
A pattern language for the ET robot contest:

On embedded software engineering
Masashi Kadoya, Toshiyuki Nakano, Takamori Ozawa, Masahiko Wada, Hiroki Itoh,

Hironori Washizaki, Yoshiaki Fukazawa
Global Software Engineering Laboratory, Waseda University

3-4-1 Okubo, Shinjuku-ku, Tokyo, Japan

kage_purinman@ruri.waseda.jp washizaki@waseda.jp fukazawa@waseda.jp

ABSTRACT

We extracted a pattern language for the participants of the contest

called the Embedded Technology (ET) robot contest. The ET

robot contest is a software design competition and provides young

engineers or students with an opportunity to learn embedded

software engineering. Therefore, most participants are beginners,

and they have difficulty designing the robot. In order to help the

participants, we have published the extracted pattern language on

a website. This pattern language, named ET Robocon Strategy,

consists of 40 patterns extracted from our technical knowledge

and contest experience. In this paper, two patterns that an

engineer can apply to developing a robot with wheels are

introduced.

Categories and Subject Descriptors

C.3 [Special-Purpose And Application-Based Systems]: Real-

time and embedded systems

General Terms

Management, Documentation, Performance, Design,

Experimentation, Human Factors

Keywords

Keywords are your own designated keywords.

1. INTRODUCTION
The Embedded Technology (ET) robot contest [1-3] is a national

software design competition and is hosted by the experts who

gathered voluntarily. The purpose of the competition is to provide

young engineer or students with opportunity to learn embedded

software design.

The contest has two divisions: a racing division and a model

division. In the racing division, participants design a two-wheeled

robot to complete a predetermined course as fast as possible. The

robot can stay on the course by using a light sensor to trace a

black line on the course. However, the line may not be solid black

throughout the course, or it may even be missing in parts of the

course. Therefore, participants need to account for that when

designing the robot. Two patterns introduced in this paper are

relevant to this situation.

In the model division, the documentation and software design

(specification document, class diagram, development process,

etc.) are evaluated [1-2].

The course consists of two parts: the Basic Stage and the Bonus

Stage. The Basic Stage tests the robot’s speed, while the Bonus

Stage tests the robot’s ability to successfully navigate obstacles,

such as a seesaws, stairs, etc. In the DRIFT zone, which is part of

the Bonus Stage, there is no a black line for guidance, and the

robot must pass in between two plastic bottles. The two patterns

introduced in this paper are especially important here.

The course changes from year to year. A portion of the course

changed mainly is the Bonus Stage. However, there are common

difficult points which mean the pattern can be adapted to multiple

points. The examples are as follows.

 A portion of the course lacks a black line.

 There are bumps about 1 centimeter on the course.

 In specific contest sites, there is a strong ambient light.

In this paper, we introduce the patterns which are related to

lacking a black line.

The robot is composed of only LEGO MINDSTORMS which is

used for software engineering education, shown in Figure 1.

However, the kit of LEGO MINDSTORMS has some difficult

points. For instance, a motor provided by LEGO MINDSTORM

is not good performance. That problem has a deep relationship

with the pattern shown later.

Figure 1. A robot used in the 2012 contest.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies

are not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, to republish, to post on servers or to redistribute to lists,

requires prior specific permission. A preliminary version of this paper

was presented in a writers' workshop at the 20th Conference on Pattern

Languages of Programs (PLoP). PLoP'13, October 23-26, Monticello,

Illinois, USA. Copyright 2013 is held by the author(s). HILLSIDE 978-

1-941652-00-8

2. THE PATTERN LANGUAGE
From October 2011 to June 2012, a pattern language named ET

Robocon Strategy [4-6] was extracted from members of the

Washizaki lab who participated in the ET robot contest via

workshops and interviews. ET Robocon Strategy consists of 40

patterns. Each pattern is composed of Name, Picture, Context,

Problem, Force, and Solution. If further explanation is necessary,

we add related patterns and cases.

