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ABSTRACT 
Cyber Physical Systems (CPSs) are becoming not only 
increasingly complex but also increasingly important. 
Traditionally, CPSs were self-contained monolithic systems 
operating in a well-defined environment. CPSs today have 
evolved to large-scale systems including multiple interacting 
components. Due to the inherent complexity of the physical 
environments where CPSs operate and the ever changing 
operational and context conditions of these environments, CPSs 
need to be able to adapt in a semi- or fully autonomic manner. At 
the same time, in the course of adapting themselves, they need to 
satisfy key quality, security and privacy (QSP) requirements and 
be resilient to threats even if those were unknown at the time the 
CPS was designed. Engineering CPSs with such capabilities is a 
challenging problem that requires expert knowledge. Our 
approach to addressing this problem is based on the use of QSP-
preserving patterns, i.e., patterns that encode proven design and 
engineering solutions providing particular QSP properties. We 
argue that existing pattern formats miss some essential features of 
CPSs. As a step towards the realization of approach, in this paper 
we present a new pattern format that enables the representation of 
most important characteristics of QSP preserving patterns for 
CPS. Our format provides an initial basis for defining a full 
pattern language for engineering QSP preserving CPS. 

Categories and Subject Descriptors 
Software and its engineering~Software design engineering; 
Software and its engineering~Patterns; Software and its 
engineering~Unified Modeling Language (UML); Computer 
systems organization~Embedded and cyber-physical systems 

General Terms 
Security Patterns, Security modeling and engineering, Pattern-
based system engineering. 

Keywords 
Computer-processable knowledge representation 

1. INTRODUCTION 
Traditional Cyber-Physical Systems (CPSs) were isolated, self-
contained systems operating in well-defined environments (e.g., 
embedded in vehicles or electronic appliances) and exposed to 
limited threats. Recently, however, CPSs have evolved into large-
scale systems, including multiple interacting components, 
connected with other cyber and physical systems (e.g., energy 
infrastructures). CPSs are exposed to a large number of known 
and unknown threats. They also need to operate under continually 
changing conditions and to adapt and be resilient to them. Such 
adaptive behavior is hard to guarantee at design time; therefore, 
engineering CPSs is becoming an increasingly complex task. 

To illustrate the challenges that the development of CPSs entails, 
consider electricity provisioning. With the advent of regenerative 
energy, electricity can be obtained from many different sources 
besides traditional power plants (sunlight, wind, rain, tides, waves 
and geothermal heat). Source diversity has fostered a major 
change from a centralized grid topology to a highly distributed 
one. Smart grids, for example, involve sensors that measure 
electricity production and consumption, controllers that collect 
and report measurements, services that control the generation, 
distribution and storage of energy and several cyber components 
enabling the processing and communication of this information. 

In addition to functional requirements, some important non-
functional ones need to be considered, most notably regarding 
quality, security and privacy (which we will refer to in the paper 
as QSP properties ). For instance, the insertion of forged (i.e., 
non-authentic) information about the amount of available 
electricity that a wind turbine can produce, can lead to the 
alteration of an electricity distribution control service, which in 
turn can potentially lead to a breakdown of the entire electricity 
grid.  

As this example suggests, CPSs are complex, composite systems 
that deal with multiple physical parameters in a coordinated and 
coherent way. To do so, CPSs include highly interconnected and 
interdependent cyber-components that provide critical functions. 
Components of CPSs may evolve independently from each other 
in order to offer new capabilities and/or to adapt to their changing 
environments. Some of these cyber-components have important 
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security and safety requirements, and may interact with humans. 
They may also operate within the realm of different and not 
always harmonized jurisdictions and may need to transfer data 
across them. Furthermore, cyber-components of CPSs may have 
diverse computational features and roles. 

Further, both cyber and physical components of CPSs operate 
under distributed ownership and control, and within uncontrolled 
and unprotected physical environments. These may be 
characterized by changing operational conditions and constraints 
(e.g., changing temperatures, physical damage, changes to power 
supply etc.). As a consequence of these factors, CPSs may be 
deployed in adverse operating conditions, related to the 
unpredictable nature of the physical world, which can 
compromise the availability and security of some of their 
components. They are very vulnerable to security attacks through 
their ICT or physical components. Local sensors, for example, can 
be destroyed or tampered with. This may result in losing essential 
information (e.g., the correct amount of energy that is being 
consumed at a given point in time) or transmitting misleading 
information that may be used to attack these systems. Likewise, 
network and application level cyber-components may be subject 
to cyber attacks that may cause the CPS to violate security or 
privacy requirements (Chen et al., 2011).  

