
Mining New Patterns by Learning from the Trenches

Robert S. Hanmer
Alcatel-Lucent

robert.hanmer@alcatel-lucent.com

Mehdi Mirakhorli
Software Engineering Department
Rochester Institute of Technology

mehdi@se.rit.edu

ABSTRACT
Pattern Mining is a scientific and experimental process where
methods of knowledge discovery are used to find established ways
of software analysis, design, implementation, and maintenance,
and then describe such findings in as reusable knowledge for a
given context. Over years, several traditional pattern mining
techniques have been used in the community to collect tactic and
specific design knowledge across different projects and
organizations and present them in explicit and generic form of
software patterns. This paper introduces a new dimension to the
practice of pattern mining, where a set of design analysis tools and
automated design discovery and knowledge mining techniques are
used to mine large scale software repositories, publicly available
bug reports in issue tracking software and the open information
presented on the web to extract new patterns. The collective
knowledge gleaned from this effort can be used to define new
patterns or pattern prototypes for improving software productivity.
This paper presents a set of such patterns and illustrates anecdotal
examples of the new patterns discovered through these
techniques. Furthermore, this paper discusses the challenges faced
by the pattern community in order to continue discovering,
maintaining and organizing patterns in a systematic and usable
way.

Categories and Subject Descriptors
D.2.11 [Software Architectures]: Patterns—Languages; D.2.13
[Reusable Software]: Reusable Library—Reusable Models

General Terms
Design, Languages, Documentation

Keywords
Pattern Mining, Design Patterns, Knowledge Discovery

1. INTRODUCTION
Software patterns are an effective way to convey information
during the design and construction of new systems [1]. Once the
new system has been created there is still the need to understand
the software in order to study or maintain the system. Patterns are

also useful in this context. They are useful to exchange
conceptual information and to describe the structure. The
presence or absence of patterns in the software artifacts can
provide insight into the overall nature of the software, the mindset
of the designers and the maintainability of the software.

In this paper we look at ways of mining patterns from software
artifacts. In addition to the traditional techniques of interviewing
humans to mine patterns, tools can be used to examine artifacts
[2][3]. To do an effective job mining from the artifact however
both styles of techniques for mining should be used.

This paper provides a brief review of the existing patterns for
pattern mining. This is followed by several new patterns useful
for general pattern mining and for mining by automated methods.

1.1 Catalogue of Mining Techniques
There are several approaches to Pattern Mining. Traditionally the
effort has focused on mining new patterns based on (1) individual
contributions, (2) mining based on experts’ interviews, and (3)
mining through collaborative pattern mining. These techniques
are primarily human centered and require several rounds of
interviews or workshops to solicit the design knowledge from
expert, specify the elements of a pattern and clarify the details.

1.2 Individual Efforts
Many people have collected tacit design knowledge within
organizations. It is stored within an organization in the form
organization-specific pattern catalogues and pattern languages.
Here are a few examples of efforts that the pattern community will
be familiar with already.

Grady Booch collection of architectural decisions [4] in his
Handbook of Software Architecture is an example of such
individual effort. Grady’s collection includes most of the
architectural decisions published across several text books, article
and white papers.

Munawar Hafiz, Paul Adamczyk and Ralph Johnson [5]
established a catalog of all the security patterns that have been
published in the last fourteen years. This catalog has been
established with the massive effort of pattern miners over a 12
months period.

Bob Hanmer [6] during his last 20 years of involvement in the
pattern community has collected a set of architectural patterns
published in his books. Moreover he has been actively specifying
and organizing a collection of specific software patterns he has
used over years of his architecture design experience at Bell Labs
and Alcatel-Lucent.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee.
A preliminary version of this paper was presented in a writers' workshop
at the 21st Conference on Pattern Languages of Programs (PLoP).
PLoP'14, September 14-17, Monticello, Illinois, USA. Copyright 2014 is
held by Alcatel-Lucent. HILLSIDE 978-1-941652-01-5.

Takashi Iba [10] presented a set of pattern mining patterns to help
pattern miners by discussing the ways to find and solve problems
for pattern mining. He has also taught classes in pattern mining
and engaged his whole school in pattern mining efforts as a way
of enculturization.

Rick Kazman at Carnegie Mellon Software Engineering Institute
have been active in identifying a new set of architectural tactics to
enhance software testability, modifiability and portability[1].

Such independent works in the pattern community has contributed
in introduction of new patterns, collection and representation of
existing ones. However there are several challenges which inhibit
significant progress in this area. The following subsection
represents a few major challenges.

1.3 Challenges
Although several individuals’ effort have resulted in great
contributions to the pattern community, the focus and longevity of
these resources are dependent on these individuals. The process
of mining patterns has been very demanding and had required
years of efforts. Furthermore there is not a single point of access
or a single catalog to navigate through these patterns.