ET Robocon Strategy can be largely classified into four divisions:

Environment, Team, Model, and Programming. Environment

relates to failures of robots and the course setup. Team refers to

issues of team members or the entire team. Model is the specific

know-how to improve own model. Programming refers to the

methodology to navigate the robot through the course. Herein,

how ET Robocon Strategy functions to resolve these problems is

presented. The map of ET Robocon Strategy is shown in Figure

2-5.

The four divisions are represented by the first letter of each

division's name. For example, "E" represents Environment. For

better understandability, the map is divided into various groups

related to each pattern.: ‘Milestone', ‘Develop Process', ‘Early

Development', ‘Model', 'Bump', ‘Ambient Light Measures', ‘State',

‘Light Sensor', ‘A Way of Drive', ‘Ambient Light', ‘Course', and

‘Performance'. The two patterns introduced in this paper are

indicated by heavy boxes.

Figure 2. Map of ET Robocon Strategy: Milestone,

Development Process and Early Development

Figure 3. Map of ET Robocon Strategy: Bump, Ambient Light

Measures, State, Light Sensor and Driving Method

Figure 4. Map of ET Robocon Strategy: Ambient Light,

Course and Performance

Figure 5. Map of ET Robocon Strategy: Performance

2.1 Motor Speed Tuning
This pattern is concerned with correcting the performance

difference between the right and left motors using software.

Figure 6. Image of “Motor Speed Tuning”

Context

When going through a portion of the course lacking a black line,

the robot must be designed so that it can get on the next black line

without using its light sensor. In this situation, most developers

would set the rotational frequency to be equal for the right and left

motors to make the robot go straight. But a developer should tune

each robot because manufacturing standards of LEGO

MINDSTORM is low and all robots have different individual

qualities.

Problem

Although the right and left motors are supposed to be turning

equally according to the program, the robot does not go straight

and pivots against the developer's expectations. This is because

individual differences exist between motors.

Forces

 The performance difference between different motors is

small. Although the developer tunes the robot properly、

the small difference will cause the robot to pivot slightly.

 Software can be edited, but Hardware can’t be changed.

Solution

One solution is for the developer to correct the performance

difference between the right and left motors using software. The

most intuitive way may be to look at the motion of the robot and

to adjust the rotational frequency of the motors by using software

through trial and error. A more methodical approach that we

recommend is to collect a log of the rotational frequency of the

tires, and to adjust the robot settings based on this log. Figure 7

shows sample code.

Figure 7. Sample Code

Aside from using software, the developer can start by selecting a

robot whose right and left motors have only a small performance

difference.

Resulting

Our team was able to make a robot run in an almost straight line.

Applicability

This pattern can be applied to embedded development for

operating a two-wheeled or four-wheeled robot.

2.2 Many Robots
This pattern is concerned with preparing multiple robots for use in

concurrent development when a team overcomes many difficult

points which are such as seesaw, stairs and so on.

Figure 8. Image of “Many Robots”

float StraightDriver::steer(float velocity) {

 //get a value of a right motor.

 int rightWheelCount =

getRightMotor().getCount() -

initialRightWheelCount;

 //get a value of a left motor.

 int leftWheelCount =

getLeftMotor().getCount() -

initialLeftWheelCount;

 //compare a value of right and left

motor.

 int countDiff =

getRightMotor().getCount() - leftWheelCount;

 /*

 "degree" is positive value: rotate to

the left for numerical value of "degree".

 "degree" is negative value: rotate to

the right for numerical value of "degree". */

 if(countDiff > 0){

 degree = 5;

 }else if(countDiff < 0){

 degree = -5;

 }else{

 degree = 1;

 }

 return degree;

}

Context

A team possessing only one robot plans to conduct concurrent

development.

Problem

If there is only one robot in a team, conflicts arise among team

members when one member embeds a program in the robot. This

is inefficient.

Forces

 Even if the development of one robot succeeds, the same

program cannot be applied to other robots because there

is a difference in motor performance.