The composite structure of CPSs implies that attacks to any of 
their components may compromise the overall security. CPSs may 
also be subject to conflicts with the goals of other interacting 
CPSs, which must be solved cooperatively. They may also 
generate, make use of and inter-relate massive amounts of 
personal data in ways that can potentially breach legal and privacy 
requirements (Lioudakis, Kaklamani, and Venieris, 2009). 
Finally, the infrastructures that a CPS relies on are often outside 
its control and may change frequently. Infrastructural changes can 
also compromise the security, resilience and availability of CPS 
operations and the service(s) that they offer. 

In order to cope with these challenges and to support the 
engineering of CPSs that meet functional as well as QSP 
requirements, we propose a pattern-based approach. In particular, 
the patterns that underpin our approach define generic ways for 
composing and coordinating different types of components (e.g., 
computer hardware, networks, sensors, actuators) in such a 
manner that they provably preserve specific QSP properties. Thus, 
we refer to them as QSP patterns. One important aspect of our 
QSP patterns is that they support the preservation of QSP 
properties at runtime: On the one hand, they include information 
about conditions to be monitored in order to  detect (i) changing 
operational conditions, and (ii) violations and threats to their 
desired QSP properties. On the other hand, in case such 
monitoring reveals the need to adaptation, the QSP pattern defines 
the necessary actions to be taken. In this paper, we introduce a 
pattern format for describing QSP patterns and present an 
example of a QSP pattern that shows the viability of this format.   

The rest of the paper is structured as follows: Section 2 explains 
the challenges that need to be addressed in order to provide 
adequate support for engineering CPS satisfying specific QSP 
properties, Section 3 introduces a motivating example pattern that 
will be used to define extensions to existing pattern formats that 
we deem adequate to cover CPS-specific needs. Section 4 
describes these extensions and uses them for a renewed 
representation of our example. Finally, Section 5 presents 
conclusions and introduces future work. 

2. QUALITY, SECURITY AND PRIVACY 
ENGINEERING FOR CPS 
Please Preserving QSP properties in CPSs under the 
circumstances discussed above is a challenging scientific and 
engineering problem. It involves determining the exact 
compositional structure of a CPS and the functional and non-
functional characteristics of its individual components. It further 
involves identifying and dealing with complex dependencies 
between system-wide and/or component level QSP properties. 
Guaranteeing one of such properties may have a negative effect 
on others (e.g., encryption-based confidentiality vs. energy 
consumption) which in turn requires defining trade offs. All these 
processes have a strong dependence on expert knowledge. Hence, 
engineering CPSs in ways that can simultaneously guarantee a set 
of QSP properties of interest demands for an integrated QSP-
aware and expert knowledge-based design process addressing 
both system development and runtime operation.  

Current design methods, techniques and tools have evolved to 
accommodate some aspects of the design and evolution of CPS. 
However, new artifacts and tools are required for ensuring QSP-
preserving operation of a CPS at the system level, while at the 
same time preserving QSP properties at the level of the individual 
components. 

We claim that an effective CPS engineering approach needs to 
take into account the structure of CPS, the features of their 
components at all layers (physical –non ICT– components, 
sensors/actuators, networks, software, and human participation), 
structural and functional relationships between these components, 
and contextual conditions of their operation, as all these elements 
can affect the preservation of QSP properties. It should take into 
account typical constraints of CPS devices and components, and 
should consider requirements related to CPS interoperability, 
adaptability and optimization.  

A CPS engineering approach needs also to be aware of and 
support effectively the composition of cyber and physical 
components. This composition is inherently different from 
traditional software systems composition. Indeed, software centric 
approaches to composition (e.g., software service/components 
orchestration workflows) do not address the physical layers of 
CPS systems. A successful CPS engineering approach needs to 
support within a single framework multiple alternative forms of 
composition, integrating different and heterogeneous components 
and devices in a composite CPS and considering different 
perspectives (e.g. cyber, physical, human). Moreover, it has to 
include powerful abstraction mechanisms to tame the complexity 
of the hierarchical composition of CPSs. From a QSP perspective, 
this approach should also take into account the quality and 
security characteristics of the underlying mechanisms that are 
used to realize CPS compositions (e.g., network management 
middleware, messaging middleware, software components 
orchestration middleware). 

