
group of users is responsible for specifying services that are then executed in the target environment
[Kelly and Tolvanen 2008].

Domain Expert is a person involved in the language development process, also known as a
knowledge engineer or consultant. In the case of domain-specific modeling they do not need to have
software development background, but they can specify application for code generation. They can specify
models for concept prototyping or concept demonstration, and Language Engineers can proceed from
these models. They are responsible for managing system goals and iterations. In contrast with End
Users, they should have domain knowledge that includes areas of all target model applications.

Usability Engineer is a professional that is skilled in assessing and making recommendations that will
improve Usability. Usability Engineers may be engaged into design of language in order to reason about
concrete Usability metrics and design change impact. They are responsible for user research and
evaluation management of product.

Domain-Specific Languages are programming languages that provide solutions to essential problems
from a given domain (e.g. Physics Computing, Financial Domain, Healthcare, Control Systems). They are
often used by Domain Experts, rather than programmers with a background in computer science. DSLs
Usability has a deep impact on developers’ Productivity. As such, DSLs should be evaluated as human-
computer languages (i.e. User Interfaces) with respect to their Usability, so that they can be improved and
are more efficient in bridging the gap between the Problem and the Solution domains. Some examples of
well-known and successful DSLs include SQL, PostScript, LabView, Simulink, Lego Mindstorms,
TexLanguage (like LaTex and BibTex) and Microsoft Excel.

Usability is the quality characteristic that measures the ease of use of any software system that
interacts directly with an End User. It is a subjective non-functional requirement that can only be
measured directly by the extent with which the functional architecture of the language satisfies users’
needs based on their cognitive capacity. It focuses on features of the human-computer interaction.
Usability is result of the achieved level of quality in use of a software system i.e. a user’s view of quality. It

is defined by ISO 9241 as “the extent to which a product [service or environment] can be used by
specified users to achieve specified goals with effectiveness, efficiency and satisfaction in a specified
context of use”[Iso 2001]. It is dependent on achieving the necessary external and internal quality that is
influenced by achievement of different quality attributes dependent on context of use. Tests of language
usability are based on measurements of the users' experiences with it.

Productivity is the ratio between the functional value of the produced good to the effort and cost of
producing it. It is considered that good software systems analysis enhances software Productivity and
software Productivity is a success measure of systems analysis. The measure of Productivity is based on
the achieved results of the software in use. A high level of Usability directly increases Productivity of
software. Productivity metrics need to capture both the effort required to produce the software and the
functionality provided to the End User. These measures should give software managers and
professionals a set of useful, tangible data points for sizing, estimating, managing, and controlling
software projects with rigor and precision [Jones 1991].

User-centered method (design) is comprised of End User involvement in development of software
product at different points of the lifecycle. They include techniques such as ethnographic research,
participatory design, focus group research, surveys, walk through, preliminary prototyping, expert or
heuristic evaluation, usability testing, as well as follow up studies [Rubin and Chisnell 2008].

2.2. Ongoing example. Physicist’s EAsy Analysis Tool for High Energy Physics
In order to exemplify the proposed pattern language, we will take an existing DSL for High Energy

Physics (HEP) called Pheasant (Physicist’s EAsy Analysis Tool), developed using some of the methods
described in this paper. A detailed description of Pheasant can be found in [Amaral 2005]. Due to
complexity of this example, we will not delve much into the act of understanding domain-specific concepts
of this particular DSL; its intended goal is to provide an understanding of the patterns’ application to it.

In the context of High Energy Physics (HEP), physicists try to discover new short-lived particles and
their properties or the properties of their interactions, in order to develop a model of the real world at a
subatomic level. Large accelerators accelerate subatomic particles to induce collisions. These collision
events are recorded by sub-detectors that measure and analyze the results. Afterwards, the large volume
of data collected by detectors is mined and used to try to infer statistical physics results, validating them
against currently proposed physics models. The physicists' analysis systems are composed of a
visualization tool, a set of scientific calculation libraries, and a storage manager. Traditionally, in a first
step of his analysis, the user selects a subset of data from the storage manager. Then, several
reconstruction algorithms with scientific calculations filter out data and compute new values that are
stored in private collections. Finally, the new data collection is visualized in the appropriate tools (for
instance by histograms).

The reconstruction and investigation of decays and decay chains of short-lived particles are the main
computationally demanding tasks of the data analysis, which starts after the data acquisition. Roughly
speaking, in this phase, physicists have to select those kinds of decays and particles they are interested
in. For this selection, it is usually necessary to reconstruct parts of the particles' trajectories (also called
segments), to match them with other segments in order to reproduce the full particle trajectories (called
tracks), to extract further properties, and to deduce the complete decay chain.

The Pheasant project was developed to mitigate users Productivity problems in this domain. It aimed
to develop reusable engineering methodologies through Model-Driven Development (MDD) techniques. A
declarative Domain Specific Visual Query Language (DSVQL) was used to raise the abstraction level in
the existing query systems and give room to new optimizations of different levels. The goal of Pheasant
was to automate this process as much as possible, as well as to provide the End Users (with profiles
ranging from the ones without programming expertise to high-level programmers) appropriate
abstractions that hide the complexity of programming error prone algorithms in languages (e.g. C, C++ or
Fortran), by using a wide plethora of libraries and frameworks to achieve their goals.

It served to confirm that the proposed query language tailored to the specific domain was beneficial to
the End User. The physicists, non-experts in programming, no longer were required to cope with different
GPLs and adapt to the intricacies supporting database infrastructure.

The DSL developed through the Pheasant project is a good example of known-use of the pattern
language to be illustrated in this paper, as it is a complete exercise for a DSL development and is
designed with strong user feedback, focusing on understanding how the language is perceived, learned,
and mastered. It also gives classification of users, categorizing them by identification of their specific
requirements. The validation of the language through Usability evaluation tests is included [Barišić et al.
2011].

2.3. Agile Development Process
It is necessary to establish iterative and incremental development process in which requirements and
solutions evolve through collaboration of DSL development stakeholders. Agile Development Process
breaks tasks into small increments and each iteration should fit in short time-boxes that typically not last
more than a month [Martin 2003]. It promotes face-to face communication in workshops without impact of
hierarchy roles of team members. All of them should take same level of responsibility that business and
user needs are satisfied, by optimizing impact of evaluation feedback on language development.
Appropriate iteration strategy that balance time invested into design of problem and its solution should be
planned well with technical implementation. When goals are scoped and budget is fixed, we are ready to
proceed to design and implementation activities that are guided by patterns given by Iterative User-
Centered Design.

 [Pattern] USER AND CONTEXT MODEL EXTRACTION
The main goal of designing a DSL, or any other language or software system, is to satisfy the user’s
requirements. We need to design the language in a way that the number of user profiles covered by
Usability evaluation of a DSL should be significant in relation to the actual number of intended DSL End
User profiles. This means that, in the majority of cases, the number of user profiles and contexts of use
characteristics will also be relevant.

Problem
How to distinguish for which user profiles and contexts of use we have validated the DSL's usability level?

Forces
� On-Budget Completeness. The language developers need to balance the number of features that

need to be incorporated in the language and evaluation design with the time and effort required to
complete said design.

� User Coverage. It is sometimes easy to forget that, in general, a DSL is intended to be useful for only
a relatively small set of users and not a wide range of them. When designing a language we must pay
close attention not to place too much effort in satisfying requirements of non-target users.

Solution
Before building a new DSL we should identify all intended user profiles and target context of use. These
user groups should be characterized by their background profiles and domain expertise, as well as
different stakeholder positions in solving problem groups. These general user characteristics should be
weighted according to its relevance, which will influence the relevance level of each chosen test user
group.

Also, in the same way we should define a complete context model that will contain all technology
variations that will be possible to use, equipment availability, additional software support and its
compliance to new system, as well as intended working environments and its effect on using a system.

By building a complete user and context model we are able to control for which extent of targeted user
population, as well as environmental and technical range, Usability is reached. However, this is hard to
achieve on a strict budget and the development team should be aware that some requirements might only
be identified at later stages.

As the new domain concepts are identified for the DSL, potential users of those concepts, and
contexts of use should be defined. This introduces the problem of knowing if all user groups are
represented and how those user groups relate with the others and with the overall context and domain.

Moreover, if usability is to be validated iteratively, the Usability Engineer need to be able to manage and
extract feedback from a large number of users on a regular basis.

For that extent, building the context and user model should be done within the domain analysis phase
of the DSL development.

Table 1. List of user characteristics

TECHNICAL CHARACTERISTICS PROFILE CHARACTERISTICS STAKEHOLDER PERSONAL
CHARACTERISTICS

KNOWLEDGE
ABOUT HEP
EXPERIMENTS

5 PHYSICIST 5 experimenter 5 EXPERIMENT
ROLE

5 Experiment
designer

5 ANALYTICAL
THINKING

5

KNOWLEDGE OF
PARTICLE
PHYSICS

4 theoretician 1 Analyst
performer

4 LOGIC
REASONING

4

KNOWLEDGE OF
PROGRAMMING

3 querying 5 ENGINEER 4 ACADEMIC
TITLE

4 Professor 5 SIGHT
PROBLEMS

1
c
programming

4 PROGRAMMER 3 PhD 4

Fortran
programming

2 Master
student

4

 c++
programming

2 PostDoc 3

Example
The user model is obtained by identifying the list of main characteristics based on which categorization of
user groups is accomplished. For the case of Pheasant (see Table 1) these characteristics are prioritized
with a Likert scale representing an evaluation importance weight ranging from 1 to 5, where 1 means
‘unimportant’ and 5 means ‘very important’. After indicating these weights, it becomes trivial to extract
important user models that need to be evaluated.