 If a team does not plan to conduct concurrent

development, preparing multiple robots is useless

because almost no conflicts would arise among team

members.

 Robots are not cheap. This pattern is only applicable to

teams that have more than enough capital.

 Solution

Having multiple robots in a team can make it easier to conduct

concurrent development without causing conflict among team

members. For instance, when a team starts a development of

Bonus Stage, a team need to have a “seesaw” subteam and a

“stairs” subteam. However, only one robot can run in the contest.

The team needs to determine which robot is going to run in the

contest early on in the development, or else it becomes difficult to

decide which robot to finalize. Team members should recognize

that the extra robots are to be used for testing purposes only, and

that fine-tuning them is meaningless.

It is to learn something through experience that one robot is

necessary for every 2-3 team members.

Resulting Context

Our team conducted concurrent development without any conflict

using two robots.

Applicability

This pattern can be applied to concurrent embedded development.

3. CONCLUSION
We have extracted a pattern language consisting of 40 patterns

from our technical knowledge and contest experience. We applied

two of these patterns (Motor Speed Tuning and Many Robots) to

the 2012 ET robot contest. Our team, which consisted of 7

members, prepared two robots and was able to carry out the

development without any conflicts among the members. If more

robots were available, we may have been able to conduct the

development more effectively. If our team consisted of 5 members,

two robots are enough. We think that one robot is necessary for

every 2-3 members. With respect to the difference in motor

performance, we made an effort to eliminate it and the robot could

run in an almost straight line. We believe a new method is needed

to make the robot run perfectly straight.

This pattern language for the ET robot contest is still being

developed. Currently, we are collecting input using Wiki and

discussing a pattern language in workshops about the contest. In

the future, we plan to extract a pattern language that can be

applied to embedded development and to the development of the

ET robot contest.

4. ACKNOWLEDGMENTS
Our thanks go to shepherd Kyle Brown for very careful review

that improve this paper. We thank PLoP’13 Writers’ Workshop

participants for their valuable comments.

5. REFERENCES
[1] Hironori Washizaki, Yasuhide Kobayashi, Hiroyuki

Watanabe, Eiji Nakajima, Yuji Hagiwara, Kenji Hiranabe

and Kazuya Fukuda, "Experiments on Quality Evaluation of

Embedded Software in Japan Robot Software Design

Contest," Proceedings of the 28th International Conference

on Software Engineering (ICSE 2006), pp.551-560,

Shanghai, 2006.

[2] Hironori Washizaki, Yasuhide Kobayashi, Hiroyuki

Watanabe, Eiji Nakajima, Yuji Hagiwara, Kenji Hiranabe,

Kazuya Fukuda, "Quality Evaluation of Embedded Software

in Robot Software Design Contest," Progress in Informatics,

Vol.5, pp.35-47, 2008.

[3] ET Software Design Robot Contest, http://www.etrobo.jp/

[4] A pattern language for ET robot contests,

http://www.washi.cs.waseda.ac.jp/etrobocon_pattern/

[5] Masashi Kadoya, Toshiyuki Nakano, Takanori Ozawa,

Masahiko Wada, Hiroki Itoh, Hironori Washizaki and

Yoshiaki Fukazawa, “A pattern language for ET robot

contests,” Proceedings of the 1st Indian Conference on

Pattern Languages of Programs (GuruPLoP 2013),

Bengaluru, 2013.

[6] Masashi Kadoya, Toshiyuki Nakano, Takamori Ozawa,

Masahiko Wada, Hiroki Itoh, Hironori Washizaki, Yoshiaki

Fukazawa, “A pattern language for the ET robot contest:

Course and Driving Method,” Proceedings of the 3rd Asian

Conference on Pattern Languages of Programs (AsianPLoP

2014), Tokyo, 2014.

http://www.etrobo.jp/
http://www.washi.cs.waseda.ac.jp/etrobocon_pattern/