Understanding the above factors demands expert knowledge from 
diverse disciplines such as computer science, analog and digital 
communication and physics. Such knowledge is often captured 
and expressed in multi-perspective domain models that need to be 
properly interrelated. The sheer amount of effort and skills needed 
for applying that expert knowledge to capture and express such 
models from scratch is hindering CPS development and leads 
often to domain specific vertical solutions.  



Our proposal is based on capturing such expert knowledge in a 
way that is usable by engineering-assistance tools. Among the 
artifacts that we use for capturing the expert knowledge required 
for the successful engineering of CPSs, we present in this paper 
the artifact used to capture QSP solutions, which we call QSP-
patterns and is materialized as an enhancement of current security 
patterns. 

At the software architecture level, security patterns have already 
proven their usefulness in capturing re-occurring solutions and 
thus supporting software development. We claim that patterns 
particularly dedicated to the CPS specific challenges discussed 
above can effectively support a model driven approach to CPS 
engineering. Moreover, the overarching nature of some recent 
modeling formalisms for embedded systems, and in particular 
SysML (OMG, 2012), and to a lesser extent MARTE (OMG, 
2011), has shown that it is possible to provide solutions that are 
accepted by different industries, and has paved the way for a 
pattern-based and QSP-aware engineering of CPS.  

We argue that in order to provide a solid foundation for 
addressing the challenges described above, there is a need for: 

• providing abstraction mechanisms to model the inherent 
complexity of CPSs and their alternative and complex 
compositional structures; 

• reusing capabilities to address the needs for reducing time-to-
deployment for CPS by a significant percentage while 
ensuring QSP requirements; 

• increasing trust in solutions to ensure that engineers have 
solid and rigorous foundations for designing their CPSs; 

• fostering inter-sector applicability in order to de-verticalize 
solutions and to break the trend of solutions being too 
specific due to the adoption of vertical technologies and 
frameworks, which “isolate” devices and CPS and do not 
promote device and system interoperability across different 
application sectors and markets; 

• providing separation of responsibilities to ensure that 
different actors along the value chain play an adequate role, 
and that the result of the expertise and work of each of them 
is coherently integrated into an integrated engineering 
approach; and 

• encoding the above in the form of machine-readable and –
processable patterns. Such patterns should be applicable in 
various CPS design, engineering and runtime management 
activities (e.g., CPS design verification and adaptation, 
model-driven CPS development, runtime CPS modification). 

3. QSP PATTERNS FOR CPS 
Security patterns have been successfully used in the past to 
support system engineering activities, such as designing software 
architectures with known QSP properties and trade-offs, to verify 
whether service oriented software system designs satisfy required 
security properties, and even to adapt them if they do not –see 
(Pino et al. 2014, Pino and Spanoudakis, 2012)–. Furthermore, 
they have proven their value as an instrument for communicating 
design good practice, and educating software architects. However, 
the security patterns used for the above purposes have focused on 
computing systems (i.e., cyber-systems) rather than CPSs, and 
therefore miss aspects that are important for CPSs, such as the 
physical models of some of the CPS components. Also in some of 

the approaches, they are expressed in informal and semi-formal 
languages that do not allow their use in reasoning mechanisms 
that could assist the engineering process. This limitation has 
already been identified and remains an important impediment for 
pattern based CPS engineering. Existing attempts to document 
patterns for CPS, as for instance (Fernandez et al., 2009), lack a 
CPS-specific format and result in missing some of the important 
essential characteristics, in particular, their physical aspects. So, in 
spite of on-going promising work towards defining 
computer-supported and engineering-oriented security patterns, 
called COmputer-Supported Security Patterns (COSSP) (Mana et 
al., 2013, Arjona, Ruiz and Mana, 2014), and the fully automated 
pattern processing approach followed in (Pino et al. 2014, Pino 
and Spanoudakis, 2012) to the best of our knowledge to date there 
does not exist an approach that addresses all necessary aspects. 
Hence our objective in this work is to overcome these limitations. 

3.1 Synchronously-controlled distribution 
line (SCDL) pattern: an informal example 

To clarify our ideas, we introduce a QSP pattern for 
synchronously controlled gas pipelines whose description is based 
on a variant of the Fowler Form (Fowler, 1996). It is important to 
note that our approach is not based on this form, but describes 
extensions (see section 4.3) that can be applied to any existing 
pattern form. In particular, we have chosen this form to reduce the 
existing descriptions to the minimum and to highlight the 
extensions. We also provide a brief discussion of how a developer 
could use this pattern in system design. Our example enables us 
also to highlight some open problems that will be tackled by the 
paper.  
 