Table 2. Users working equipment and environment
USERS WORKING EQUIPMENT USERS WORKING ENVIRONMENT

OFFICE
COMPUTER AS
WORKING
PLATFORM

processor power capacity: 2GHz-3,6GHz number of cores 2-4 working desk 5
RAM capacity: 2GB-8GB chair 5
internal storage capacity: 250GB-2TB number of discs: 1-4 windows 3
monitor size: 20''-24'' color: yes office lights 4
network capacity: X Wireless ,wired offline air-condition system 3
power range: 550W-750W heating machine 3
office electrical power system: secondary power:
keyboard: optical
mouse: optical

OFFICE
COMPUTER AS
CONNECTION
DEVICE TO
CLUSTERED
SYSTEM

processor power capacity: 2GHz-3,6Ghz number of cores: 2
RAM capacity: 1GB-4GB
internal storage capacity: 120GB-1TB number of discs: 1-2
monitor size: 20''-24'' color: yes
network capacity: 112Mbs -1Gbs wireless, wired online
power range: 300W-550W
electrical power system: secondary power:
keyboard: optical
mouse:: optical

This weight hierarchy will become increasingly detailed with each new iteration. For instance, if the

main profile observed is that of a physicist, we need to find details which help to isolate specific
characteristics, thus creating sub profiles. In the case of Pheasant, we are interested in physicists who 1)
have knowledge of HEP experiments and particle physics, and 2) have knowledge of programming and
querying.

The context model details the user’s working equipment. As Pheasant is meant to be used from
computers, it is essential to describe the scope of computer characteristics (see Table 2). This allows us
to reason about whether any usability issues detected in the language can be traced to inappropriate
equipment or working environment. Working environment can also cause user to obtain lower results
during use of language, so it is important to describe and control main environment equipment.

Also, it is important to characterize the language operating environment to which we target the desired
usability levels (see Table 3). As it may be too expensive to perform testing with all language operating
environments configurations, one should assign different priorities for different configurations, so that at
least the most important configurations are tested.

Related Patterns
− ITERATIVE USER-CENTERED DSL DESIGN. To begin the development process, it is required that the

USER AND CONTEXT MODEL EXTRACTION is featured.
− EVALUATION PROCESS AND DESIGN PLANNING. While the resources for the user and context model

are gathered, a plan for evaluation should also be considered.

Known uses
In usability testing one of the main problems for achieving usable products is that development focuses
mainly on the machine or system, not considering the human aspects of software. There are three major
components that should be considered in any type of human performance situation: Activity, Context and
Human. Designers should focus on all three elements during development [Rubin and Chisnell 2008].
Benefits of user and context modeling on management and final product are confirmed in areas of service
and interface development.

Table 3. Language operating equipment and environment
LANGUAGE OPERATING EQUIPMENT OPERATION SYSTEM ENVIRONMENT

Detector 1 OS Linux UNIX 5
Storage 5 Windows Dos 3
Calculation libraries 5 Mackintosh MAC OS 4
Robotic tape 2 Visualization Tool JAS 5
Accelerator 1 Framework Fortran PAW 4
 ARTE 4
 C++ ROOT 3
 ARTE 4
 BEE 5

[Pattern] EVALUATION PROCESS AND DESIGN PLANNING
During the development of a software artifact such as a DSL, the development team needs to carefully
plan how the development stages should proceed and what are the required features that are to be
developed in each step of development. In this case, the same attention must be given to Usability
evaluations and experimental designs.

Problem
How to plan the processes of evaluation experiments and control the adequacy of the produced solutions
to the intended users and respective context models?

Forces
� Planning and Control. Through good and careful planning the engineering team becomes more able

to control and validate results, and to know the scope of their impact. Planning is a time consuming
task and if not done carefully induces the risk of spending resources on evaluations with questionable
validity and usefulness.

� Reusability. Results, if packaged correctly, can be reused or replicated on another solution or similar
context as long as adequate measures for each context are controlled and validated. However, it

becomes easier to reason about the impact of recommendations that resulted from each experiment
and reuse these conclusions for another evaluation session.

� Balance user need validity and budget. From the users’ stand point all wished features and
requirements are valid and essential. However, not all features fall within budget and not all users
have the same amount of influence in the outcome and features of the DSL.

� Experimental evaluation cost. There is a tension between the cost of a full-blown experimental
evaluation and the need to make short delivery sprints.

Solution
When planning the evaluation process and experimental designs, the Usability Engineer must document
the main problem statements and their relations with intended experiments. The documentation should
include initial sample modeling (considering all possible samples, groups, subgroups, disjoint
characteristics, etc.), context modeling, instrumentation (e.g. type of usability tests and when to use
them), the instrumentation perspectives (e.g. cognitive dimensions fundamental to assessing usability)
and their relation with metrics acquired through data analysis and testing techniques.

To assess the validity of results that will lead us to reason about Usability of the domain-specific
solution, Domain Experts and Language Engineers should list goals and system requirements that are
basis for successful process and extent of experiments. The main problem statements and intended
usability experiments should be designed with care, to ensure replicability, and to control the result of
alterations.

Table 4. Goal lists
SYSTEM GOALS EVALUATION GOALS

Deal with petabytes of data. 5

Query steps in Pheasant vs. the object-oriented coding 5

Support hundreds of simultaneous queries. 5

Aggregation 3

Return partial results of queries in progress 4

Expressing a decay 4

Provide interactive query refinements. 4

Specification of filtering conditions 3
Deal with data on secondary and tertiary storage access
for simultaneous queries

3

Vertex definition and the usage of user-defined functions 5

Support statistical selection mechanisms (uniform
random sampling)

4

Path expressions (navigational queries) 4

Provide a flexible schema which supports versioning 3

Expressing the result set 3
Provide an environment for data analysis that is identical
on desktop workstations and centralized data
repositories.

3

The expressiveness of user-defined functions 4

Example
In this pattern we need to identify and prioritize all goals of the language, as well as the goal of the
evaluation. The goals for Pheasant are described in Table 4.

These goals will later be used to control which goals were addressed by the problem statements of
experiments and the heuristic evaluations.

Goals are fulfilled by executing tasks, therefore we need to list and prioritize them to further decide
how to design instrumentation and metrics to capture these tasks (see Table 5)

As the goal of Pheasant is to obtain better querying than in the previous approaches, it is important to
list comparison elements that should be addressed during evaluation (see Table 6).

Related Patterns
− ITERATIVE USER-CENTERED DSL DESIGN. Developing an evaluation plan of action with goal and

requirement analysis is an important starting point for iterative development.

Known uses
Identifying and controlling evaluation process and design trough set of tasks, evaluation goals, and
different test approaches is a common approach for evaluating experience in using any product or
service. Examples of its use can be found in assessments of customer satisfaction, evaluation of public

opinion, evaluation of psychological capabilities in human resources, as well as in evaluation of user
interfaces. Detailed example of practical application to query languages can be seen in [Reisner 1981].

Table 5. Task list

QUERY TASKS USER TASKS COGNITIVE TASKS

Run/tag selection
- Trigger selection Inform status Query writing
- Run period Write query

Save query
Query reading
Query interpretation

Event selection

- Filled bunch
- No coasting beam Load query Question comprehension
- No empty events Generate code Memorization
- Refined confirmation of the trigger Undo/Redo Execute Problem solving

Reconstruction

- Track selection Get Query results

- Particle ID filter condition Define Shema
- Combination of tracks DefineUDF
- Vertexing Define constants
- Kinematic or geometric filter conditions

 Histogramming and/or comparison with Monte Carlo Simulation

Table 6. List of comparison elements
COMPARISON ELEMENTS

CAPTURE TEST

 TEXTUAL VS. GRAPHIC SYNTAX GENERAL PURPOSE VS. DOMAIN SPECIFIC

Final exams
Expressive Readability

Immediate comprehension

Easy to learn Accessibility

Reviews
Syntax error Free design reuse

Productivity

Semantics error Free high-level abstraction

Retention
Small Conceptual distance clarity of program specification

Re-learning

Memorizable program checking
 Easy to use language performance
 Non-Ambigous Maintainability
 Formalizable Portability
 Effectiveness

[Pattern] ITERATIVE USER-CENTERED DSL DESIGN
When developing a new DSL, the development cycle is intertwined with scheduled deliveries of
incremental versions of the DSL. Since the focus of development is usually on the delivery time and
functionality, rather than the user’s needs, it is usual to attain a solution which did not reached desired
level of quality in use and quality of experience.

Problem
How to ensure that the domain-specific solution will result in increased level of users’ productivity when
compared to the existing baseline?

Forces
� Cost of Usability Control vs. Cost of Future Modifications. If we do not control usability tests during

the several development stages, essential evaluation failures may lead us to meta-level changes that
are equivalent to language development from scratch.

� Development Cost. Developing any language is a very expensive endeavor, more so because of the
need to ensure that we will produce highly usable language that provides qualitative experience.

Solution
As we discussed previously in EVALUATION PROCESS AND DESIGN PLANNING, Productivity is related to the
level of achieved Usability. Therefore, to prove the long claimed productivity increase provided by
introducing DSLs, Usability Engineer need to introduce User-Centered methods to DSL life-cycle.

On other hand, in order to increase the chances of adoption by End Users within the domain, the
Language Engineers should embed User-Centered design activities within the DSL development process
itself. It is important to involve Domain Experts and End Users in the development process, empowering
them to drive the project and specify their use case scenarios. However, executives and users of the
language models should be involved but not overly committed to it, as users will quickly become afraid of
being accountable for eventual project mishaps.

Each iteration of the development cycle should be combined with a User-Centered design activity
where usability requirements are defined and validated through constant interaction with target user
groups. This means that the user becomes an invaluable part of the development process and receives
some measure of responsibility over the outcome of language design and development.

Example
Like the pattern explains, we should build a schedule of all iterations at the beginning, clearly identifying
participants and what features are to be tested. At each passing iteration we can then re-prioritize the
remaining iterations according to what was accomplished.

