
The Dynamic Business Object Pattern

Russ Rubis Dr. Ionut Cardei
Dept. of Computer Science and Eng. Dept. of Computer Science and Eng.

Florida Atlantic University Florida Atlantic Universit
Boca Raton, FL 33431 Boca Raton, FL 33431

 rrubis@fau.edu icardei@fau.edu

ABSTRACT

A business object is an object which is used often by business
applications and services and is a widely acceptable entity in
the running of the business. For example, a purchase order, an
invoice, and a customer profile could be considered business
objects, as these are parts of day-to-day business activity, but
more importantly these have well-established and commonly
accepted attributes and behavior. Developing business objects
from scratch each and every time one is needed is a resource-
intensive, highly repetitive, and unnecessary undertaking. One
of the challenges faced by today’s enterprise application
developers is the lack of a generic approach for specifying the
design, delivery, and processing of business objects. In
general, a business object may contain one or more of the
following: dynamic data object, static document, and
workflow. Each time a custom application requires the use of
a business object, the developers either have to design it
themselves, or use some language and/or platform and/or
software dependent solution/library which might or might not
address the needs of their application. This paper proposes a
new pattern for specifying Dynamic Business Objects for
business applications. The objective of this pattern is to
provide a generic approach to design extensible Business
Objects and their frameworks for business applications.

Keywords

Business data object, business document, workflow, common
business object, dynamic object

1. INTRODUCTION AND OVERVIEW

Just about every business is comprised of multiple
organizations and or departments, each specializing in their
area of function. An accounting department deals with various
customers, distributors, and partner accounts, the procurement

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page.
To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission. A preliminary version of this
paper was presented in a writers' workshop at the 20th Conference on
Pattern Languages of Programs (PLoP). PLoP'13, October 23-26,
Monticello, Illinois, USA. Copyright 2013 is held by the author(s).
HILLSIDE 978-1-941652-00-8

department handles purchase orders, invoices to procure
goods and services for the business, while the warehouse
receives and distributes the goods. Each organization or
department needs applications specific to their functional area.
These applications are implemented on a web-based
infrastructure using standard web technologies and rely on
“business objects” such as purchase orders, invoices, and
accounts. These business objects have a common set of
properties at the design level and different implementation
solutions [.NET, J2EE, Spring, CORBA, etc.] as well as
custom architectures [Ariba, SAP, SmartClient, etc.]. The
business objects reveal similarity in the overall approach
without a systematic effort to build a reusable specification
and infrastructure.

This paper introduces the Dynamic Business Object Pattern ,
our attempt to address specification, design, and code reuse
when building business objects for specific problem domains.

A Dynamic Business Object refers to an abstract
generalization of these various application specific objects that
provides a uniform and reusable specification. The Dynamic
Business Object Pattern describes a generic and systematic
approach to organize the business objects and to describe
them. It structures business objects in static documents,
workflows, and dynamic data. Business objects have the
typical properties of object-oriented systems, such as
composition, inheritance, polymorphism, plus they promote
reuse at several levels.

For example, a generic Accounting Module aggregates
business objects involved in supporting accounting
applications. A typical Accounting Module could contain
Dynamic Business Object such as General Ledger, Project
Account, Expense Account and others. The module's business
object specification includes the basic elements necessary to
create, update and maintain the data, and functions needed to
perform accounting tasks for a business. Business objects
from this Accounting Module can be extended to
accommodate specific attributes and behaviors customized for
an individual company or industry. When a new module is
extended from an existing one, it inherits all of the parent
module’s objects and attributes, including dynamic data
objects, static documents, and workflows.

The Dynamic Business Object Pattern also describes an
architecture to implement and support business objects. For
example, a dynamic data object implies that a storage solution
is required; it also implies that a custom user interface will be
necessary to present the dynamic data object. A static
document, on the other hand, is assumed to have a widely
accepted form of viewing software (i.e. MS Word, PDF,

Notepad, etc.). Finally, a workflow is a process which
supports the life cycle of a dynamic business object.