Title 
Synchronously-controlled distribution line (SCDL) 
 
Problem 
In order to avoid failures or attacks, a control system for a 
distribution pipeline must ensure that it will operate in virtual 
synchrony and with the desired density of readings. If this cannot 
be ensured, the asynchronous nature of the sensors used to obtain 
information from physical variables can originate failures or 
impose the system to attacks. The purpose of this pattern is 
precisely to guarantee that a physical system (a distribution 
pipeline, say for gas or electricity) controlled by a distributed 
asynchronous sensor system that is subject to attacks/failures will 
operate in virtual synchrony and with the desired density of 
readings. The pattern allows the entire system logic to work as if 
it was executed on a synchronous platform robust with respect to 
attacks.  
The elements involved in the pattern are the PIPELINE and a 
number of SENSOR nodes (PHYSICAL part) and one or more 
CONTROLLER nodes (CYBER part). 
 
The arguments of the pattern are (i) a matrix M expressing inter-
sensor distances, (ii) the minimum density r of sensors per meter 
required for a reliable control, (iii) the frequency f of readings 
from each sensor node to the controller. 
The physical system must operate under three constraints: 

• Bounded Local Clock Error - Each sensor i has access 
to an approximation of the true global time t via a local 
clock Ci where the maximum error (of each local clock) 
is ε, i.e.,   

| Ci – t | < ε. 
 



• Bounded Reading Time Variation - Each node i 
executes its reading in a time Ti having a maximum 
variation w.r.t. a nominal value d, i.e.,   

| Ti – t | < d. 
In other words, the time required for the read action lies 
in the interval t ± d. 

• Minimum density – The number of physical readings per 
meter must never fall below r. 

 
The ICT system includes the following components: 

• Reliable Bounded Message Delivery protocol. Messages 
are: (1) delivered to their destinations reliably, and (2) 
they are time-stamped by sources (the SENSORS) with 
a locally computed timestamp based on d and e, so that 
each received message can be mapped to an end-of-
period (EOP) time by the CONTROLLER.  

• Interpolation routine. Attacks could result in the 
CONTROLLER receiving different message sets, even 
though the network delivers each one correctly; the 
pattern specifies (i) a mechanism to control if the 
density r is achieved and (ii) a routine for computing 
linear interpolation of the closest sensors at the same 
EOP to substitute the missing readings if the minimum 
density is not achieved. 

 
Solution 
Use a synchronizing controller that stores readings received from 
sensors and processes them periodically in fixed intervals. All 
readings received in a period are consumed at the end of the fixed 
interval. The controller is connected to the sensors using a 
Reliable Bounded Message Delivery protocol that ensures data 
origin authenticity. Additionally, the controller uses an 
Interpolation routine to compute linear interpolation of the closest 
sensors at the same EOP to substitute missing or corrupted 
readings. Therefore, the guarantees-1 after applying the pattern 
are: 

(1) CONTROLLER will consume readings at 
approximately the same times, with period P = 1/f. 
More specifically, readings generated during period Pk 
are consumed by CONTROLLER at time EOP(Pk) So, 
it looks like outputs of sensors are received by the 
CONTROLLER synchronously. 

(2) Readings received and accepted by the CONTROLLER 
originate from legitimate sensors. 

(3) At each EOP(Pks), the CONTROLLER will be able to 
detect whether the source density is enough for reliable 
control. 

4. TOWARDS A QSP PATTERN FORMAT 
TO BUILD A PATTERN LANGUAGE 
FOR CPS 

4.1 Goals for QSP Patterns 
Our QSP patterns will support the development of CPSs in several 
respects. First, they will identify all components (e.g. individual 
services, sensing and communication components, etc.) needed 
for the system to satisfy the functional requirements. Additionally, 
they will specify the requirements to be satisfied by these 

                                                                    
1 NOTE: In our pattern, these guarantees are expressed by a single 

property called Synch-Complete-Communication. 

components in order for the CPS as a whole to meet specific QSP 
requirements. In other words, QSP pattern-based development can 
focus on ensuring that CSP components and their composition 
comply to the specification provided by the pattern. There is no 
need to reason about resulting QSP properties, these are assured 
by the pattern, i.e. hold by-design. Finally, QSP patterns being 
machine-readable enables tool-assisted engineering processes: 
The developers select adequate patterns that in turn can induce the 
query for and the selection and composition of the components 
specified by those patterns.  