Accessibility for practitioners and educators must be created and
maintained. Patterns are not much use if they cannot be found,
understood and used in design or understanding. They need to be
documented, cataloged and kept up to date.

2. PATTERN MINING TECHNIQUES
Webster’s defines archaeology as the study of antiquity (Websters
2014). In the software world, where things are changing so fast,
this is a fitting term for looking at software artifacts to understand
how they are built and to get into the minds of their creators.

This paper contains several new patterns for archaeological
pattern mining. Table 1 lists thumbnails for these patterns.

2.1 Software Archeology
This section describes the Software Archaeology patterns and

presents an example realization of this pattern.

Name: Software Archeology

Problem: You have a large software artifact that you want to
study to understand what patterns were used by its creators. You
also want to see if there are new and interesting combinations of
existing patterns that were used in its creation.

Forces:

• You could hunt down the people that created the
software artifact, but in many cases you cannot find out
who they are, or they have moved on and are not
interested in talking about the old project or they do not
have the time to really help you out. “Crowdsourcing to
extract and document design patterns” could be done to
get a group of people to jointly help.

• You have access to the source code, something that you
do not always have.

• The documentation about how it was implemented, the
design documentation, is unavailable. It might be non-
existent. Sometimes it is available but you are not quite
sure if you can believe it, or it is for a previous version
of the artifact.

• You are not undergoing the effort to fix a single,
concrete fault. Your goal is more of overall educational
need. You want to understand the artifact to evolve it,
or to assume ownership for it, or maybe to collect
metrics for general software engineering research.

• You will get different information if you examine the
code “at rest” or if you examine it while it is executing.
Both kinds of information are useful and complement
each other.

Table 1. Pattern Thumbnails

1. Software Archeology

Utilize the software analysis, design discovery and architecture reconstruction
and visualization tools to mine software system’s source code and detect new
notions of design, hybrid approaches to a design problem and also some of the
tacit forces in implementing an architectural choice.

2. Crowdsourcing to extract
and document design
patterns

This pattern is about obtaining ideas and solutions by soliciting contribution
from a larger group of experts online and in untraditional ways. This is
accomplished by publishing the prototyped pattern for testing, examining it
scientifically and voting on the correctness.

3. Pattern Mining Patterns to
guide the miners

Provides a roadmap for the pattern miner to extract the partial design
knowledge and pull out the pattern through iterations of knowledge discovery
and synthesis.

4. Web and Social Media
Mining

This pattern used the web-content as a resource for discovering new design
patterns.

5. Pattern Representation Reintroducing a pattern, breaking the existing one into concrete, independent
single forced solution or combining the single facet solutions into existing
ones.

6. Open Encyclopedia of
Patterns (proposal)

The extracted patterns in the community can be stored in a single openly
accessed pattern catalog so that experts can provide feedback, enhance, modify
and use the pattern.

Solution: Utilizing design discovery techniques to extract design
knowledge from source code.

These techniques are

• Archie: an automated technique to detect design decisions.
[Mirakhorli et. al 2012].

• Lattix, Struture 101: Structure analysis tools to discover
architecture from source code.

• Design Pattern Detection Tools.

• Source code analysis tools.

You come up with a general outline of the patterns in the artifact.
But it still requires human eyes to really determine whether the
pattern is useful. This is another place where “Crowdsourcing to
extract and document design patterns” can come in useful.

2.1.1 Example of Utilizing Design Discovery
Techniques
In an earlier work [2], one of the authors of this paper utilized the
following three steps to analyze source code of several software

systems to understand how low level design decisions can be used
to implement high level architectural tactics.

1. Archie [9] an automated design discovery technique to
detect high level design decisions known as architectural tactic in
several software systems.

2. A design pattern discovery technique [7] was used to
identify the cases where architectural tactics were implemented
using design patterns.

3. An overlap analysis was performed to understand forces
and variability points across each tactic.

As a result of applying the software archeology pattern, we were
able to extract six primary reasons for adopting design patterns in
scheduler implementations. Figure 1 summarizes these findings
showing the patterns and their rationale for inclusion. Figure 2
depicts the structure of these new patterns.

2.2 Crowdsourcing
The second pattern for mining new software design pattern is the
Crowdsourcing Pattern described below:

Name: Crowdsourcing to extract and document design patterns

Problem: You want to find new patterns for specific software
problem, but there are a limited number of experts you can
interview and their availability are limited.

Forces:

• Traditional discovery techniques based on interviewing
individual experts is difficult.

• You have limited time to go through traditional pattern
mining process.

• Sometimes there are many experts, but they are all busy
and you can’t get on any of their calendars to interview
them.

Figure 2. Design Patterns used to address variability points in the Scheduling Tactic

Figure 1. New Patterns for Implementing Scheduling-Tactics

• The experts have some interest in the problem and will
spend time addressing the issue, but it needs to be when
they find time rather than a formal interview.