Another benefit of a modularized approach is that each
existing module is not static, and can be enhanced over time.
For example, the Common Module (see below) has three main
parts: Dynamic Data Object, Static Document, and Workflow.
If another entity needs to be added to the Common Module in
the future, it can be done so safely, without affecting the
existing functionality.

There are a number of patterns that deal with web
applications and web object specifications and architectures.
Among them are Document-View-Presentation [8],
Model/View/Controller [9], Presentation/ Abstraction /
Control [10], and others. In addition to these, there are also
analysis patterns which address specific business domains [4].
The Dynamic Business Object Pattern is a new approach to
abstracting business objects using the three basic elements:
dynamic data objects, static documents, and workflows.

The intended audience for this article includes business
application architects and developers at the early stage of
Dynamic Business Object design.

2. THE DYNAMIC BUSINESS OBJECT
PATTERN

2.1 Intent

The Dynamic Business Object Pattern describes an
extensible design for business objects used for business
applications and a structure for their platform-neutral
specification.

2.2 Example

Consider a simple customer request process, which consists
of a customer initiating a request, and the request being
received and processed by a a business. Lastly, notification of
completion is sent to the customer and is the final step in the
customer request process.

The abstract customer request process can now be extended
to formulate a more complex example reflecting a specific
business process. Consider a shopping cart. At its base, it is a
customer request for goods or services performed using a web
based application. After selecting items and adding them to a
shopping cart, the customer provides the billing and shipping
information, then submits the request for processing. The
vendor then receives the shopping cart request, verifies the
billing information, fills out the order and ships it to the
customer. Finally, the vendor notifies the customer via email
that the shopping cart request has been completed.

2.3 Context

Almost all businesses have a web presence for marketing,
education, and sales. Many businesses run (directly or via
service providers) web-based applications that encompass
most business processes, such as customer relations, product
support, sales, etc. Businesses require flexible web solutions
and reliable frameworks to support their day-to-day
operations. The object-oriented design methodology is widely

used in the software industry to model data and logic for
business applications. Business objects should have the
flexibility and simplicity to solve diverse business problems.

Businesses also require a unified approach to designing and
building business objects. Developers of commercial
application frameworks and custom web applications benefit
from a portable and reusable business object specification.

The Dynamic Business Object Pattern could also be applied
to environments that do not involve distributed computing.
However, we believe that it is best suited for web-based,
distributed and heterogeneous computing architectures with a
variety of client devices (PCs, smartphones) and service
platforms.

2.4 Problem

Business applications involve complex distributed operations
orchestrated on client and server side. Applications rely on a
variety of documents with static and dynamic content for
presentation and for data storage. Document structure and
application behavior require a platform-neutral and reusable
specification that can be specialized further for particular
business cases. The specification must exhibit object-oriented
properties, such as modularization, inheritance, and
polymorphism. The object specification must include data,
format (presentation), behavior, and various constraints.
Business objects must be based on proven business practices.
At the same time, business objects should have the flexibility
to alter their behavior based on the changing needs of a
business.

2.5 Solution

The Dynamic Business Object Pattern presents an approach
for specification and design of business objects. The pattern's
top-level specification element is the Common Module (see
Figure 1), comprised of three main elements that are the
minimum needed to support the description and behavior of a
dynamic business object:

1. Dynamic Data Object

2. Static Document

3. Workflow

A dynamic business object specification may include any
combination of the above elements. For example, a shopping
cart contains items that the user wishes to order (incidentally,
these items are also dynamic data objects). The shopping cart
item might have an image of the product (an image being a
static document). After the shopping cart is submitted by the
user, it is processed by some predefined workflow, which
ensures that the shopping cart is filled and the ordered items
are shipped to the user. Although the above example is
simplified for the purpose of clarity, arguably just about every
business object can be presented in the pattern using the three
elements introduced in the Common Module: dynamic data
object, static document, and workflow.

