
Extensions to Pattern Formats for
Cyber Physical Systems

Antonio Maña
University of Málaga, Spain

Bulevar Louis Pasteur, 35, 29071, Málaga, Spain
amg@lcc.uma.es

Sigrid Gürgens

Fraunhofer SIT Institute, Germany
Rheinstrasse 75, 64295 Darmstadt, Germany

sigrid.guergens@sit.fraunhofer.de

Ernesto Damiani
University of Milan

Via Bramante 65, 26013 Crema, Italy
ernesto.damiani@dti.unimi.it

George Spanoudakis

City University London
Northampton Square,  London,  EC1V 0HB, UK

g.e.spanoudakis@city.ac.uk

ABSTRACT
Cyber Physical Systems (CPSs) are becoming not only
increasingly complex but also increasingly important.
Traditionally, CPSs were self-contained monolithic systems
operating in a well-defined environment. CPSs today have
evolved to large-scale systems including multiple interacting
components. Due to the inherent complexity of the physical
environments where CPSs operate and the ever changing
operational and context conditions of these environments, CPSs
need to be able to adapt in a semi- or fully autonomic manner. At
the same time, in the course of adapting themselves, they need to
satisfy key quality, security and privacy (QSP) requirements and
be resilient to threats even if those were unknown at the time the
CPS was designed. Engineering CPSs with such capabilities is a
challenging problem that requires expert knowledge. Our
approach to addressing this problem is based on the use of QSP-
preserving patterns, i.e., patterns that encode proven design and
engineering solutions providing particular QSP properties. We
argue that existing pattern formats miss some essential features of
CPSs. As a step towards the realization of approach, in this paper
we present a new pattern format that enables the representation of
most important characteristics of QSP preserving patterns for
CPS. Our format provides an initial basis for defining a full
pattern language for engineering QSP preserving CPS.

Categories and Subject Descriptors
Software and its engineering~Software design engineering;
Software and its engineering~Patterns; Software and its
engineering~Unified Modeling Language (UML); Computer
systems organization~Embedded and cyber-physical systems

General Terms
Security Patterns, Security modeling and engineering, Pattern-
based system engineering.

Keywords
Computer-processable knowledge representation

1. INTRODUCTION
Traditional Cyber-Physical Systems (CPSs) were isolated, self-
contained systems operating in well-defined environments (e.g.,
embedded in vehicles or electronic appliances) and exposed to
limited threats. Recently, however, CPSs have evolved into large-
scale systems, including multiple interacting components,
connected with other cyber and physical systems (e.g., energy
infrastructures). CPSs are exposed to a large number of known
and unknown threats. They also need to operate under continually
changing conditions and to adapt and be resilient to them. Such
adaptive behavior is hard to guarantee at design time; therefore,
engineering CPSs is becoming an increasingly complex task.

To illustrate the challenges that the development of CPSs entails,
consider electricity provisioning. With the advent of regenerative
energy, electricity can be obtained from many different sources
besides traditional power plants (sunlight, wind, rain, tides, waves
and geothermal heat). Source diversity has fostered a major
change from a centralized grid topology to a highly distributed
one. Smart grids, for example, involve sensors that measure
electricity production and consumption, controllers that collect
and report measurements, services that control the generation,
distribution and storage of energy and several cyber components
enabling the processing and communication of this information.

In addition to functional requirements, some important non-
functional ones need to be considered, most notably regarding
quality, security and privacy (which we will refer to in the paper
as QSP properties). For instance, the insertion of forged (i.e.,
non-authentic) information about the amount of available
electricity that a wind turbine can produce, can lead to the
alteration of an electricity distribution control service, which in
turn can potentially lead to a breakdown of the entire electricity
grid.

As this example suggests, CPSs are complex, composite systems
that deal with multiple physical parameters in a coordinated and
coherent way. To do so, CPSs include highly interconnected and
interdependent cyber-components that provide critical functions.
Components of CPSs may evolve independently from each other
in order to offer new capabilities and/or to adapt to their changing
environments. Some of these cyber-components have important

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior
specific permission. A preliminary version of this paper was presented in a
writers' workshop at the 21st Conference on Pattern Languages of
Programs (PLoP).
PLoP'14, September 14-17, Monticello, Illinois, USA. Copyright 2014 is
held by the author(s). HILLSIDE 978-1-941652-01-5

security and safety requirements, and may interact with humans.
They may also operate within the realm of different and not
always harmonized jurisdictions and may need to transfer data
across them. Furthermore, cyber-components of CPSs may have
diverse computational features and roles.