QSP patterns will further support the preservation of QSP 
properties at runtime. More specifically, a QSP pattern will 
include information about the conditions that need to be 
monitored and/or dynamically tested at runtime in order to 
preserve the QSP properties guaranteed by the pattern. The 
monitoring/testing information allows detecting changing 
operational conditions, as well as violations and threats to their 
desired QSP properties. It further allows verifying that CPS 
components satisfy specific QSP properties and configurations 
that had been used as assumptions in proving the QSP properties 
guaranteed by the pattern to hold. Finally, QSP patterns contain 
information about actions to be taken at runtime in order to adapt 
the compositional structure of the CPS in ways that preserve or 
restore the desired QSP properties. 

4.2 Using QSP Patterns 
QSP patterns will be used to support both the development and 
the runtime management of cyber physical systems. During the 
development of a CPS they can be used to 

a) analyze a given design of a CPS in order to check if it 
satisfies a desired QSP property; or to 

b) generate a partial design of a CPS that is guaranteed to 
satisfy a given property. 

At runtime, QSP patterns can be applied in order to 

c) determine and monitor the conditions that need to be 
satisfied by the components of a CPS for it to satisfy a 
given QSP property; and to 

d) adapt the compositional structure of a CPS in ways that 
can guarantee the desired QSP property. 

QSP patterns could be used under (a) to check if a CPS design as 
a whole (or parts of it) satisfies a given QSP property. In our 
example SCDL pattern, for instance, a gas distribution CPS 
design can be analyzed based on the pattern to check if the 
topology of pressure sensors required by the SCDL pattern for 
guaranteeing a minimum accuracy of pressure readings is 
preserved by each of the different pipelines of the gas distribution 
CPS. In this case, based on the SCDL pattern, the analysis would 
check that the distance between sensors on each of the system’s 
pipelines does not exceed the maximum threshold established by 
the pattern in order to guarantee the accuracy property. Specific 
components of the gas distribution CPS design could also be 
checked according to the pattern to ensure the preservation of 
other properties. The controllers of different pipelines or the 
general controller of the CPS could, for instance, be checked to 
establish whether they are capable of consuming sensor readings 
with the minimum frequency, a property that is important for 
guaranteeing the freshness of pressure information within the gas 
distribution CPS. The main benefit arising from the use of QSP 
patterns for such analysis is avoiding to carry out reasoning based 
on first-principles (i.e., using the analytic model that underpins the 
conditions regarding the topology of sensors in order to check and 



guarantee the accuracy of sensor readings). As a consequence of 
not having to reason from first principles, pattern based analysis is 
scalable to large systems models.  

As an example of (b), the physical model of the SCDL pattern 
could be used to dictate where exactly to place sensors on 
different pipelines of the gas distribution CPS. Similarly, once the 
structure of pipelines and sensors has been established, the pattern 
could be used to dictate the number and types of controllers that 
will be required in order to process the readings from the sensors, 
and how sensors should be allocated to them. This could be 
derived from the characteristics of different types of controllers 
(e.g. max signal processing frequency per time unit) and sensors 
(e.g. signal frequency). Further, the ICT (cyber) model of the 
pattern would specify the actual communication protocol to be 
used in order to guarantee the reliability of messages consumed by 
the controller. 

As an example of (c), the SCDL can be used to establish 
monitoring conditions regarding the aliveness and faultless 
operations of sensors on different pipelines. These conditions can 
be derived from the fact that the pattern requires sensors to be 
placed on a maximum distance from each other on a pipeline. It is 
thus possible to figure out the minimum number of sensors that 
should be alive at an instance of time on a pipeline of given length 
in order to guarantee the accuracy of readings. Furthermore, as the 
pattern establishes the maximum difference between the pressure 
readings of sensors placed at a given distance from each other, it 
is possible to derive conditions for cross checking the pressure 
readings of adjacent sensors and ensure that they remain within 
the boundaries indicating that they are correct. 

Regarding (d), assuming a scenario where there is some localized 
or wider failure of controllers, the SCDL pattern can be used to 
trigger the search, binding, and activation of new controllers into 
the gas distribution CPS as well as the dynamic assignment of 
sensors to them (the latter would be based on an analysis similar 
to what underpins case (b) above but at runtime).    