Through extension, developers and framework designers can
build a library of modules derived from the Common Module.
These modules are generic at the top of the hierarchy and then

get more specific to industries and businesses lower in the hierarchy. Modules can be combined to design sophisticated
business applications.

Figure 1. The block diagram structure of a dynamic business object.

2.5.1 Dynamic Data Object (DDO)

This object represents the data associated with a Dynamic
Business Object that could change over time as a result of
some business process or user input. A good example would
be a customer data. New customers are often created, and
existing customers are frequently updated (i.e. address,
contact, payment terms, etc.). A dynamic data object can be
maintained via a user interface, or a business process (i.e. a
customer data feed is received nightly). The important
distinction of a dynamic data object is that, unlike a static
document, its contents can be (and often are) changed, and
unlike a workflow, it is not a process, but rather an object (or
an entity) representing a specific set of data. For example, a
purchase order object contains a set of elements representing
the items being purchased, from whom, by whom, and under
what terms. A purchase order workflow, on the other hand, is
a process which takes place from the time a purchase request
is submitted, to the time the purchased items are delivered to
the buyer (more on the workflow later). Another distinction of
a dynamic data object is that, unlike static document, it
requires a custom storage solution (i.e. database), as well as a
custom user interface. For example, a purchase order entry
screen, with its validations and constraints, is a custom
interface linking the purchase order data between the user
creating it and the data storage where it will be persisted. Even
if the data is not persisted in the database, but in another

storage (i.e. file, cloud, etc.), the format of the data record(s)
must still be predetermined and agreed upon, thereby making
it a custom storage solution.

The DDO in the Common Module is an abstract object type
and is assumed to contain a limited set of attributes within the
Common Module. These fields are the object’s internal ID, the
timestamp of creation and update, as well as the fields
identifying who created the object and the last user id which
updated the object, if applicable. Within the Dynamic
Business Object Pattern, these fields are automatically
inherited by all dynamic data objects which extend from the
Common Module’s Dynamic Data Object.

A DDO can contain other dynamic data objects, as well as
static documents. For example, a shopping cart (a DDO
object) contains one or more shopping cart items (a shopping
cart item is also a DDO object). A shopping cart item may
include an image of the item, where image is a static
document.

The DDO employs a set of constraints to control what access
rules and specific behaviors are permitted on the object and
how they should be accomplished. These constraints must be
specified using UML's Object Constraint Language where
possible or explicitly, with logic in sequence or other
behavioral UML diagrams.

2.5.2 Static Document

A Static Document within the Dynamic Business Object
Pattern is any document whose data cannot be changed by end
users (i.e. clients) of the application. An example of a static
document could be a report printout or a product image file,
which users (clients) can view, but the contents of which
cannot be modified by clients. Within the Common Module,
static documents can be generated from the dynamic data
objects or can be imported from another system or
environment. Because a static document cannot be updated,
only the visibility constraint (Section 2.5.4.2) can be applied
to it.

Unlike dynamic data objects, static documents are generally
associated with a widely accepted client viewers, and do not
require custom solutions for client presentation. For example,
MS Word and Excel clients are used to view Word and Excel
documents respectively, while Adobe Acrobat is used to view
PDF documents.

Within the Common Module the static document can be
divided into 2 groups: print media and electronic media. As
the physical print is still widely used by businesses, it should
not be ignored.

2.5.3 The Document Superclass

The Document class factors out common attributes and
behaviors common to dynamic and static documents.

2.5.4 Constraints

The Constraints provide a way to limit the access to the
dynamic data object, and to some extend to the static data
object as well. The Dynamic Business Object Pattern includes
three constraints which can be imposed on the object:
visibility constraint, validity constraint, and editability
constraint.