Further, both cyber and physical components of CPSs operate
under distributed ownership and control, and within uncontrolled
and unprotected physical environments. These may be
characterized by changing operational conditions and constraints
(e.g., changing temperatures, physical damage, changes to power
supply etc.). As a consequence of these factors, CPSs may be
deployed in adverse operating conditions, related to the
unpredictable nature of the physical world, which can
compromise the availability and security of some of their
components. They are very vulnerable to security attacks through
their ICT or physical components. Local sensors, for example, can
be destroyed or tampered with. This may result in losing essential
information (e.g., the correct amount of energy that is being
consumed at a given point in time) or transmitting misleading
information that may be used to attack these systems. Likewise,
network and application level cyber-components may be subject
to cyber attacks that may cause the CPS to violate security or
privacy requirements (Chen et al., 2011).

The composite structure of CPSs implies that attacks to any of
their components may compromise the overall security. CPSs may
also be subject to conflicts with the goals of other interacting
CPSs, which must be solved cooperatively. They may also
generate, make use of and inter-relate massive amounts of
personal data in ways that can potentially breach legal and privacy
requirements (Lioudakis, Kaklamani, and Venieris, 2009).
Finally, the infrastructures that a CPS relies on are often outside
its control and may change frequently. Infrastructural changes can
also compromise the security, resilience and availability of CPS
operations and the service(s) that they offer.

In order to cope with these challenges and to support the
engineering of CPSs that meet functional as well as QSP
requirements, we propose a pattern-based approach. In particular,
the patterns that underpin our approach define generic ways for
composing and coordinating different types of components (e.g.,
computer hardware, networks, sensors, actuators) in such a
manner that they provably preserve specific QSP properties. Thus,
we refer to them as QSP patterns. One important aspect of our
QSP patterns is that they support the preservation of QSP
properties at runtime: On the one hand, they include information
about conditions to be monitored in order to detect (i) changing
operational conditions, and (ii) violations and threats to their
desired QSP properties. On the other hand, in case such
monitoring reveals the need to adaptation, the QSP pattern defines
the necessary actions to be taken. In this paper, we introduce a
pattern format for describing QSP patterns and present an
example of a QSP pattern that shows the viability of this format.

The rest of the paper is structured as follows: Section 2 explains
the challenges that need to be addressed in order to provide
adequate support for engineering CPS satisfying specific QSP
properties, Section 3 introduces a motivating example pattern that
will be used to define extensions to existing pattern formats that
we deem adequate to cover CPS-specific needs. Section 4
describes these extensions and uses them for a renewed
representation of our example. Finally, Section 5 presents
conclusions and introduces future work.

2. QUALITY, SECURITY AND PRIVACY
ENGINEERING FOR CPS
Please Preserving QSP properties in CPSs under the
circumstances discussed above is a challenging scientific and
engineering problem. It involves determining the exact
compositional structure of a CPS and the functional and non-
functional characteristics of its individual components. It further
involves identifying and dealing with complex dependencies
between system-wide and/or component level QSP properties.
Guaranteeing one of such properties may have a negative effect
on others (e.g., encryption-based confidentiality vs. energy
consumption) which in turn requires defining trade offs. All these
processes have a strong dependence on expert knowledge. Hence,
engineering CPSs in ways that can simultaneously guarantee a set
of QSP properties of interest demands for an integrated QSP-
aware and expert knowledge-based design process addressing
both system development and runtime operation.

Current design methods, techniques and tools have evolved to
accommodate some aspects of the design and evolution of CPS.
However, new artifacts and tools are required for ensuring QSP-
preserving operation of a CPS at the system level, while at the
same time preserving QSP properties at the level of the individual
components.