4.3 Extensions to pattern formats required 
for QSP Patterns 

Traditional pattern description formats, like the Alexandrian, 
POSA, GoF, or Schumacher and Fernandez Security Patterns, or 
even recent computer-readable formats like COSSPs, fall short of 
providing detailed information for systematically capturing the 
characteristics of CPSs. In particular, they do not support the 
identification of and differentiation between physical and ICT 
components, and (more importantly) the description of their 
relations. Further, these generic pattern formats are very flexible 
and therefore it is highly likely that patterns produced by different 
authors are neither consistent nor comparable. Yet in order to 
enable the CPS developer to choose an adequate pattern, aspects 
like marking the physical and ICT components, describing their 
relations, supporting the systematic and consistent cross-
referencing of those elements and relations, among others, need to 
be supported by the pattern format. 

More specifically the following extensions to existing pattern 
formats will be necessary for QSP patterns to serve effectively as 
a tool for engineering CPS systems:  

• Component characterization. To adapt to the composite and 
socio-technical nature of CPS we add a section to describe 
the components (both physical and cyber components are 
considered here). Each component is described by a unique 
ID (identity), a set of scopes (e.g. Physical, ICT, Human), a 

set of types (e.g. sensor, actuator, control, interface), and the 
QSP properties they provide. In order to ensure 
comparability and interoperability of the pattern descriptions, 
in this paper we will assume that the possible values are 
standardized, but our goal is to later introduce the use of 
ontologies to support more flexible schemes for this purpose. 

• Component relations. To cover the highly interconnected 
nature of CPS we add a section describing the different 
relations between CPS components. Each relation has a 
unique identifier (ID), points to the involved components, 
and defines the nature of the relation and its role in the 
pattern. 

• Component orchestration. To adequately represent 
dynamically-adaptive CPSs, a QSP pattern must incorporate 
a description of the architecture and orchestration of the 
components. In this paper we will describe it using natural 
language but we envisage the use of more formal 
descriptions such as BPEL or SySML. 

• Physical model. A QSP pattern must also describe the 
physical aspects of the solution it represents. The focus of 
this section is to describe the physical processes that are 
controlled by the CPS. 

• Cyber model. This section will be used to describe the ICT 
aspects of the solution presented in the pattern. The focus of 
this section is to describe the ICT components that are used 
in the CPS and the ways they are connected. This section will 
also deal with the interface components (e.g. sensors and 
actuators). 

• QSP Properties. This section will be used to specify the QSP 
properties provided by the pattern (as a whole), given that the 
components satisfy the QSP properties listed in their 
respective characterizations. 

Examples of the use of these extensions are included in the 
revised description of the SCDL pattern in section 4.4 below. It 
should be noted that the above list of extensions is not exhaustive. 
Indeed, our expectation is that in the course of modeling 
additional examples of CPS systems, we will identify the need for 
further extensions or for extending or adapting the ones presented 
above. 

4.4 The Synchronously-controlled 
distribution line (SCDL) pattern revisited 

In this section we present the example pattern in a more formal 
way using the proposed extensions. We also discuss why the 
extensions and modifications introduced above result in an 
accurate description of the pattern and how they enable the pattern 
to be used to actually build a specific system. In order to compare 
the improvements and advantages introduced by the proposed 
extensions, we will use again the Fowler Form as a basis. 

Title 
Synchronously-controlled distribution line (SCDL) 
 
Problem 
In order to avoid failures and counter attacks, a control system for 
a distribution pipeline must ensure that it will operate in virtual 
synchrony and with the desired density of readings. However, the 
asynchronous nature of the sensors used to obtain information 
from physical variables can originate failures or impose the 
system to attacks if the control system has to operate with an 
unpredictable density of readings. The purpose of this pattern is 



precisely to guarantee that a physical system (a distribution 
pipeline, say for gas or electricity) controlled by a distributed 
asynchronous sensor system subject to attacks/failures will 
operate in virtual synchrony and with the desired density of 
readings. This pattern allows the entire system logic to work as if 
it was executed on a synchronous platform robust with respect to 
attacks.  
 
Solution 
Use a synchronizing controller that stores readings received from 
sensors and processes them periodically in fixed intervals. All 
readings received in a period are consumed at the end of the fixed 
interval. The controller is connected to the sensors using a 
Reliable Bounded Message Delivery protocol that ensures data 
origin authenticity. Additionally, the controller uses an 
Interpolation routine to compute linear interpolation of the closest 
sensors at the same EOP to substitute missing or corrupted 
readings. Therefore, the guarantees-2 after applying the pattern 
are: 

(1) CONTROLLER will consume readings at 
approximately the same times, with period P = 1/f. 
More specifically, readings generated during period Pk 
are consumed by CONTROLLER at time EOP(Pk) So, 
it looks like outputs of sensors are received by the 
CONTROLLER synchronously. 