2.5.4.1 The Visibility Constraint

The Visibility Constraint (ViC) contains logic that dictates
the visibility of a component or attribute of that object. The
ViC is not required for every object or entity; it should only be
used when needed by the application logic. For example, a
ship-to component of a Shopping Cart business object should
always be displayed on the shopping cart UI, as without ship-
to, there is no way to learn where the shopping cart items will
have to be delivered. Therefore, by default, there is no need
for a ViC on a ship-to component. However, a tax on a
shopping cart is not always required, and thus would be an
ideal candidate for ViC. In this case, the visibility constraint
might contain a logic which states that items shipped to
certain states need to collect a tax, therefore the tax field must
be displayed on those orders. Similarly, the visibility
constraint logic would hide the tax fields on orders which are
shipped to states which do not require sales tax collection.

2.5.4.2 The Validity Constraint

The Validity Constraint (VaC) determines the validity of an
element (sub-object or attribute) of a DDO. A VaC is not
required for every object or entity by default. For example, a
shopping cart’s comment field, being optional, is valid
whether it is empty or contains a comment text. However, a
ship-to is required before the shopping cart can be submitted
for processing. Validity constraints should only be used when
a more complex logic is required to determine if an object or
its entity is valid or not.

The VaCs can also be employed by workflows to perform
further validation. For example, a workflow could perform a
validation on a field to check for malicious entrees (i.e. links
to spam or inappropriate URL, cross scripting, SQL injections,
etc).

VaCs should not be used in cases where the constraint can be
expressed using established UML notation.

2.5.4.3 The Editability Constraint

The Editability Constraint (EC) contains logic that
determines whether an element (component or attribute) of a
DDO is editable, i.e. changeable by some user interface. The
EC is not required for every object or entity; it should only be
used when editability of an element is driven by business
logic. For example, a Shopping Cart comment field should
always be editable as it is intended to gather additional
information from the user. However, a tax field or a shipping
charge field should not be editable because these are derived
based on item cost and shipping destination. The EC comes
into play when the editability of an object or its entity depends
on some additional logic which must be recorded as part of the
analysis and design process. Element editability can be
qualified (parameterized) with contextual information, such as
user role. For example, a clerk at a warehouse could verify the
quantity of an item which needs to be shipped, however only a
warehouse manager can edit that quantity if needed.

The use of roles can also be extended to the Visibility and
Validity constraints by applying Securing Analysis Patterns
[2].

It is important to stress that constraint classes do not alter the
structure of the object itself or of its entities. If, for example, a
Tax element is hidden by ViC, its value remains unchanged
and could not be (nor should be) altered by any of the
constraints.

2.5.5 Workflow

The Workflow component describes the logic associated
with the Dynamic Business Object, the sequence of operations
that the Dynamic Business Object goes through during its
lifetime. A workflow's operations are distributed on the client
and on the server side and can be executed sequentially or
concurrently. A Dynamic Business Object's workflow can
include other sub-workflows to modularize complex behavior.
The runtime for a workflow is platform-neutral, generic, and
and is interpreted by the various actors involved in its
execution.

A workflow involves the Dynamic Business Object's
dynamic and static documents, and possibly other business
objects, as well as services provided by the infrastructure.

For example, the workflow of a Shopping Cart Dynamic
Business Object begins when customer submits the shopping
cart with desired items to be purchased. The workflow then
executes logic which verifies customer's payment information,
then forwards the shopping cart request to the warehouse for
packaging and shipping. Once items are shipped, the
workflow will notify customer of completion.

Workflow is an essential part of the Dynamic Business
Object Pattern as its main responsibility is to track the status
of the business object through its life cycle, and take
appropriate action in each stage. For example, when user

submits a shopping cart to be processed, it is the shopping
cart's workflow process that determines what needs to occur
next. The workflow might first check the billing data of the
shopper to ensure that it is valid. If could then check the
warehouse inventory to ensure that the ordered items are
available, and if they are not, the workflow would then send
out an email to the shopper with further instructions. The
workflow “moves” the business object from one stage to
another, until the process is completed.

Because the Common Module is the base module and does
not represent a specific business process, its workflow
includes just two trivial no-op operations, Start and Stop, that
can be specialized in sub-modules (Figure 2).