• In some cases you know who all the experts are in
advance, but sometimes, for example in an open source
project, you know there are experts but they are slightly
anonymous.

• You have some ideas where to dig for patterns, so you
are able to guide a discussion towards the topics of
interest.

• Blindly asking experts can result in wild goose chases
or being led down the wrong paths, so some way of
evaluating the ideas is needed.

Solution: Crowdsource the problem in a relevant forum to ask the
experts about how they would address the issue. Recently several
of such forums and website are available where each brainstormed
idea will get voted on by the experts. Some examples are Stack
Overflow and Stack Exchange.

2.2.1 Example of Utilizing Crowdsourcing
There are several forums and websites on which the developers
are actively sharing their development challenges, seek feedback

from their peers and provide help to others. There are a large body
of design knowledge communicated in this forums, Stackoverflow
(http://www.stackoverflow.com) has over 16,000 posts tagged

with Design-Pattern, 44,000 about different issues on software
design, about 8,000 on Architecture, and so on.

Following the Crowdsourcing pattern, we posted an initial idea to
Stackoverflow website1 to mine new pattern about implementation
of Pooling architectural decision. The question was worded as
though asked by a developer to focus the crowd’s answer to the
specific question would be higher.

Based on the comments, feedback and suggested links of the
developers on our posting, we were able to identify the following
forces to consider in implementation of Pooling and also a set of
solutions to address them.

2.3 Pattern Mining Pattern

Name: Pattern Mining Patterns to guide the miners
Problem: Where do you start when investigating a large body of
software that’s staring you in the face?
Forces:

• Software is varied, but almost all languages follow some
basic rules. These rules take the form of common
idioms in the language – class definitions, lexical
structure, etc. These rules provide some definition to

1 http://stackoverflow.com/questions/24344877/implementing-

resource-pooling-using-design-patterns

Figure 3. StackOverflow Post to Crowdsource the Idea

Table 1. StackOverflow Outcomes

Forces Discussed Solution

1 Are the objects expensive to create? FlyWeight Design pattern was suggested for creation
of a large number of objects or expensive objects.

2 Will they be acquired / released very frequently? For timely pooling, Singleton design pattern was
recommended.

3
Is re-initialization costly and more than a simple
assignment? (eg. a pool of socket objects that must
not be re-used for 5 minutes)

Pool Manager thread effectively splits the pool into a
couple of puddles - those objects available for re-use
and those awaiting.

4 What is the resource allocation model and access
strategy? Round Robin, FIFO, LIFO, Intelligent… Different Data Structures.

5 Mechanism for creating resources. Factory Design Pattern was recommended.

6 Strategies for Resource Loading (Lazy Load, Eager
Loading). NA

the body of code making it less formidable.

• You’ve done this before, or at least other people who
can help you have done it before.

• You know what the software is required to do, so you
have insight into some possible guiding principles that
were used.

Solution: Start with some of the well-known idioms for
examining large code bases and understand the design solution.
To capture a tacit design solution, the pattern miner need to
observe various chains of evidences from intentions of
architecture (e.g. functional requirements, quality concerns,
business goals and constraints) to its actual outcomes (e.g. design
decisions etc.), then synthesize these findings, reason about them,
fuse them to make the tacit design solution in the code explicit.

Some suggested starting points and idioms are:

• Look for the structure of the mainline code or loop,

• Digging deep early is preferred to getting a broad high-
level view sometimes,

• Understanding the use of pre-packaged frameworks can
help you relate it to similar systems.

2.4 Web-mining
This pattern uses the content on the web as a resource to obtain
the pattern ideas. Furthermore text mining tools and techniques
can be used to assist the pattern miner in this process.

Name: Web and Social Media Mining
Problem: In the fast pace of technological changes, many
organizations and experts publish their new innovative design
discoveries through their blogs, websites, and webinars. A
designer facing a problem wants to find if anyone has faced the
same problem and has found a robust solution for it.
Forces:

• The answer to your problem is not in textbooks, your
problem is domain specific.

• People like to share how smart they are with others by
explaining their good ideas or successes. The source
code might not be the best place to do that.

• An individual pattern contributor wants to introduce a
new twist on an existing pattern that he found useful.

• A practitioner wants to explicitly publicize a new
pattern which has been tacit within his/her organization.

• A developer who has recently fixed a design problem
through searching the web, wants to broadcast the new
pattern to his problem.

Solution: Web-mining can be used to discover the new patterns.
This can be done manually by using search engines or going
through websites such as StackOverflow
(http://stackoverflow.com/) to find the new patterns.

Alternatively web-mining and web crawling tools as well as text
mining techniques such as text classification and topic modeling
can be used to perform semi-automated techniques to discover
new knowledge.