We claim that an effective CPS engineering approach needs to
take into account the structure of CPS, the features of their
components at all layers (physical –non ICT– components,
sensors/actuators, networks, software, and human participation),
structural and functional relationships between these components,
and contextual conditions of their operation, as all these elements
can affect the preservation of QSP properties. It should take into
account typical constraints of CPS devices and components, and
should consider requirements related to CPS interoperability,
adaptability and optimization.

A CPS engineering approach needs also to be aware of and
support effectively the composition of cyber and physical
components. This composition is inherently different from
traditional software systems composition. Indeed, software centric
approaches to composition (e.g., software service/components
orchestration workflows) do not address the physical layers of
CPS systems. A successful CPS engineering approach needs to
support within a single framework multiple alternative forms of
composition, integrating different and heterogeneous components
and devices in a composite CPS and considering different
perspectives (e.g. cyber, physical, human). Moreover, it has to
include powerful abstraction mechanisms to tame the complexity
of the hierarchical composition of CPSs. From a QSP perspective,
this approach should also take into account the quality and
security characteristics of the underlying mechanisms that are
used to realize CPS compositions (e.g., network management
middleware, messaging middleware, software components
orchestration middleware).

Understanding the above factors demands expert knowledge from
diverse disciplines such as computer science, analog and digital
communication and physics. Such knowledge is often captured
and expressed in multi-perspective domain models that need to be
properly interrelated. The sheer amount of effort and skills needed
for applying that expert knowledge to capture and express such
models from scratch is hindering CPS development and leads
often to domain specific vertical solutions.

Our proposal is based on capturing such expert knowledge in a
way that is usable by engineering-assistance tools. Among the
artifacts that we use for capturing the expert knowledge required
for the successful engineering of CPSs, we present in this paper
the artifact used to capture QSP solutions, which we call QSP-
patterns and is materialized as an enhancement of current security
patterns.

At the software architecture level, security patterns have already
proven their usefulness in capturing re-occurring solutions and
thus supporting software development. We claim that patterns
particularly dedicated to the CPS specific challenges discussed
above can effectively support a model driven approach to CPS
engineering. Moreover, the overarching nature of some recent
modeling formalisms for embedded systems, and in particular
SysML (OMG, 2012), and to a lesser extent MARTE (OMG,
2011), has shown that it is possible to provide solutions that are
accepted by different industries, and has paved the way for a
pattern-based and QSP-aware engineering of CPS.

We argue that in order to provide a solid foundation for
addressing the challenges described above, there is a need for:

• providing abstraction mechanisms to model the inherent
complexity of CPSs and their alternative and complex
compositional structures;

• reusing capabilities to address the needs for reducing time-to-
deployment for CPS by a significant percentage while
ensuring QSP requirements;

• increasing trust in solutions to ensure that engineers have
solid and rigorous foundations for designing their CPSs;

• fostering inter-sector applicability in order to de-verticalize
solutions and to break the trend of solutions being too
specific due to the adoption of vertical technologies and
frameworks, which “isolate” devices and CPS and do not
promote device and system interoperability across different
application sectors and markets;

• providing separation of responsibilities to ensure that
different actors along the value chain play an adequate role,
and that the result of the expertise and work of each of them
is coherently integrated into an integrated engineering
approach; and

• encoding the above in the form of machine-readable and –
processable patterns. Such patterns should be applicable in
various CPS design, engineering and runtime management
activities (e.g., CPS design verification and adaptation,
model-driven CPS development, runtime CPS modification).

3. QSP PATTERNS FOR CPS
Security patterns have been successfully used in the past to
support system engineering activities, such as designing software
architectures with known QSP properties and trade-offs, to verify
whether service oriented software system designs satisfy required
security properties, and even to adapt them if they do not –see
(Pino et al. 2014, Pino and Spanoudakis, 2012)–. Furthermore,
they have proven their value as an instrument for communicating
design good practice, and educating software architects. However,
the security patterns used for the above purposes have focused on
computing systems (i.e., cyber-systems) rather than CPSs, and
therefore miss aspects that are important for CPSs, such as the
physical models of some of the CPS components. Also in some of