3. KNOWN USES

Ariba Inc. uses similar approach in its architecture and
software products [15]. Ariba uses the concept of an
Approvable object, which is a representation of a business
entity. The Approvable object is similar to the Dynamic Data
Object presented in this paper. Within the Ariba architecture
the Approvable object is coupled with the user interface and a
storage medium, and its data is expected to be dynamic
throughout the object's life cycle. The Ariba architecture also
includes a workflow component which manages the
Approvable object through the required business processes
and events. Note: Ariba Inc. has recently been acquired by
SAP AG [24].

4. IMPLEMENTATION: A SHOPPING
CART

This example will show how a Dynamic Business Object
Pattern employs an existing module to create (or extend) a
new module to address a specific business need. In this
example we’ll create and apply pattern to a Shopping Cart
Request Module. Our shopping cart module will be based on
an existing module (Abstract Customer Request Module).

Every business has customers with whom it constantly
interacts. One of the most generic interactions is to process
customer requests. The requests can come in many different
forms: an appointment, a question, a purchase of the business
product or service, and many others. The most basic customer
request can be broken down into the following steps:

1. Customer initiates a request

2. Request is received and processed by the business

3. Customer is informed of the request completion

Based on above, we can create a module called the Abstract
Customer Request Module. Note that the Abstract Customer
Request Module would have already been part of the Dynamic
Business Object Pattern library, and is only detailed here for
the purposes of illustrating how the Shopping Cart Module is
eventually constructed.

Figure 2. Default workflow for the Common Module.

The Customer and Customer Request objects are an
extension of the Dynamic Data Object found in the Common
Module. Customer Static Document and Customer Request
Workflow are an extension of Static Document and Workflow
respectively, also found in the Common Module.

In addition to the fields inherited from the Dynamic Data
Object, the Customer object also contains fields relevant to the
customer’s identity, while the Customer Request object gets

additional fields relevant to the processing of the customer
request.

There are no specific changes to the Customer Static
Document object as it pertains to the Abstract Customer
Request Module – the object is just inherited from the
Common Module. The workflow in the ACR Module is
modified to reflect the minimum needed to process a generic
customer request, as seen in Figure 4.

With the reusable Abstract Customer Request Module
specification completed, the next step is to extend it according
to the Dynamic Business Object Pattern to analyze and build
the Shopping Cart Request Module.

In its most basis form, a Shopping Cart is a customer request
for goods or services. A customer browses the catalog, selects
items from it, and finally submits it for processing. For this
reason, it only makes sense to rely on our ACR Module in
order to build our Shopping Cart Request Module (SCR).

Figure 4. Abstract customer request workflow.

Figure 3. Diagram showing Common Module specialization for a Customer Request.

The ACR Module is extended for the new Shopping Cart
Request Module, as shown in Figure 5. According to the
Dynamic Business Object Pattern, the Shopping Cart Request
Module inherits all objects found in the ACR Module. It is

extended to reflect the nature of the shopping cart request: it is
initiated by an online customer (hence the new login and
credit card information) and new classes for the shopping cart
and its items.

The Customer Request workflow is extended to address the
new requirements for handling a shopping cart request, as in
Figure 6.

By extending the Abstract Customer Request Module, only
the Process Customer Request operation was replaced with
two new ones: Verify Customer Credit Card and Ship Items to
Customer.

This example is not meant to be an exhaustive analysis of the
Shopping Cart process, but rather to present a clear process of
employing Dynamic Business Object Pattern to address a
specific business problem at hand and provide a solution via
the proposed pattern.

The Dynamic Business Object Pattern can be further
enhanced by applying security patterns to the modules’
objects and workflows, as in the Securing Analysis Patterns
[2].