These schedules should also include careful approximations of how much time and how many
participants will be involved in active work on the usability evaluation. This includes the time that is
required to make guidelines, list requirements, choose metrics, and implement focused workshops to
discuss the results, analysis of results and so on. An example of a one such schedules is shown in
Table 7.

Table 7. Evaluation iteration description

ITERATION DESCRIPTION OUTPUTS PERSONS TIME

1st

heuristic analysis of
implemented features
with domain expert

list of typical tasks user want to perform with the
language

Usability Expert 1 200h

list of usability problems from previous cycle Domain Expert 1-2
list of beneficial usability aspects from previous
approach

Language Engineer 1-2

2nd

heuristic analysis of
implemented features
with usability expert

checklist of usability for interfaces (ref) Usability Expert 2-3 40h
specification list of element structure, position, etc. Domain Expert 1
 Language Engineer 1-2

3rd

usability analysis of
language metamodel
quality

List of language semantic clones Usability Expert 1 60h
List of language syntactic clones Domain Expert 1
 Language Engineer 2

4th

pilot test for the first
experimental
evaluation with users

list of features that need to be rechecked Usability Expert 1 120h
list of tasks to perform with language Domain Expert 2-3
 Language Engineer 1-2

5th

experimental
evaluation with users
following experiment
design

list of detailed task and usability elements Usability Expert 1 120h
metrics specification End User 14-24
 Language Engineer 1-2

In this case, the set of Pheasant iterations can be seen as a single development cycle step after

which, if additional development was required, we would have similar usability iterations inside a new
cycle with the new product in use. On this next cycle, the schedule would be easier to predict since they
would be based on the numbers from the previous cycle. This gives the development team the means to
control the cost of evaluation.

As expected, the 200 hours requirement of the first iteration includes the time needed to prepare and
estimate the first evaluations. The following iterations require considerably less time as they are based on
the previous ones.

Related Patterns
− USER AND CONTEXT MODEL EXTRACTION. User and context model need to be extracted so that is

possible to plan which of them will have impact on iteration.
− EVALUATION PROCESS AND DESIGN PLANNING. Goals need to be explicitly expressed in order to

plan each iteration.
− ITERATION VALIDATION. Each iteration should be followed by a validation stage where the output of

the iteration is validated against expectations.
− CONTEXT SCOPE TRADING. Allows the analysis of what should be done in the next iteration.
− ITERATIVE USER-CENTERED DESIGN. At the level of this pattern all patterns within the ITERATIVE

USER-CENTERED DESIGN design space should be considered.

Known uses
The Usability engineering lifecycle is iterative by itself and should be merged with development of any
product [Mayhew 1999]. Involvement of user-centered techniques in iterative development of software
product is becoming common, and examples vary from user interfaces to data oriented applications
[Catarci 2000].

[Pattern] ITERATION VALIDATION
Developing any form of complex software artifact, the professionals in charge of development need to
constantly reevaluate priorities of features and requirements according to the way the project is
developing, its goals, schedules and budget.

Problem
How to control which usability problems were solved, and analyze their possible relation with new ones
that may arise?

Forces
� New features vs. fixes. During development, it is frequent to discover new requirements that the user

considers of importance. It is up to the development team to decide if these are considered new
features or fixes to improve quality of solution. The latter should have top priority while the former
should be carefully analyzed and sized.

� Featurism vs. usability. The Usability Engineer should clearly define the line where the number of
features begins to jeopardize usability rather than promoting it.

� Loss of focus. As the DSL development process progresses and the number of features increases, it
is easy to lose track of intermediary goals. It then becomes increasingly important to validate what
has been accomplished at each iteration and measure how far we are to our true goal of a usable
DSL

� Iteration Validation schedule. The validation itself should be short and concise, so as to not overstep
the boundaries of the current iteration’s development schedule. However it should be dense enough
to allow the least amount of work to be postponed for additional iterations.

� Regression Testing. At each iteration evaluation is focused mainly on new features of the language
but, as the language is growing incrementally, it ends up re-covering language details addressed in
previous iterations. This is essential to ensure that new features don’t deem previous features
unusable, however there is also a cost associated with re-testing every previously tested feature. In
this case the requirement is that at key iterations, when a new stable major version of the language is
developed, testing and validation is performed on the full set of language features and not only on
those newly added.

Solution
Although DSLs are developed in constant interaction with Domain Experts, by validating the iterations in
time-box fixed intervals we can monitor progress and check if it is going in the desirable direction. If it is

not, developers are able to react to possible problems on time. At any point during language
development, new requirements may arise and it is the job of the Language Engineer to evaluate them
from a language point-of-view, while the Usability Engineer is required to analyze and frame the new
requirements into the time-box. The length of the project itself should not be allowed to extend over the
intended deadline or to surpass the original budget except in very specific cases when the new
requirements translate into make-or-break features that cannot fit into the original project scope.
Nonetheless, every change in the project has to be carefully analyzed and a compromise must be
reached with the decision-maker stakeholders.

If ITERATION VALIDATION is not completed at least every few iterations, when the number of features
developed is enough to warrant user tests, then there is a higher risk of failure of iterative development.

Time-boxing is concluded with a progress report and with documenting results of the validations in an
iteration assessment that consists of:

− A list of features that obtained the required level of usability
− A list of usability requirements that were not addressed
− A list of usability requirements that need to be reevaluated or that represent new requirement

items
This should be done through explicit communication with all relevant stakeholders of the validated

iteration.

Example
Picking up Pheasant’s 5th iteration from Table 7, validation of the iteration is accomplished by defining
what features were successfully implemented and which still require some work (see Table 8).
Understanding the status of usability evaluation for the current iteration allows us to redesign the
schedule for the next few iterations.

Table 8. Iteration validation

VALIDATED TO BE REVALIDATED NOT ADDRESSED ADDITIONAL
FUNCTIONALITY

Expressing filter conditions Path expressions Environmental equipment testing Query reuse
Expressing and using vertexing Expressing and using UDFs Interface design heuristics from Microsoft Query scripting

Expressing the result set Different data schema
feature

Expressing a decay
Structuring the query

Related Patterns
− VALIDATE ITERATIONS. More than understanding if iterations are on track and re-working the

following iterations accordingly, as the VALIDATE ITERATIONS pattern [Völter and Bettin 2004]
suggests, ITERATION VALIDATION requires the project team to validate if usability remains a
concern throughout every iteration.

− ITERATIVE USER-CENTERED DSL DESIGN. Validation is a part of the iterative design and
development process of a DSL.

− CONTEXT SCOPE TRADING. The output of ITERATION VALIDATION is fed into CONTEXT SCOPE TRADING
to allow the analysis of future iterations.

− FIXED BUDGET USABILITY EVALUATION. Validation controls how the budget was spent to
accommodate usability questions.

− USABILITY REQUIREMENTS TESTING. Based on requirements test results we have means to perform
iteration validation.

Known uses
Validating iterations of product development cycle is beneficial for controlling development of any end
product. It makes clear what issues are addressed and reviles new requirements that are overseen in

planning of first cycle, and keeps track of validated approaches. This methodology helps to justify new
specifications for project management and involves their decisions trough project [Völter and Bettin 2004].

[Pattern] CONTEXT SCOPE TRADING
During the development of the DSL, the development team needs to maintain both the focus of the
development and the timeline and budget set by the project owners.

Problem
How to ensure that each development iteration remains focused on the user’s needs while maintaining a
short time frame?

Forces
� In-loco user. Working directly with representative user groups, will allow detecting early the majority of

usability defects so that they can be fixed at a minimum cost.
� Following Recommendations. Following guidelines and recommendations for the most relevant

quality characteristics can be a time-consuming task. However this will result in early adoption of best
practices that will eventually contribute to a usable solution.

� User Needs vs. Project Management. Sometimes defining requirement priorities according to user
needs goes against project management best practices. It is up to the development team to ensure
that both goals are achieved within the same package.

� Sustainable focus. When working within a budget and time limit, it is hard to focus on all usability
requirements at each iteration and continue to ensure a successful iteration outcome. Some
requirements are bound to receive more attention than others and lengthy requirements tend to
always get pushed to future iterations [Jones 1996].

� Spread thin. Although tempting, in medium/large projects it is impossible to take into account all
intended user profiles, environmental dependences and domain concepts in a single iteration. It is up
to the engineering team to decide the iteration scope and to recognize how to profit from short
iterations bursts.

Solution
Short iterations require short and well scoped contexts. Each iteration needs to precisely characterize the
context that specific iteration will capture from the set of global context, intended users and domain
solution.

To keep the user as the focus of each agile iteration, the results of usability tests should be used to
ensure that development prioritizes the most significant features, with focus on prioritized quality
attributes and on the most representative user groups for the relevant context.

In order to effectively achieve this, each iteration should be preceded by a Scope Trading Workshop
where all relevant stakeholders should come to an agreement on the context scope of the iteration. They
should also agree on how the captured outcome of usability tests and experimental evaluations is to be
handled.

The workshop should be used to:
- Assign a strict sequence of priorities to items in usability requirements list, depending on

relevance of the domain concept’s use-case;
- Identify the most relevant items from the backlog that should be solved in the next iteration;
- Reanalyze priorities of usability problems according to intended scope of user and context

model;
This workshop should take place in the domain analysis phase, after validating iterations. Prior to the

first iteration of the development process, identification of scope is achieved according to the extracted
user and context model from the initial project plan. The intended scope of user and context model is
analyzed more in depth after its definition during the workshop.

Example
Following the scope model defined in the USER AND CONTEXT MODEL EXTRACTION pattern, we define the
User and Context scope as given in Figure 2.

Figure 2. Language Use Scope

This scope is a subset of the scope defined in Table 1 and Table 2, accounting for the fact that

changes occurred in the set of available user groups and environment throughout the iterations. Using
this new reduced scope and with the definition of evaluation for the iterations of the first cycle, as defined
in Table 7, we define the current Evaluation Scope as is shown in Figure 3.