(2) Readings received and accepted by the CONTROLLER 
originate from legitimate sensors. 

(3) At each EOP(Pks), the CONTROLLER will be able to 
detect whether the source density is enough for reliable 
control. 

 
The elements involved in the pattern are the PIPELINE and a 
number of SENSOR nodes (PHYSICAL part) and one or more 
CONTROLLER nodes (CYBER part). 
The arguments of the pattern are (i) a matrix M expressing inter-
sensor distances, (ii) the minimum density of sensors per meter 
required for a reliable control r (iii) the frequency f of readings 
from each sensor node to the controller. 
 
Component characterization 

Pipeline 
ID: Pipeline_1 
scopes: Physical 
types: physical component 
 
Sensors 
ID: Sensor_1 … Sensor_n 
scopes: Physical, ICT 
types: interface 
 
Controller 
ID: Controller_1 
scopes: ICT 
types: controller 

 
Component relations 

Pipeline_1-Sensor_i   (1 ≤ i ≤ n) 
ID: Pipeline_1-Sensor_i 
nature: physical_to_ICT 
components: Pipeline_1, Sensor_i 

                                                                    
2 NOTE: In our pattern, these guarantees are expressed by a single 

property called Synch-Complete-Communication. 

Sensor_i-Controller_1   (1 ≤ i ≤ n) 
ID: Sensor_i-Controller_1 
nature: ICT, asynchronous 
components: Sensor_i, Controller_1 

 
Component orchestration 
(1) Components are statically connected in this pattern. All n 

sensors (Sensor_1 … Sensor_n) are connected to the pipeline 
(Pipeline_1) through appropriate physical connections 
(Pipeline_1-Sensor_1 … Pipeline_1-Sensor_n) and are 
connected to the controller (Controller_1) using a Reliable 
Bounded Message Delivery protocol (Sensor_1-Controller_1 
… Sensor_n-Controller_1). 

 
Physical model 
The physical system model specifies three constraints. 

• Bounded Local Clock Error - Each sensor (Sensor_i) 
has access to an approximation of the true global time t 
via a local clock Ci, where the maximum error (of each 
local clock) is ε, i.e.,   

| Ci – t | < ε. 
• Bounded Reading Time Variation - Each sensor 

(Sensor_i) executes its reading in a time Ti having a 
maximum variation w.r.t. a nominal value of d, i.e.,   

| Ti – t | < d. 
In other words, the time required for the read action lies 
in the interval t ± d. 

• Minimum density – The number of physical readings per 
meter must never fall below r 

 
Cyber model 
The SCDL pattern’s ICT model includes the following 
components: 

1. Model of Reliable Message Delivery protocol. Messages 
are (1) delivered to their destinations reliably and (2) 
time-stamped by sources (the SENSORS) with a locally 
computed timestamp based on d and ε so that each 
received message can be mapped to an end-of-period 
(EOP) time by the CONTROLLER.  

2. Model of density control.  SENSOR failures could result 
in the CONTROLLER receiving different message sets 
at each period; the density control model represents (i) a 
mechanism to control if the density r is  achieved and 
(ii) a routine for computing linear interpolation of the 
closest sensors at the same EOP to substitute the 
missing readings if the minimum density is not 
achieved. 

An STS is a finite state automaton that consists of states and 
transitions between states, labeled with actions, guards, and 
update mapping. In our pattern, the message delivery protocol can 
be modeled via two STSs, one for the SENSORs and one for the 
CONTROLLER. The CONTROLLER-side STS may consist of 
just four states (IDLE, RECEIVING, COMPUTING and 
ERROR). The transition from IDLE to RECEIVING is triggered 
by the arrival of a message from a SENSOR, while the opposite 
one (RECEIVING to IDLE) is triggered when the message has 
been entirely received3.  The transition from IDLE to 
COMPUTING is triggered by the CONTROLLER’s internal 
clock at each EOP and enabled by the guard [density > r]. Another 

                                                                    
3 We leave it to the reader to consider an STS model for SENSORs so that 

transmission is enabled only when CONTROLLER is IDLE. 



transition, from IDLE to ERROR, is enabled by the opposite 
guard [density ≤ r]. Finally, a transition from ERROR to IDLE 
enables going back to receive messages from the next period. 
. 