2.5 Useful Patterns
Name: Pattern Representation
Problem: There are many similar patterns published, people who
are new to the pattern concepts can have difficulties
understanding or applying a pattern.

Forces:

• You are not developing a new pattern. An existing
pattern is already written and available to you.

• Projects and organizations frequently have their own
vocabulary. Pattern names should enter this vocabulary.

• Sometimes a general-purpose pattern that is widely
known isn’t known within a project. This can be
because the terminology might not match the local
vocabulary.

• A pattern is complex and can be divided into separate
stand alone and simpler patterns.

Solution: An existing pattern can be synthesized to evaluate the
forces and their mutual impacts. It can be rewritten into a new
presentation which is simpler or more focused on a specific
audience. It can include specific forces, or has a partial solution
for specific forces in the original pattern tailored to the vocabulary
of the project.

2.6 Pattern Wiki
Proposal: Open Encyclopedia of Patterns
Problem: There are many people who want to contribute to your
understanding of a software artifact.
Forces:

• People want to contribute, but don’t necessarily want to
take all the time that’s required to put a paper together
for a pattern conference or to write a book.

• An individual pattern contributor wants to introduce a
new twist on an existing pattern that he found useful.

• A practitioner wants to explicitly publicize a new
pattern which has been tacit within his/her organization.

• A developer who has recently fixed a design problem
through searching the web, wants to broadcast the new
pattern to his problem.

• You could publish that on the internet but there is not a
right place that has high visibility for pattern users.

• You could write a pattern paper and publish it, but it
would not be easy for the pattern users search and find
the pattern they want through papers.

• Design patterns are scattered across various resources,
books, personal libraries, inside individual development
artifacts. The lack of single point of access to the
collection of these patterns make utilizing, evolving or
introducing new pattern prototypes difficult.

• Pattern editing by random people can result in the main
message getting confused, so some form of review is
needed.

Proposed Solution: A collaboratively edited, multilingual, open
encyclopedia that is supported by the non-profit group and
volunteers. A pattern miner can add a new pattern to this pattern

wiki, while others can provide feedback modify, enhance or add
new forces and context to it.

3. ACKNOWLEDGMENTS
The authors would like to thank Ernst Oberortner for his
contributions as our shepherd. The PLoP 2014 Writers’
Workshop group “Pattern Language & Mining”.

REFERENCES
[1] Len Bass, Paul Clements, and Rick Kazman, Software

Architecture in Practice, Adison Wesley, 2003.
[2] Mirakhorli, M.; Shin, Y.; Cleland-Huang, J.; Cinar, M.; “A

tactic-centric approach for automating traceability of quality
concerns”, Proceedings of the 2012 International Conference
on Software Engineering, 639-649,2012,IEEE Press.

[3] Mehdi Mirakhorli, Patrick Mäder, and Jane Cleland-Huang.
2012. Variability points and design pattern usage in
architectural tactics. In Proceedings of the ACM SIGSOFT
20th International Symposium on the Foundations of
Software Engineering (FSE '12). ACM, New York, NY,
USA, , Article 52 , 11 pages.
DOI=10.1145/2393596.2393657

[4] Grady Booch. 2005. On creating a handbook of software
architecture. In Companion to the 20th annual ACM
SIGPLAN conference on Object-oriented programming,
systems, languages, and applications (OOPSLA '05). ACM,
New York, NY, USA, 8-8. DOI=10.1145/1094855.1094862

[5] Munawar Hafiz, Paul Adamczyk, and Ralph E. Johnson.
2012. Growing a pattern language (for security). In
Proceedings of the ACM international symposium on New
ideas, new paradigms, and reflections on programming and
software (Onward! '12). ACM, New York, NY, USA, 139-
158. DOI=10.1145/2384592.2384607
http://doi.acm.org/10.1145/2384592.2384607

[6] Hanmer, R. S. , Patterns for Fault Tolerant Software, John
Wiley, 2007

[7] Rasool, G.; Mader, P., "Flexible design pattern detection
based on feature types," Automated Software Engineering
(ASE), 2011 26th IEEE/ACM International Conference on ,
vol., no., pp.243,252, 6-10 Nov. 2011 doi:
10.1109/ASE.2011.6100060

[8] Websters. dictionary.reference.com/browse/archaeology.
Referenced 15 August 2014.

[9] Mehdi Mirakhorli, Ahmed Fakhry, Artem Grechko, Mateusz
Wieloch, Jane Cleland-Huang “Archie: A Tool for Detecting,
Monitoring, and Preserving Architecturally Significant
Code”, 22nd ACM SIGSOFT International Symposium on
the Foundations of Software Engineering (FSE 2014)

[10] Takashi Iba, Toko Miyake, Miyuko Naruse and Natsumi
Yotsumoto, "Learning Patterns: A Pattern Language for
Active Learners", 16th Conference on Pattern Language of
Programs, Aug., 2009