Having defined this scope, it is easier to calculate the budget of the evaluation, and to design
experimental evaluation focusing just on the given goals.

Figure 3. Evaluation Scope

Related Patterns
− SCOPE TRADING. These patterns are very similar in idea, however, while Scope Trading [Völter

and Bettin 2004] relates more to strict requirements. CONTEXT SCOPE TRADING can be seen as an
extension of the original pattern to allow context trading considerations, which are valuable for
DSLs.

− ITERATIVE USER-CENTERED DSL DESIGN. CONTEXT SCOPE TRADING is a mandatory development
strategy of ITERATIVE USER-CENTERED DSL DESIGN.

− FIXED BUDGET USABILITY EVALUATION. The iteration scope defined within CONTEXT SCOPE TRADING
constrains what can and can’t be done within budget limits.

− ITERATION VALIDATION. The output of each validation stage is used to define what went wrong and
if its solution is within budget.

Known uses
Scope trading on any product development method gives input means to its budget definition [Völter and
Bettin 2004]. Any evaluation requires precise definition of its scope, in order to be able to validate its
results and indicates trade-offs in design decisions [Rubin and Chisnell 2008].

[Pattern] FIXED BUDGET USABILITY EVALUATION
We need to develop a usable DSL for a fixed budget. The abstract nature of the language and complexity
of the domain knowledge prevents contractual details from capturing every aspect that needs to be
considered for a language design and implementation that leads to a system that optimally supports
users in their work.

Problem
How to maintain the budget within planned limits and ensure development results in a language with
satisfying level of usability?

Forces
� Scope vs. Cost: Evaluation, its scope and context, should be wisely planned in order to minimize its

cost but provide valid usability assurance.

Solution
The engineering team should regularly validate iterations to user-drive the language under construction.
However, in order to reduce the cost of Usability validation in each iteration the development team should
focus on:
− Using short time-board iterations that concentrate on implementing main features first and drafts

of additional ones.
− Producing shippable DSLs in short iterations sprints. Since only a few features will be addressed

in each iteration, the end result might have features which are left obviously unfinished and
ambiguous. These unfinished features should act as motivators for user feedback.

− Getting ‘live’ feedback about unfinished features through brainstorming of possible solutions.
− Producing first level applications and evaluate them with users, focusing to capture usability

validations related to the language design.

After each usability evaluation, Usability requirements that have failed validation must be annotated
with clarifications, and listed alongside any new usability requirement that may have emerged during the
last iteration. Subsequently the development team re-calculates realistic costs for all open usability
requirements to enable scope trading and iteration sizing.

After a few such iterations, the work can be packaged and made available in the form of intermediary
release. At this stage usability evaluation can/should be performed in real context of use with
representative user groups, and language artifacts can be fully validated.

Example
Having defined the evaluation iterations of the first evaluation cycle, presented in Table 7, we can
calculate and fix the budget for our evaluation cycles. This budget is recalculated after each ITERATION
VALIDATION. Cost estimation is made easier by having detailed cost diagrams. This enables the
development team to compare the cost of each independent evaluation against the achieved result.
Keeping this budget accounting also allows a more precise prediction of future costs.

Table 9 shows, for the first iteration cycle of Pheasant, how the budget evolved to encompass changes in
iteration duration and cost estimation. At each passing iteration, the actual cost of the iteration was
checked against the expected cost and budget corrections were made to the following iterations so that
the project can be globally balanced. Having a well-balanced budget means that it becomes easier to
know if the project is going according to what is expected.

 One thing that must be noted in the budget of the successive iterations is that the number of expected
work days also changes. This is an important fact as this indirectly influences both the monetary cost of
the iteration and the scope of the following iterations.

Related Patterns
− FIXED BUDGET SHOPPING BASKET. It is never enough to stress that it is important to keep a fixed

budget for whichever iteration style. Fixed Budget Shopping Basket [Völter and Bettin 2004]
details how to split the overall project development budget over all iterations.

− CONTEXT SCOPE TRADING. The iteration scope that is defined in turn constrains what can and
cannot be done within budget limits.

− ITERATION VALIDATION. The output of FIXED BUDGET USABILITY EVALUATION is used by ITERATION
VALIDATION to understand if iterations are going according to plan.

Known uses
This pattern represents a concrete application of a method from risk management and analysis. It is used
for lowering the risks that result from big project investments and provides various advantages such as
requiring the contractor to be responsible for project design and development, as well as for legacy of the
projects. Applicability of these models in scheduling and cost estimation of a fixed budget that is built in
construction projects is shown to be very beneficial [Öztaş and Ökmen 2004].

Table 9. Budget evolution for Pheasant

INITIAL DATA
EXPECTED WORK

DAYS
15 days
(0-15)

5 days
(16-20)

5 days
(21-25)

7 days
(26-32)

7 days
(33-39)

A priori Estimation 1.000 € 1.200 € 1.500 € 2.100 € 3.100 €

1ST ITERATION
Days 17 21 25 32 39
Cost Estimation 1.050 € 1.250 € 1.550 € 2.150 € 3.150 €
Cost Correction +5% +4% +3% +2% +2%

2ND ITERATION
Days 17 21 25 32 39
Cost Estimation 1.100 € 1.370 € 1.670 € 2.270 € 3.270 €
Cost Correction +5% +10% +8% +6% +4%

3RD ITERATION
Days 17 21 26 32 39
Cost Estimation 1.100 € 1.370 € 1.620 € 2.220 € 3.220 €
Cost Correction 0% -3% -2% -2%

4TH ITERATION
Days 17 21 26 32 39
Cost Estimation 1.100 € 1.370 € 1.620 € 2.070 € 2.970 €
Cost Correction 0% -7% -8%

5TH ITERATION
Days 17 21 26 32 42
Cost Estimation 1.100 € 1.370 € 1.620 € 2.070 € 2.970 €
Cost Correction 0% 0%

2.4. Iterative User-Centered Design
It is necessary to engage the End Users in the language design in order to collect valuable information
about their working scenarios and requirements [Righi and James 2007]. In order to assess
appropriateness of given concept design decisions it is necessary to identify meaningful quality attributes
for each domain concept and its use. Metrics should be defined and calculated based on their
dependency to designed concepts and should be in conformance with evaluation goals. Finally, they are
expected to result with concrete hypothesis, tests, metrics, samples and statements that should be
addressed and validated trough Experimental Evaluation Model

[Pattern] USABILITY REQUIREMENTS DEFINITION
Understanding what is within the agreed budget for some project development is a skill that requires both
a focus on the project and on the users’ expectations by which the project’s success is measured. When
the main goal of the project is to achieve a usable solution, managing the users’ expectations becomes
much more important and can define the entire development strategy.

Problem
How to define expectations and desired usability of the intended DSL?

Forces
� Independent perspectives on quality. Language Engineers are able to reason about quality during

development process. However, their perspective on quality does not necessarily match the
perspective of other stakeholders, namely the DSLs End Users. These users originate from
potentially different cultural backgrounds and have different responsibilities and motivations within the
domain. That means that the perspective with which each End User of the language can look at it
varies. By looking to the same language artifact, different stakeholders will mainly focus on a partial
view of it, but all those partial views should be kept consistent. Features will have different importance
to different stakeholders, shifting his interest to different measures of quality. Failing to identify this
mismatch may lead to a solution that does not meet the expectations of the DSL users.

� Conceptual model. Analysis of usability requirements can bring us closer to building a correct
conceptual model of solution and complete requirements model from the End Users point of view.

� Language Choice. When surveying commonly used software tools in the domain it is very easy to end
up comparing apples with oranges. Systematic studies of the tools of the trade need to be performed,
placing careful consideration with the intended use of the different tools. Tools with slightly different
applicability, even if used in the same context of use should not be compared, unless the comparison
takes into account these application dissimilarities. For instance, Microsoft Excel and the statistical
software R can both be used to perform statistical analysis. However these are two very different
tools and each excels in its own specific niche.

Solution
While building domain concepts, through direct interaction with Domain Experts it is valuable to collect
background information of the intended users of each language concepts, to find what usability means to
them. We essentially need to have a way to keep all target user groups’ needs in mind when developing
the language.

The Usability Engineer should formulate a survey, questionnaire or interview with intended user
groups about their knowledge background and experience with previous approaches. This will help the
engineering team to define precise user scenarios that should be the focus of the iteration cycle. While
electing domain concepts, critical features that the user is concerned with should be identified and their
relation with appropriate quality dimensions and attributes should be modeled. This model will later be
used during experiment design to construct correct instruments, like questionnaires, to measure the
distance between wished and achieved quality in use of provided solution.

In addition it is necessary to collect all data relating to the work environment and software products
that are already in use to solve the problems inherent to the domain. It is important to identify
characteristics that the users find that are useful, frustrating or lacking while using those products. In this
way engineering team can find what quality means in the specific context of use for each user profile.

The solution provided intends to provide the basis by which the engineering team will define
requirements and domain-specific goals that need to be considered. For a more in-depth explanation of
this solution, we advise the reader to scan through the following example.

Example
In the case of Pheasant, one of the main requirements that motivated the project was the need to provide
a more efficient and easier to learn query language, thus overcoming the problems of the previous
approach. However, the new Pheasant queries needed to remain consistent with the underlying system
framework, so that would not be necessary to change previously existing queries or future queries

developed in other systems. The Pheasant language needed to be developed aiming to raise the level of
abstraction in such a way that the End Users could ignore individual query implementations of the
different frameworks and in fact share their queries (i.e. have a way to talk about the specification of their
queries without having to go deeply into the details of the programming environment).

In the Table 10 we present the partial list of Usability requirements and tasks for Pheasant. They can
be assessed at levels of Internal/External Quality, Quality in Use and Quality of Experience [Iso 2011].