4.1 Consequences

4.1.1 Benefits

Dynamic Business Object Pattern can greatly simplify the
development of business objects, especially if a growing
library of dynamic business objects is accumulated and
employed over time. The pattern provides a clear approach for
describing a given business object and its contents, even when
high complexity is present. The pattern also takes into account
the processes (via workflows) that are required to support the
business object’s life cycle. The pattern is also flexible enough
to allow for future changes and additions, if any should be
required.

4.1.2 Liabilities

Dynamic Business Object Pattern does not take into account
the specifics of dynamic data object support at the user
interface and data persistence levels. In addition, until a
Dynamic Business Objects library is amassed, much of the
work will be required to be performed from scratch.

Figure 5. Shopping Cart Request Module specialization: support for online customers, shopping
cart, and its items.

Figure 6. The workflow of a shopping cart Dynamic Business Object. Receive Customer Request
and Notify Customer are operations inherited from the Abstract Customer Request Module.

5. RELATED PATTERNS AND
FRAMEWORKS

5.1 The Document-View-Presentation
(DVP) Pattern

DVP [8] separates an application into three components:
document, view, and presentation. The document component
holds business logic and data. The view component is
responsible for service requests and supplying the data to the
document. The presentation component processes the events
and provides data to the view component.

The Dynamic Business Object Pattern differs from the DVP
in that it separates the objects into two types: dynamic data
object (DDO) and static document (SD). Unlike DVP,
Dynamic Business Object Pattern leaves the retrieval and
presentation of data to the DDO. In addition, the presentation
of SD is left to the application handling the specific type of
document (i.e. MS Word for .doc and .docx types, Adobe PDF
for .pdf type, etc). Finally, Dynamic Business Object Pattern
offers a workflow component, which is not available in DVP.

5.2 The Model-View-Controller (MVC)
Pattern

MVC [9] has become one of the most popular and widely
accepted patterns in the market today. Its main benefit is that
it separates the presentation of information from the business
logic and data storage. The model component in MVC is
responsible for business logic and data storage. The view
component handles the end user presentation of the requested
data. The controller component handles the input from the
view component and converts it into instructions for the view
and/or model. The Dynamic Business Object Pattern differs
from MVC in that data retrieval and presentation are
performed by the dynamic data object in Dynamic Business
Object Pattern, and that static document object presentation
mechanism is left to the external application responsible for
handling the type of static document requested. Unlike
Dynamic Business Object Pattern, MVC can only support a
request/response mode, and does not provide the means for
handling a business process in the form of a workflow.

5.3 The Presentation-Abstraction-Control
(PAC) Pattern

PAC [10] defines a structure for interactive software systems
in the form of a hierarchy of cooperating agents. In PAC,
every agent is responsible for a specific area of the
application's functionality and is comprised of three
components: presentation, abstraction, and control. The
abstraction component in PAC is similar to MVC’s model
component. The presentation component in PAC can be
viewed as a combination of view and controller components in
MVC pattern. The control component is responsible for
facilitation between PAC agents.

Dynamic Business Object is similar to PAC’s agent in that it
can define a single business object, or a group of business
objects comprising a module (or a system in PAC). In PAC,
agents are responsible for data retrieval, presentation and

maintenance. Dynamic Business Object Pattern differs here
from PAC in that it classifies the data as dynamic or static,
and consequently uses different presentation mechanisms for
each. In addition, the job of business processes is handled by
the workflow component in Dynamic Business Object Pattern,
whereas in PAC it is the responsibility of the agent itself.

5.4 The Common Business Objects
Framework (CBOF)

The Common Business Objects Framework was proposed by
the Object Management Group (OMG). It is based on OMG’s
CORBA and Business Objects Framework specification,
which handles business concepts, processes and events. Like
Dynamic Business Object Pattern, the Common Business
Objects in CBOF represent the business rules, functions and
processes. Also like Dynamic Business Object Pattern, CBOF
groups CBOs into different groups (modules in Dynamic
Business Object Pattern), each group specializing in particular
business area (i.e. Finance, Health Care, Manufacturing, etc.).
Unlike CBOF, the Dynamic Business Object Pattern is not
bound by any specific technology. CBOF is a particular
framework technology, tightly coupled with the Common
Object Request Broker Architecture (CORBA) and relies on
many of its feature to make the Common Business Objects
work.