 
Fig. 1: The CONTROLLER’s sample STS 

 
 
It is important to note that the complexity and detail of the cyber 
model in the pattern depend on the attack/failure representation. 
The simple STS described above for the CONTROLLER supports 
guarantee (2) in the case the only possible sensor failures are on-
off ones, where a faulty sensor (e.g., disabled by a physical attack) 
is not able to send messages during one or more periods. A model 
representing only this on-off failure would be simpler, but only 
adequate for this pattern in the case perfect message security may 
be assumed for some reason (e.g., physically unbreakable cable 
connections between SENSORS and CONTROLLERS). A more 
suitable model would include sophisticated attacks, like some 
attacker tampering with sensor readings, thus allowing us to 
test/prove that the system is robust with regards to those attacks. 
Likewise, the cyber-model may not model data connections, but 
assume that the required connections already exist and introduce 
bounded latency µ, µmin ≤ µ ≤ µmax.  

A pattern supporting guarantees in the case of on-off failures 
would be adequate to the design of a real system only in the 
(improbable) case message integrity may be assumed for some 
reason (e.g., an unbreakable cable connection between SENSORS 
and CONTROLLER). An SCDL++ pattern would include a more 
complex STS (Anisetti et al., 2013) model featuring more 
sophisticated attack models, like an attacker tampering with the 
messages. This way, SCDL++ would allow us to test (or prove) 
that a system designed according to SCDL++ is robust with 
respect to tampering. 
The inclusion of the simple STS illustrated in Figure 1 in the 
pattern is not just a help to the design: it enables generating test 
cases supporting the SCDL pattern’s guarantee (1), i.e. test cases 
consisting of messages containing erroneous or missing 
timestamps. Also, the STS supports testing the pattern’s guarantee 
(2), generating test cases where CONTROLLER receives a 
variable number of messages, i.e. where sensors fail in all possible 
ways resulting in density greater or smaller than r. Likewise, it 
can be used to derive monitoring rules for the pattern.  

Note that STS is only one possibility to model CPSs. Other 
possibilities include the Security Modeling Framework SeMF 
(Gürgens, Ochsenschläger and Rudolph, 2005) that provides 
means to prove QSP properties of a CPS using the QSP properties 

of its components as assumptions, without the need to specify an 
attack model. 

Presenting the STS model (or any other model describing the 
CPS) in a computer-processable way (e.g. as extended Symbolic 
Transition Systems – eSTS) allows for tool-supported generation 
of test cases and monitoring rules, given that the extended pattern 
format we propose includes the computer-processable 
characterization of the CPS’s components, their relations and 
orchestration.  
Our proposed pattern format fosters precision, homogeneity and 
interoperability and enables CPS developers to identify the 
requirements to be satisfied by the CPS components, thus 
enabling them to verify whether the components to be used for a 
concrete CPS comply with these requirements. Further, it supports 
the composition of components by specifying the exact way of 
composing these components in order to achieve certain QSP 
properties both from the physical and ICT perspectives. The 
pattern format further enables the comparison of patterns with 
respect to specific characteristics of the components and/or their 
composition, thus supporting the developer in choosing an 
adequate pattern. 

5. CONCLUSIONS 
This paper has presented some challenges that arise when trying 
to describe patterns for QSP-enabled CPS, has identified the 
aspects of current pattern formats that need to be extended or 
improved, and has proposed a set of extensions to adequately 
capture the important aspects of CPS. Additionally, we have 
illustrated the new format using a running example that has also 
served to show what elements are needed for the adequate 
description of this type of patterns. Based on our example, we 
have described some extensions and improvements that we 
consider necessary in order to adequately support the engineering 
of CPS. We have then used the proposed format to present the 
motivating example as a first pattern of a future pattern language 
for CPS. We have the goal of producing a pattern language 
composed of a relevant number of patterns for QSP-enabled CPS 
and to describe them using our proposed extensions to pattern 
formats. Therefore, we will also continue improving the proposed 
format as we develop the collection of patterns. In particular, we 
plan to follow the approach proposed by COSSPs of adding 
computer-oriented extensions to the proposed pattern format. One 
line of improvement will focus on using the novel capabilities 
introduced by SysML for representing problems and rationales as 
a way to improve the integration between the pattern description 
and the pattern diagrams. It is also our interest to extend the use of 
QSP Patterns to runtime situations and in particular to support 
monitored operation of CPS. 
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