Table 10. Usability Requirements

USABILITY
REQUIREMENT DESCRIPTION INTERNAL QUALITY EXTERNAL QUALITY QUALITY IN USE QUALITY OF

EXPERIENCE

Understandability

The language
features should be
easy to understand,
represented with
familiar notation to
user

Check consistency
with physics
notation

Validate ambiguous
feature design
decisions with
Domain Expert

Give simple tasks to
users and capture
time and eye
movement in order
to find required
features

Capture user
opinion about
features that take a
longer time to be
assessed by user

Expressiveness

Provide simple way
to present complex
queries

Repetitive construct
flows of solving
complex queries
should be
represented near
each other

Comparison tests
on effort needed to
solve the same
queries with
different designs

Measuring time
needed by expert
users to solve
complex queries

Feedback on logical
flows of provided
solution

Improved readability
of queries

Check query
representations of
baseline approach
and its problems

Comparison tests
on effort needed to
solve the same
queries with
different designs

Correctness of
query interpretation
by end users

Capture user
suggestions of
improvements for
contracts that are
not interpreted
correctly, likability
and confusions of
solution
representation

Learnability

The user
documentation and
help should be
complete

All syntactic
elements of
language should be
well documented
and consistent with
metamodel change

All given language
functionalities
should be explained
in documentation
and followed by
example

Check how fast is
user able to perform
querying using help

The help should be
context sensitive
and explain how to
achieve common
tasks for different
types of users

Check that provided
description of use
for each syntactic
element covers all
use cases that
include that element

For given use
cases, check
coverage of the
examples provided
for given language
functionalities

Check if the user is
able to reuse same
concepts in different
context.

(Usually contextual
help will present
simple example.
These should be
checked with more
complex examples)

Language syntax
elements should be
easy to remember
by the user

For each syntax
element, ask the
user to give it a
meaning, and if it is
confused ask for
other suggestion

Provide examples
on how to solve
problems, and ask
users to solve
similar problem for
which solution
requires the same
constructs (without
consulting teaching
materials).

Follow how
frequently users ask
for help to find
same concepts
(operators, relation
symbols)

Capture repetitive
misinterpretations of
language elements
by novice users and
provide quick test to
experienced users
for that elements
and collect
feedback with
additional
suggestions

Functionality

Most frequent
Querying task
should be easy to
do

Build concept
element from most
frequent tasks
which have
common logic

Count number of
steps required to
perform task

Measure time and
number of mouse
clicks/keystrokes to
perform the task

Collecting feedback
about likeability and
pleasure that
provided solution
given to users

Concepts that are
parts of same task
should be
presented
sequentially,
following same logic

Sequence of
domain concept
relations should be
analyzed against
the tasks they
belong to

Make sequence
diagrams with
domain concepts

Focus on repetitive
operations of tasks
and make sure they
have the same use
process

Collecting feedback
about likeability and
pleasure that
provided solution
given to users

Operability

Language actions
and elements
should be
consistent

Feature and
behavior diagram
validation with
Domain Experts

Testing if all
diagram relations
and rules are
implemented
correctly

Correctness of
solving tasks that
are constructed
based on scenarios
from which
diagrams were
extracted

User opinion on
improving
consistency for
tasks that have low
level of correct
solutions

Error messages
should explain how
to recover from the
error

Specifying language
constructs where
error recovery
should be
implemented

Testing error
recovery by
specification

Giving tasks that
lead users to error
messages and
asking them for
feedback about
them

Collecting feedback
about missing,
misleading and
incorrect error
messages

Undo should be
available for most
actions

specifying undo
construct

Testing of undo
construct

Capturing use of
undo construct
while solving tasks

Collecting feedback
about missing,
misleading and
incorrect undo
options

Actions which
cannot be undone
should ask for
confirmation

Specifying
(dangerous) actions
that cannot be
undone

Testing all specified
actions

Providing tasks that
need solutions that
cannot be undone
by the user, and
asking their opinion
about them

Collecting feedback
about missing undo
confirmations and
the actions that
should not be
specified like so

Prevent users from
producing syntax
errors
(e.g. misspelling)

Specifying model
checkers inside the
language

Implementing and
testing model
checkers

Capturing user’s
repetitive intent to
produce same
syntactic errors, and
asking their opinion
on how they can be
more intuitive

Collecting syntax
errors that may be
produced by use of
language in log files

Prevent users from
producing semantic
errors
(e.g. query not
behaving as the
user expects it to)

Specifying model
checkers inside the
language

Implementing and
testing model
checkers

Capturing incorrect
query
implementations
and interviewing
expert users about
the given meaning
(to identify cognitive
problem solution or
implemented
meaning problems)

Capture user’s
frustrations of
repetitive semantic
errors

The diagram given by Figure 4 shows how different internal and external quality characteristics from

ISO standards influence Pheasant’s Usability.

Related Patterns
− CONCEPTUAL DISTANCE ASSESSMENT. The requirements identified in USABILITY REQUIREMENTS

DEFINITION are prioritized based on the quality attributes they impact.
− USABILITY REQUIREMENTS TESTING. Usability tests performed at each iteration are evaluated

against the usability requirements so as to allow a definition that encompasses the current
usability status of the language.

− EXPERIMENTAL DSL EVALUATION DESIGN. The usability requirements defined at the level of this are
specified in QUALITY DESIGN MODEL that is part of EXPERIMENTAL EVALUATION MODEL

Known uses
Usability is seen as a special aspect in requirement engineering, of which the main phase is requirements
definition [Carlshamre 2001]. Benefits of requirement engineering for MDD approach can be seen in
examples of software product lines, supporting traceability and contributing to flexibility and simplicity in
development [Alférez et al. 2008].

Figure 4. Kiviat diagram of Internal/External Qualities for Pheasant

 [Pattern] CONCEPTUAL DISTANCE ASSESSMENT
Extracting information from the users is a valuable source of data by which to measure the current status
of our solutions. However, to be able to analyze how each requirement impacts the DSL, we need to find
a way to extract influential quality attributes.

Problem
How to measure conceptual distance between the user point of view to solve the problem and the
provided solution?

Forces
� Quality Impact on Usability. More than defining what quality attributes is important, it is essential to

identify the quality attributes whose lack of actually impacts usability. That information should enable
developers to produce pertinent usability metrics.

Solution
In order to understand how the design of the language’s architecture impacts the usability requirements,
the engineering team is required to elect quality attributes and connect them with domain concepts,
creating a two-way relationship of <influences/is influenced by>.

Furthermore, for each domain concept and related usability requirement, we should identify both, its
frequency and relevance within the domain. Weights should be assigned between the quality attributes
and the domain concepts according to their influence on the final usability of the language.

Next, it is necessary to identify the frequency of different tasks that are covered by the iteration
scenario. Tasks should be divided into subtasks that can be directly related with the domain concepts that
will be tested.

This process will allow the Usability Engineer to decide which usability tests are most pertinent in the
current development stage and for a specific usage context. Controlling iteration priorities in turn enables
a higher level of management over the usability process, by defining which usability aspects and features
are to be tested iteration-wise.

Example
For Pheasant, considering only query writing tasks, the list of subtasks that the user is required to cope
with and respective frequency is as described in Table 11.

Writing query task consist of four subtasks: (i) Selecting Collections, (ii) Selecting Events,
(iii) Selecting the Decay and (iv) Selecting the Result. These subtasks are capturing the domain concepts
presented as the metamodel elements (see Table 12).

Table 11. Task frequency use table
TASK FREQUENCY

Inform Status 3
Write Query 5

Generate Coder 4
Execute 4

Get Query Result 4
Define Shema 3

After having this analysis, it makes it easier to connect the metamodel elements with usability

requirements and produce concrete metrics in the terms of combination of subtasks that user need to
perform.

Related Patterns
− USABILITY REQUIREMENTS DEFINITION. In order to consider the impact of Domain Concepts on the

development, a clearly defined list of usability requirements is essential.
− DOMAIN CONCEPT USABILITY EVALUATION. The impact of the domain concept on the quality of the

end product influences evaluation priority and importance.

Known uses
Conceptual distance has its roots in cognitive psychology. The concept of modularity that is involved in
MDD allows us to measure this distance using cognitive maps [Monteiro]. Application of this approach is
visible in terms of analysis of cognitive effectiveness [Moody and Van Hillegersberg 2009], [N. Genon
2010].

Table 12. Query subtask connection with metamodel elements
METAMODEL: QPHEASANT QUERYING SUBTASK

Connectable <--Selection Selecting the Decay

<--TransitionResult

Transition Selecting the Decay

Aggregation Selecting the Decay

CollectionNode <--CCOP <--Union Selecting Collections

 <--Intersection

<--CollectionSet

<--Exclusdion

Event Selecting Events

ResultNode <--OneD Selecting the Result

<--TwoD

<--ThreeD

<--Histogram

Comparison Selecting the Decay

Distance <--AbsDistance Selecting the Decay

 <--RelDistance

 [Pattern] DOMAIN CONCEPT USABILITY EVALUATION
There are many advantages of determining the required quality characteristics of a DSL before it is
developed and used. Metrics are a common way to determine whether a software development project is
within the parameters that were defined for its execution, i.e. budget and timeline. They are also useful to
analyze whether some functional goals are being accomplished. For DSL development, the focus of
metric-based analysis is the language metamodel.

Problem
How to capture domain concept related with usability problems using metrics?

Forces
� Metamodel evaluation. The level by which a metamodel is analyzed for usability issues has a direct

relation to future failures in implementation. Performing some measure of qualitative analysis of initial
language metamodel, which contains the domain concepts mapping at their initially stages, is an
important step in language engineering, since problems identified at earlier phases would not be
propagated onto the following phases of development.