5.5 Other Business Object Frameworks

In the 90’s the Common Object Request Broker Architecture
(CORBA) [11] was hailed by the Object Management Group
(OMG) as the ideal solution for Business Objects landscape.
CORBA was not widely accepted and was survived by Java 2
Enterprise Edition (J2EE) [19] and Microsoft .NET [20]
platforms. Today most of the commercial business
applications are built on J2EE and .NET frameworks. In
recent years the Spring framework [21] has shown a
tremendous popularity as the alternative to J2EE, in large part
due to its simplicity as compared to J2EE, and because it also
uses Java as the main programming language. Last, but no
least are the business applications build by SAP AG [22].
Considered to be the largest developer of business
applications in the world, commanding 25% of the market
[23], SAP uses its own proprietary framework comprising of
ABAP language and BAPI (Business API) interfaces. Unable
to resist the tremendous growth of Java language, SAP has
also introduced a Java based framework it calls Netweaver,
which is increasingly used to build SAP’s web based
commercial applications.

There are also several commercial products in the area of
Business Objects presentation using XML. Among them are
SmartClient [13], Adobe Flex [14], Sencha GXT [16], Vaadin
[17] and Icefaces [18] software products .

5.6 Web Business Objects

In recent years the Service Oriented Architecture (SOA) has
gain a great amount of popularity, and many business
applications have been developed using the SOA. The main
attraction of SOA over other frameworks is that, with
exception of XML, it is language independent, and is entirely
web based. A great example of SOA business application is

federal government’s Federal Procurement Data System –
Next Generation [12], one of the earlier adapters of SOA.

6. CONCLUSIONS AND FUTURE
WORK

The Dynamic Business Object Pattern provides a reusable
and flexible approach to address just about any business
problem and offer a solution based on proven methods.
Furthermore, by isolating different business functions into
specific modules, we can narrow our analysis to specific
modules, and employ that module’s pattern to solve the
business problem at hand.

Further research is needed to see how the Dynamic Business
Object Pattern would work with more complex models, those
including tens or hundreds of objects and workflows. Also of
great interest is the transition to design/implementation model,
as well as opportunities for code generation. The available
storage options and how they can be incorporated into the
pattern are also of significant interest, especially when taking
into account the recent advances in and popularity of NoSql
databases. Finally, the delivery and presentation of dynamic
business objects to the end users from a platform-neutral
specification is of great interest as the wide range of the
devices used by businesses has grown exponentially over the
years. The availability of business applications is no longer
expected to be on desktops and laptops only. New avenues for
using the Dynamic Business Object Pattern should be
explored for pervasive computing and mobile peer-to-peer
computing applications.

7. ACKNOWLEDGMENTS

We would like to thank Prof. David West for his valuable
feedback and support during the shepherding of this paper.

8. REFERENCES

[1] Fernandez E.B. and Yuan X., 2000. Semantic
Analysis Patterns, Department of Computer Science
and Engineering Florida Atlantic University.

[2] Fernandez E.B. and Yuan X., 2007. Securing
Analysis Patterns, Department of Computer Science
and Engineering Florida Atlantic University.

[3] Gamma E., Helm R., Johnson R., Vlissides J., 1994.
Design Patterns: Elements of Reusable Object
Oriented Software, Addison-Wesley.

[4] Fowler M., 1997. Analysis Patterns: Reusable
Object Models, Addison-Wesley Longman.

[5] Daum B., Modeling Business Objecs with XML
Schema, 2003 Morgan Kaufmann Publishers.

[6] Sridaran R., Padmavathi G., Iyakutti K., A Survey
of Design Pattern Based Web Applications.

[7] Buckl S., Matthes F., Monahov I., Roth S., Schulz
C., Schweda C.M., 2012. Enterprise Architecture
Management Patterns for Company-wide Access
Views on Business Objects, ACM Transactions on

Applied Perception, Vol. 2, No. 3, Article 1,
Publication date: May 2012.