� Agile development. The domain concepts defined in the language metamodel should not be
considered final and can/should be analyzed at fixed stages during development in order to evaluate
the ability of the metamodel to apprehend all needed domain concepts and to allow for the agile
inclusion of usability requirements.

Solution
During the metamodel implementation phase, which is usually complex as the Language Engineer needs
to model all the domain concepts into the metamodel, it is also the time when all domain concepts are
fresher and can thus be analyzed from a top-down perspective.

Using metrics to analyze metamodel concept’s representation allows the engineering team to reason
on how different concept modeling will impact the Usability of the DSL. Applying internal and external
quality metrics we can reason about syntax dependences (i.e. metamodel’s features) and their relation
(i.e. meaning that they give).

Ideally the engineering team should be able to understand how changes and variations in the
metamodel’s design influence functionality, operability and overall usability of the language. With this
knowledge he can measure and decide the importance of quality attributes to achieve the end goal and
therefore which ones should be targeted and subsequently validated.

Not all metrics and measurements contribute to this end as they might not provide important feedback
regarding quality improvement. The most significant metrics analyze direct DSL usage by DSL users and
extract information from the gathered DSL corpus. Examples of these metrics include:
− Clone Analysis. Like in GPLs, duplicated code is a very well-known code smell that indicates

modularization problems[Beck et al. 1999]. In DSLs corpus, more than a need to modularize, the
existence of several clones, consistently showing up with a given pattern, should trigger our
attention.

− Cluster Analysis. Identifying clusters of domain concepts in the language corpus allows the
Language Engineer to evaluate if related concepts or concepts that are often used together
represent a sub-language within the DSL, i.e. how the changes in the corpus are reflecting in the
usability of the DSL. This is again a modularity issue, as clusters should be, as much as possible,
modularly independent from other clusters, thus usability issues in one cluster should not
influence other clusters.

− Semantics-based Analysis. Performing language analysis on the metamodel might help identify
variations of the same meaning.

− Usage Analysis. Metamodel elements with a high level of use by the users require more thought
and consideration according to usability than less used concepts.

− Metamodel Design Pattern. Specification of a metamodel is dependent on the designer’s domain
knowledge and language expertise. Thus, it is advisable to follow existing designs patterns for
metamodels[Cho and Gray 2011].

Careful consideration of these and other available heuristics of actual usage of the DSL will allow the
development team to direct project resources to the most critical language features.

Example
Evaluating Pheasant is not a trivial task. Nonetheless, the physicist, who takes the role of the query
modeler, is immediately aware of the changes in the instances of the meta-Metamodel just by using the
visual operators when modeling his query (see Fig. 5). This picture represents the direct mapping that
exists from the user actions in the model to the metamodel of language.

For the first cycles, the influence of quality characteristics of the language corpora on the user should be
determined from user tasks. From these, and after the first quality assessment of the metamodel, the
engineering team identifies potential need for clones and clusters. For instance, consider that the user
identifies the need for two ways to accomplish the same thing, i.e. two distinct processes leading to the
same outcome. The Language Engineer needs to design this in the metamodel. In this case the
metamodel element representing the action needs sub-elements representing the different variations of
the same task. This need should then be validated by discussing the true impact of these clusters and
clones on the language’s usability. In later validations of quality in use these agreements should be
tracked, so as to understand if the existing metamodel analysis premises are needed in the new version
or if the scope changed.

Figure 5. Corpora relation to the metamodel tasks (Taken from [Amaral 2005])

Related Patterns
− CONCEPTUAL DISTANCE ASSESSMENT. The true impact of domains concepts in the quality in use of

the DSL is measured by DOMAIN CONCEPT USABILITY EVALUATION.
− USABILITY REQUIREMENTS TESTING. DOMAIN CONCEPT USABILITY EVALUATION will also help reduce

the budget for usability testing by directing tests to the most essential language features.

Known uses
Evaluation of concepts is performed using a conceptual dimensions framework [Kosar et al. 2010]. This
approach is also used in user interfaces evaluation by building a conceptual models [Johnson and
Henderson 2002].

[Pattern] USABILITY REQUIREMENTS TESTING
Satisfying the user’s needs should be the primary goal of a DSL. Therefore all DSLs have a strong
consideration for quality in use, i.e. usability. It is important not only to define what are the principles by
which the language is to be measured, i.e. which usability requirements and quality attributes define if a

specific language is usable or not, but also what tests can be performed to ensure that the desired level
of quality is achieved.

Problem
How to analyze if the goal usability requirements are being met by the DSL?

Forces
� Cost of Heuristic Validation. Heuristic validation can be a very time consuming task. However,

performing non-expensive heuristic validation, we can reveal lots of relevant information about
achieved level of usability.

� Cost of User Evaluation with small number of participants. Validation of usability with a small number
of users between release cycles can identify lots of usability failures.

� Iterative Feedback. All feedback collected can be used to create mean values for the indicators of the
next iteration cycles.

Solution
At the end of each iteration, a USABILITY REQUIREMENTS TESTING stage is required to evaluate if the current
implemented features go towards the usability goals previously defined [Dumas and Redish 1999;
Mayhew 1999; Nielsen 1994].

When considering which tests to perform it is useful to consider the current state of the end product.
There are usually three different levels of usability testing, depending on the current iteration:
− Initial developments or non-stable product versions should be tested by a reduced set of users,

and test should be strictly focused on the features under development. Feedback can be direct,
e.g. through workshops and meetings, or through small questionnaires.

− Intermediate stable versions should be tested with a group of users that are expected to interact
with provided stable features. It is important to test changes and variations between stable
versions and also to test if previously validated features continue to achieve the intended goal.
Feedback can be collected through workshops and small questionnaires, and reused for next
iterations by extensions related to additional features. At this stage it is useful to observe and
analyze user’s usage processes to detect small scale usability problems related to automatic
tasks and cognitive processes that usually are not reported.

− Release candidates are the most important focus of usability tests. The Usability Engineer should
ensure that the users are allowed to perform the tests with a minimum of interference and
constrains. If a user cannot test due to a bug in the beginning of an activity, the entire test
process is undermined.

Additionally the Usability Engineer should define, with the assistance of key stakeholders, a set of
heuristic based validation methodology that will allow validation of the DSL without direct user
intervention. These can be for instance a measure of user clicks to achieve a certain use case, product
performance and responsiveness, ability to roll back on user errors, content placement, etc.

There are a few guidelines that should be followed to successfully perform usability tests:
− Test usability with real DSL users.
− Ideally use real usage test cases rather than dummy examples. For the final stages of

development, a beta testing of a stable version of the DSL in real life usage environment should
be considered.

− Tasks and features being tested should be directly related to the goals and concerns of the
current iteration.

− All user feedback should be accounted for, even if no measure of importance can be given to the
feedback, it might serve to provide feedback on the user’s state of mind and motivations.

− If possible allow for discussion. Users usually have different views of a same subject and it is
useful to allow them to debate these views in order to reach a common understanding.

One important fact about usability testing is that tests should be targeted at the domain under study.
Some domains are more prone to accept some types of tests rather than others. It’s up to the engineering
team to detect these patterns and proceed accordingly.

Also, most users are not aware that test versions might have minor issues and bugs that where not
detected (ergo the need for tests). When encountering a fatal bug, most users will immediately consider
the implications of that bug if it were on a real case situation and the setbacks it might cause. This is a
potentially fatal outcome for the tests as users will be cautious of accepting new versions for testing.

Example
Falling back to the Goal of the 5th iteration (Table 7), i.e. knowing how easy the language is to learn and
use, usability tests are constructed following the next table.

Table 13. Usability testing
USABILITY MEASURES TEST TYPES TREATMENT

Effectiveness - error rates while user completes querying sentences Immediate comprehension Learning
Efficiency - time spent to complete a query Reviews Learning, Testing
Satisfaction - confidence feedback about query Final exams Testing

The testing instruments were developed as evaluation queries and feedback questionnaires.
Evaluation Queries are given in four levels of complexity. Queries are given in natural language

English to be rewritten in the previously learned language (i.e. Pheasant). For each of the queries, time
taken to reply them is taken. In the Pheasant project, queries were evaluated according to an error rate
scale (0-5) and correctness was measured according to a self-assessment by the subject of his reply,
essentially rating his feeling of the correctness of the answer. The rates were: totally correct (TC), almost
correct (AC), totally incorrect (TI), not attempted (NA).

After each session, the participants were asked to judge the intuitiveness, suitability and effectiveness
of the query language. After the tests are completed, the participants were asked to compare specific
aspects of query languages. They rated which query language they preferred and to what extent. After
the evaluation session the participants were asked to write down informal comments and suggestions for
improving the language.

Example of result analysis of confidence with using the language constructs is given in Table 14.

 Related Patterns
− ITERATION VALIDATION. Tests performed in USABILITY REQUIREMENTS TESTING are used to supply

feedback to each ITERATION VALIDATION.
− USABILITY REQUIREMENTS DEFINITION. Feedback data collected can help define next iteration

usability requirements.
− DOMAIN CONCEPT USABILITY EVALUATION. The users’ feedback provides a good starting point to

define which domain concepts are correctly mapped and which pose problems.
− EXPERIMENTAL DSL EVALUATION DESIGN. USABILITY REQUIREMENTS TESTING is a complementary

activity to EXPERIMENTAL LANGUAGE EVALUATION DESIGN as the goals and test methodology differs.

Table 14. Language constructs analysis
PHEASANT / BEE NON-P P MEAN

Structuring the query 5/1 4/4 4.5/2.5
Different data schema feature 3.5/1 3.5/3 3.5/2
Expressing filter conditions 5/1 4.5/2 4.75/1.5
Expressing and using vertexing 5/1 5/4 5/2.5
Expressing the result set 5/1 5/3.5 5/2.25
Expressing a decay 5/1 4.5/2 4.75/1.5
Path expressions 5/3.5 3/5 4/4.25
Expressing and using UDFs 4.5/1 3.5/5 4/3
 4.8/1.3 4.2/3.9

Known uses
This approach originates from usability engineering [Rubin and Chisnell 2008]. Its application can be seen
in existing usability evaluation examples [Barišić, Amaral, Goulão and Barroca 2011], [Murray et al. 2000],
[Conte et al. 2007].

[Pattern] EXPERIMENTAL LANGUAGE EVALUATION DESIGN
Using ITERATIVE USER-CENTERED DSL DESIGN, the Usability Engineer needs to define how to evaluate by
which measure the language, or a prototype of the language, is in accordance with the elicited
requirements.

Problem
How to design and control the process of empirical experimentation to get sound results?

Forces
� Experimentation definition. The definition of the experimentation expresses something about why a

particular language evaluation was performed and may help justify the budget assigned to this type of
validation [Basili 1996].

� User Expectations. The expectations of users need to be managed and evened out prior to the
experiment; otherwise there is a high chance of impact in the end result: an extremely good result, if
expectations are low or a poor result in case of high expectations.

� User Distribution. Ensuring that experimental evaluation is performed with an equitable distribution of
users representative of the most influential groups will reduce selection bias and ensure the end
results will be representative of the goal real life usage.

� Hypothesis Guessing. The development team through experience usually has a pre-conceived idea
of the hypothesis result. This can influence the behavior of the experiment’s participant.

� Evaluation Scarcity. Not all iterations require full-fledged evaluation in order for the requirements to
be considered successfully achieved. However, presenting to the DSL user a final version of the
language without it being thoroughly and extensively tested by DSL users in a real-life use case is not
an ideal solution. Nonetheless option is used many times due to the complexities of performing
experimental evaluation with DSL users.

Solution
When a release candidate version of the DSL for a specific target user group seems to be ready for
deployment, an experimental usability validation should be performed with real users and real test case
scenarios.

Experiment planning expresses something about how it will be performed. Before starting the
experiment, some considerations and decisions have to be made concerning the context of the
experiment. The Usability Engineer needs to define:

− Problem statement
− The hypotheses under study, i.e. what composes the claim that the DSL is in accordance with the

users’ definition of Usability; The hypothesis usually can be supported or refuted, but not proven
− The set of independent and dependent variables that will be used to evaluate the hypotheses

These have to be correctly chosen in order to provide results with any measure of statistical
validity

− What are the user groups represented in the experiment and how and which users are to be
select

− Context in which the experiment will be preformed
− Quality metrics that will be used
− The experiment’s design
− Instrumentation design, i.e. the artifacts used in the experience (e.g. questionnaires)
− The means to evaluate the experiment’s validity

Only after all these details are sorted out should the experiment be performed. The outcome of planning
is the EXPERIMENTAL EVALUATION MODEL, which should encompass enough details in order to be
replicable by and independent source.

Experimental evaluation is based on quantitative evaluation of measurable properties collected from
real scenarios. In this case, the aim of the experiment is to support or refute the hypothesis that the end
result DSL has a direct and positive impact on usability and user performance.

Figure 6. Pheasant experimental Problem Statement instantiation model

Example

Following with the example of Pheasant and experimental evaluation models [Barišić, Amaral, Goulão
and Barroca 2012], we define the problem statement as a confluence of the academic context in which
Pheasant is to be used. Therefore usability objectives and the experiments to measure these objectives
have to take into account this context, i.e. academic level of the users, purpose, objectives and goals.
This will help model a problem statement that encompasses all contextual aspects (Figure 6).

The context of an experiment determines our ability to generalize from the experimental results to a
wider context (Figure 7). However, regardless of the specific context of the experiment, there are a
number of context parameters that remain stable and their value is the same for all the subjects in the
experiment.

Thus, having an instrument design model (Figure 8) definition makes the task of analyzing the
feedback received for target features across different iterations and users a much easier task. Modeling
instruments is also useful to measure the independent tasks that directly impact usability. Experimenters
in human factors have developed a list of tasks to capture particular usability aspects (Sentence writing;
Sentence reading, Sentence interpretation, Comprehension, Memorization and Problem solving).

For Pheasant, the Usability Engineer defined two types of instruments for the experimentation: Task
Questionnaires, designed to capture Sentence Writing, Memorization and Problem Solving, and
Feedback Questionnaires, which are used to get better insight in users satisfaction, and additional
recommendations.

Figure 7. Pheasant experimental Context instantiation model

Figure 8. Pheasant experimental Instrumental design instantiation model

The Usability Engineer should clearly define the profile of the participants and the artifacts that are

involved in the experiment (Figure 9).

Figure 9. Pheasant experimental Sample design instantiation model

Quality focus needs to be defined through criteria, which can be recursively decomposed into sub

criteria (Figure 10). For each criterion we should specify different recommendations, i.e. positive
assessments that characterize criteria. We should specify a weight for each recommendation to define
which of them are more important than others for the subjects involved in the experimental evaluation.

Evaluations of each quality criteria should be performed through methods that are specified by metrics
and/or practices. Metrics gives us numerical results that can be comprised between some limits when
defined, while practice can be either a pattern or an anti-pattern, applied at the process level, or on a
language. Both are directly evaluated on the experiment subjects’ trough recommendations [García Frey
et al. 2011].

Figure 10 – Pheasant experimental Quality Design class diagram

When a result of the evaluation does not satisfy the expected level of quality in use, the designer will

need to increase the quality by setting a transformations or set of transformations. These transformations

are related to language artifacts on which the evaluation was performed. Iterations can be done in same
experimental settings until the desired quality is reached.

The analysis techniques chosen for the language evaluation experiment depend on the adopted
language evaluation design, the variables defined earlier, and the research hypotheses being tested
(Figure 11). More than one technique may be assigned to each of the research hypotheses, if necessary,
so that the analysis results can be cross-checked later. Furthermore, each of the hypotheses may be
analyzed with a different technique. This may be required if the set of variables involved in that
hypothesis differs from the set being used in the other hypotheses under tested.

Figure 11 - Pheasant experimental Hypothesis and Variable design instantiation model

Related Patterns
− USABILITY REQUIREMENTS DEFINITION. The requirements defined will be validated at this stage.

Also, if the development cycle is not yet complete, the feedback from EXPERIMENTAL DSL
EVALUATION DESIGN is fed back into USABILITY REQUIREMENTS DEFINITION to redefine the goals of
the next iteration evaluation.

− USABILITY REQUIREMENTS TESTING. EXPERIMENTAL DSL EVALUATION DESIGN is a complementary
activity to USABILITY REQUIREMENTS TESTING as the goals and test methodology differs.

− EXPERIMENTAL EVALUATION MODEL. Through this pattern we are setting the processes and scope
of the EXPERIMENTAL EVALUATION MODEL, OF which example pattern applications are given.

Known uses
Detailed evaluation design is used in both usability engineering and experimental software engineering.
This approach is modeled from the language comparison from [Goulão and Abreu 2007] and discussed in
[Barišić, Amaral, Goulão and Barroca 2012].

3. RELATED WORK
There is a related line of work on HCI patterns, branching areas like ubiquitous systems [Roth 2002], web
design [Van Duyne et al. 2003], safety-critical interactive systems [Hussey 1999], as well as more general
interaction design languages [Oreilly 2007; Schmidt 2010; Tidwell 2005; Van Welie and Van Der Veer
2003]. Although HCI has a large focus on Usability, the patterns available mainly avoid process patterns
and prefer patterns that represent actual usable human interaction artifacts [Mahemoff and Johnston
2001], like News Box, Shopping Cart or Breadcrumbs.

Spinellis [Spinellis 2001] presents a pattern language for the design and implementation of DSLs.
Contrary to ours, these patterns refer to concrete implementation strategies and not to the process of
building the DSL or usability concerns. Günther [Günther 2011] presents a pattern language for Internal
DSLs. These patterns mainly focus on how to map domain concepts to language artifacts and follow by
implementing said artifacts with a GPL capable of supporting internal languages.

Much of our patterns are based upon Völter and Bettin’s pattern language for MDD [Völter and Bettin
2004]. These patterns represent a well-rounded view of MDD but they do not explicitly account for the
importance of Usability in DSLs and therefore do not give explicit instructions on how to test and validate
usability of the end product. It is our opinion that our pattern language can be composed with Völter and
Bettin’s to produce a more complete version of a pattern language for MDD with usability concerns. To
the best of our knowledge, ours is the only pattern language focusing on Domain Specific Language
development process with user centered design.

As for usability, there are not many patterns or pattern languages available to cover usability concerns.
Folmer and Bosch[Folmer and Bosch 2003] developed a usability framework based on usability patterns
to investigate the relationship between usability and software architecture. This work however has little
relation to usability tests and to the development of usable software through usability validation. Thy
instead map well know HCI patterns, such as Wizard, Multi-tasking and Model-View-Controller to quality
attributes and usability properties. However, this is somewhat related to our CONCEPTUAL DISTANCE
ASSESSMENT pattern and the framework could in theory be used to identify the mappings between domain
concepts and quality attributes. Ferre et al’s software architectural view of usability patterns [Ferre et al.
2003] follows a similar approach. Graham’s pattern language for web usability [Graham 2002] deals with
usability evaluation and usability testing process. However, we feel that his patterns are hard to follow
due to the number of patterns and lack of formal structure. Furthermore, Graham’s patterns are targeted
at web-based software. The pattern language most similar to ours is Gellner and Forbig’s Usability
Evaluation Pattern Language [Gellner and Forbrig 2003]. This pattern language is composed of thirty five
patterns for usability testing. Of those, the Eight Phase pattern represents a set of eight stages of the
process of usability evaluation. This is a similar approach to ours and has the merit of summarizing the
process into a single pattern. However, the goal of the pattern is to disseminate usability evaluation for
small scale projects while our pattern language considers small to large projects.