[8] Chang K.Y., Chen L.S., Lai C.K., 1999. Document-
View-Presentation Pattern, Department of Electrical
Engineering, National Cheng-Kung University,
Taiwan.

[9] Krasner G.E. and Pope S.T., 1988. A cookbook for
using the model-view controller user interface
paradigm in Smalltalk-80. Journal of Object-
Oriented Programming, Volume 1 Issue 3
(Aug./Sept. 1988), 26-49.

[10] Buschmann, F., Meunier R., Rohnert H.,
Sommerlad P., Stal M., 1996. Pattern-Oriented
Software Architecture: A System Of Patterns. West
Sussex, England: John Wiley & Sons Ltd.

[11] Business Object DTF, Common Business Objects,
1997. OMG Document bom/97-12-04.

[12] FPDS-NG, Federal Procurement Data System -
Next Generation, 2013.
DOI=https://www.fpdsng.com.

[13] SmartClient Enterprise Edition, Isomorphic
Software, 2010.
DOI=http://smartclient.com/product/smartclient.jsp.

[14] Adobe Flex, Adobe Systems Incorporated, 2013.
DOI=http://www.adobe.com/products/flex.html?
promoid=DINEZ.

[15] Ariba Inc., 2013. DOI=http://www.ariba.com

[16] Sencha GTX, Sencha Inc., 2013.
DOI=http://www.sencha.com/products/gxt.

[17] Vaadin UI Components, Vaadin Server & Client,
Vaadin Ltd., 2012. DOI=https://vaadin.com/home.

[18] Icefaces, ICEsoft Technologies Inc., 2013.
DOI=http://www.icesoft.org/java/home.jsf.

[19] J2EE, Oracle Corporation, 2013.
DOI=http://www.oracle.com/technetwork/java/javae
e/overview/index.html.

[20] .NET, Microsoft, 2013.
DOI=http://www.microsoft.com/net.

[21] Spring Framework, GoPivotal, Inc., 2013,
DOI=http://www.springsource.org/spring-
framework.

[22] ABAP and BAPI, SAP AG, 2013.
DOI=http://scn.sap.com/community/abap.

[23] Columbuss, Louis, May 12, 2013. 2013 ERP Market
Share Update: SAP Solidifies Market Leadership.
Forbes.

[24] Wong K. and Bass D., May 23, 2012. SAP to
Acquire Ariba for $4.3 Billion in Push Into Cloud.
Bloomberg.

http://www.adobe.com/products/flex.html?promoid=DINEZ
http://www.adobe.com/products/flex.html?promoid=DINEZ
http://www.adobe.com/products/flex.html?promoid=DINEZ

	1. INTRODUCTION AND OVERVIEW
	2. The Dynamic Business Object Pattern
	2.1 Intent
	2.2 Example
	2.3 Context
	2.4 Problem
	2.5 Solution
	2.5.1 Dynamic Data Object (DDO)
	2.5.2 Static Document
	2.5.3 The Document Superclass
	2.5.4 Constraints
	2.5.4.1 The Visibility Constraint
	2.5.4.2 The Validity Constraint
	2.5.4.3 The Editability Constraint

	2.5.5 Workflow

	3. Known uses
	4. Implementation: a shopping cart
	4.1 Consequences
	4.1.1 Benefits
	4.1.2 Liabilities

	5. Related Patterns and frameworks
	5.1 The Document-View-Presentation (DVP) Pattern
	5.2 The Model-View-Controller (MVC) Pattern
	5.3 The Presentation-Abstraction-Control (PAC) Pattern
	5.4 The Common Business Objects Framework (CBOF)
	5.5 Other Business Object Frameworks
	5.6 Web Business Objects

	6. Conclusions and FUTURE WORK
	7. ACKNOWLEDGMENTS
	8. ReferenceS