4. CONCLUSION
The software development industry is only now starting to invest effort in providing efficient development
strategies that includes usability. For the world of DSL Engineering, it is a very important feature, because
by raising level of abstraction this languages are meant to be used also by the people without
programming education.

This paper gives a catalog of the patterns for evaluating the Usability of Domain-Specific Languages.
The 17 patterns described here represent a collection of usability-oriented best practices, collected from a
wide set of domains, from GPL design to human-computer interaction. Very little work has been done in
ensuring these best practices become standard practices in the DSL world. This work intends to provide a
framework to disseminate this knowledge and help bridge the gap.

In the future we intend to refine these patterns and continue to expand them based on their application
on real-life development cases. DSL development is a new and exciting field and there is no doubt that
many more patterns wait to be found.

5. ACKNOWLEDGEMENTS
We would like to acknowledge CITI - PEst -OE/EEI/UI0527/2011, Centro de Informática e Tecnologias
da Informação (CITI/FCT/UNL) - 2011-2012) - for the financial support for this work.

Besides, we would like to thank Uira Kulesza, whose comments have been incredibly helpful and
insightful. His shepherding helped us significantly improve the quality of this paper. We would like to
thank also to our helpful reviewers, especially Ademar Aguiar and André Santos, and to our program
committee member Uwe Zdun that was following the shepherding process.

REFERENCES
Alférez, M., Kulesza, U., Sousa, A., Santos, J., Moreira, A., Araújo, J. AND Amaral, V. 2008. A Model-Driven Approach for Software
Product Lines Requirements Engineering. In Proceedings of the 20th International Conference on Software Engineering and
Knowledge Engineering, San Francisco Bay, USA, July 1-3 2008 Knowledge Systems Institute Graduate School, 779-784.
Amaral, V. 2005. Increasing productivity in High Energy Physics data mining with a Domain Specific Visual Query Language. In
Phd. Thesis, University of Mannheim.
Barišić, A., Amaral, V., Goulão, M. AND Barroca, B. 2011. How to reach a usable DSL? Moving toward a Systematic Evaluation.
presented at the 5th International Workshop on Multi-Paradigm Modeling (MPM'2011) at Models 2011 Volume 50.
Barišić, A., Amaral, V., Goulão, M. AND Barroca, B. 2011. Quality in Use of Domain Specific Languages: a Case Study. In
Proceedings of the presented at Workshop on Evaluation and Usability of Programming Languages and Tools (PLATEAU) at
SPLASH 2011 Portland, USA, October 2011 ACM.
Barišić, A., Amaral, V., Goulão, M. AND Barroca, B. 2012. Evaluating the Usability of Domain-Specific Languages. In Formal and
Practical Aspects of Domain-Specific Languages: Recent Developments, M. Mernik Ed. IGI Global, 386-407.
Basili, V.R. 1996. The role of experimentation in software engineering: past, current, and future. In Proceedings of the 18th
International Conference on Software Engineering (ICSE 1996)1996 IEEE Computer Society, 442-449.
Beck, K., Fowler, M. AND Beck, G. 1999. Bad smells in code. Refactoring: Improving the design of existing code, 75-88.
Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P. AND Stal, M. 1996. A system of patterns: Pattern-oriented software
architecture Wiley New York.
Carlshamre, P. 2001. A usability perspective on requirements engineering: from methodology to product development Linköping.
Catarci, T. 2000. What happened when database researchers met usability* 1. Information Systems 25, 177-212.
Cho, H. AND Gray, J. 2011. Design patterns for metamodels. In Proceedings of the compilation of the co-located workshops on
DSM'11, TMC'11, AGERE!'11, AOOPES'11, NEAT'11, & VMIL'11 ACM, 25-32.
Conte, T., Massollar, J., Mendes, E. AND Travassos, G.H. 2007. Usability evaluation based on Web design perspectives IEEE, 146-
155.
Dumas, J.S. AND Redish, J. 1999. A practical guide to usability testing. Intellect Ltd.
Ferre, X., Jusisto, N., Moreno, A.M. AND Sánchez, M.I. 2003. A software architectural view of usability patterns. In 2nd Workshop
on Software and Usability Cross-Pollination, INTERACT, Zürich, Switzerland.
Folmer, E. AND Bosch, J. 2003. Usability patterns in software architecture. In 10th Int. Conf. on Human-Computer Interaction
(HCII2003), pp. 93-97.
Gabriel, P., Goulão, M. AND Amaral, V. 2010. Do Software Languages Engineers Evaluate their Languages? In Proceedings of the
XIII Congreso Iberoamericano en "Software Engineering" (CIbSE'2010), ISBN: 978-9978-325-10-0, Cuenca, Ecuador, April 2010, X.
Franch, I.M.D.S. Gimenes AND J.-P. Carvallo Eds. Universidad del Azuay, 149-162.
García Frey, A., Céret, E., Dupuy-Chessa, S. AND Calvary, G. 2011. QUIMERA: a quality metamodel to improve design rationale
ACM, 265-270.
Gellner, M. AND Forbrig, P. 2003. A Usability Evaluation Pattern Language. In Proceedings of the 2nd Workshop on Software and
Usability Cross-Pollination, INTERACT, Zürich, Switzerland2003.
Goulão, M. AND Abreu, F.B. 2007. Modeling the Experimental Software Engineering Process. In 6th International Conference on
the Quality of Information and Communications Technology (QUATIC 2007) IEEE Computer Society.
Graham, I. 2002. A pattern language for web usability. Addison-Wesley Longman Publishing Co., Inc.
Günther, S. 2011. Development of Internal Domain-Specific Languages: Design Principles and Design Patterns. In Proceedings of
the PLoP 2011, Portland, OR, USA2011.
Hussey, A. 1999. Patterns for safer human-computer interfaces. Computer Safety, Reliability and Security, 686-686.
ISO 2001. ISO/IEC 9241-11 Ergonomic requirements for office work with visual display terminals (VDTs) -- Part 11: Guidance on
usability.
ISO 2011. ISO/IEC 25010-11 - Systems and software engineering - Systems and software Quality Requirements and Evaluation
(SQuaRE) — System and software quality models.
Johnson, J. AND Henderson, A. 2002. Conceptual models: begin by designing what to design. interactions 9, 25-32.
Jones, C. 1991. Applied software measurement: assuring productivity and quality. McGraw-Hill, Inc.
Jones, C. 1996. Software change management. Computer 29, 80-82.
Kelly, S. AND Tolvanen, J.-P. 2008. Domain-specific modeling: enabling full code generation. Wiley-IEEE Computer Society Press.
Kleppe, A.G. 2009. Software language engineering: creating domain-specific languages using metamodels. Addison-Wesley.
Kosar, T., Oliveira, N., Mernik, M., Pereira, M.J.V., Črepinšek, M., Cruz, D. AND Henriques, P.R. 2010. Comparing General-Purpose
and Domain-Specific Languages: An Empirical Study. Computer Science and Information Systems 7, 247-264.
Mahemoff, M. AND Johnston, L.J. 2001. Usability Pattern Languages: the" Language" Aspect IOS Press, 350.
Martin, R.C. 2003. Agile software development: principles, patterns, and practices. Prentice Hall PTR.
Mayhew, D.J. 1999. The usability engineering lifecycle: a practitioner's handbook for user interface design. The Usability
Engineering Lifecycle A Practitioners Handbook for User Interface Design.
Monteiro, M.P. September 2011. On the Cognitive Foundations of Modularity. In Proceedings of the Psychology of Programming
Interest Group Annual Conference (PPIG), York, UKSeptember 2011.
Moody, D. AND van Hillegersberg, J. 2009. Evaluating the Visual Syntax of UML: An Analysis of the Cognitive Effectiveness of the
UML Family of Diagrams. Software Language Engineering, 16-34.

Murray, N.S., Paton, N.W., Goble, C.A. AND Bryce, J. 2000. Kaleidoquery--a flow-based visual language and its evaluation. Journal
of Visual Languages & Computing 11, 151-189.
N. Genon, P.H.D.A. 2010. Analysing the Cognitive Effectiveness of the BPMN Visual Notation. Software Language Engineering.
Nielsen, J. 1994. Usability engineering. Morgan Kaufmann.
OReilly, T. 2007. What is Web 2.0: Design patterns and business models for the next generation of software. Communications &
strategies.
Öztaş, A. AND Ökmen, Ö. 2004. Risk analysis in fixed-price design–build construction projects. Building and Environment 39, 229-
237.
Reisner, P. 1981. Human factors studies of database query languages: A survey and assessment. ACM Computing Surveys
(CSUR) 13, 13-31.
Righi, C. AND James, J. 2007. User-centered design stories: real-world UCD case files. Morgan Kaufmann.
Roth, J. 2002. Patterns of mobile interaction. Personal and Ubiquitous Computing 6, 282-289.
Rubin, J. AND Chisnell, D. 2008. Handbook of usability testing: how to plan, design and conduct effective tests. Wiley-India.
Schmidt, V.A. 2010. User Interface Design Patterns Air Force Research Lab Wright-Patterson AFB OH Human Effectiveness
Directorate.
Spinellis, D. 2001. Notable design patterns for domain-specific languages. Journal of Systems and Software 56, 91-99.
Tidwell, J. 2005. Designing interfaces. O'Reilly Media, Inc.
Van Duyne, D.K., Landay, J.A. AND Hong, J.I. 2003. The design of sites: patterns, principles, and processes for crafting a
customer-centered Web experience. Addison-Wesley Professional.
Van Welie, M. AND Van der Veer, G.C. 2003. Pattern languages in interaction design: Structure and organization. In Interact'03, I.
Press Ed., Amsterdam, Netherlands, 527-534.
Völter, M. AND Bettin, J. 2004. Patterns for Model-Driven Software-Development. In Proceedings of the EuroPLoP'04, Irsee,
Germany2004.