the approaches, they are expressed in informal and semi-formal
languages that do not allow their use in reasoning mechanisms
that could assist the engineering process. This limitation has
already been identified and remains an important impediment for
pattern based CPS engineering. Existing attempts to document
patterns for CPS, as for instance (Fernandez et al., 2009), lack a
CPS-specific format and result in missing some of the important
essential characteristics, in particular, their physical aspects. So, in
spite of on-going promising work towards defining
computer-supported and engineering-oriented security patterns,
called COmputer-Supported Security Patterns (COSSP) (Mana et
al., 2013, Arjona, Ruiz and Mana, 2014), and the fully automated
pattern processing approach followed in (Pino et al. 2014, Pino
and Spanoudakis, 2012) to the best of our knowledge to date there
does not exist an approach that addresses all necessary aspects.
Hence our objective in this work is to overcome these limitations.

3.1 Synchronously-controlled distribution
line (SCDL) pattern: an informal example

To clarify our ideas, we introduce a QSP pattern for
synchronously controlled gas pipelines whose description is based
on a variant of the Fowler Form (Fowler, 1996). It is important to
note that our approach is not based on this form, but describes
extensions (see section 4.3) that can be applied to any existing
pattern form. In particular, we have chosen this form to reduce the
existing descriptions to the minimum and to highlight the
extensions. We also provide a brief discussion of how a developer
could use this pattern in system design. Our example enables us
also to highlight some open problems that will be tackled by the
paper.

Title
Synchronously-controlled distribution line (SCDL)

Problem
In order to avoid failures or attacks, a control system for a
distribution pipeline must ensure that it will operate in virtual
synchrony and with the desired density of readings. If this cannot
be ensured, the asynchronous nature of the sensors used to obtain
information from physical variables can originate failures or
impose the system to attacks. The purpose of this pattern is
precisely to guarantee that a physical system (a distribution
pipeline, say for gas or electricity) controlled by a distributed
asynchronous sensor system that is subject to attacks/failures will
operate in virtual synchrony and with the desired density of
readings. The pattern allows the entire system logic to work as if
it was executed on a synchronous platform robust with respect to
attacks.
The elements involved in the pattern are the PIPELINE and a
number of SENSOR nodes (PHYSICAL part) and one or more
CONTROLLER nodes (CYBER part).

The arguments of the pattern are (i) a matrix M expressing inter-
sensor distances, (ii) the minimum density r of sensors per meter
required for a reliable control, (iii) the frequency f of readings
from each sensor node to the controller.
The physical system must operate under three constraints:

• Bounded Local Clock Error - Each sensor i has access
to an approximation of the true global time t via a local
clock Ci where the maximum error (of each local clock)
is ε, i.e.,

| Ci – t | < ε.

• Bounded Reading Time Variation - Each node i
executes its reading in a time Ti having a maximum
variation w.r.t. a nominal value d, i.e.,

| Ti – t | < d.
In other words, the time required for the read action lies
in the interval t ± d.

• Minimum density – The number of physical readings per
meter must never fall below r.

The ICT system includes the following components:

• Reliable Bounded Message Delivery protocol. Messages
are: (1) delivered to their destinations reliably, and (2)
they are time-stamped by sources (the SENSORS) with
a locally computed timestamp based on d and e, so that
each received message can be mapped to an end-of-
period (EOP) time by the CONTROLLER.

• Interpolation routine. Attacks could result in the
CONTROLLER receiving different message sets, even
though the network delivers each one correctly; the
pattern specifies (i) a mechanism to control if the
density r is achieved and (ii) a routine for computing
linear interpolation of the closest sensors at the same
EOP to substitute the missing readings if the minimum
density is not achieved.

Solution
Use a synchronizing controller that stores readings received from
sensors and processes them periodically in fixed intervals. All
readings received in a period are consumed at the end of the fixed
interval. The controller is connected to the sensors using a
Reliable Bounded Message Delivery protocol that ensures data
origin authenticity. Additionally, the controller uses an
Interpolation routine to compute linear interpolation of the closest
sensors at the same EOP to substitute missing or corrupted
readings. Therefore, the guarantees-1 after applying the pattern
are:

(1) CONTROLLER will consume readings at
approximately the same times, with period P = 1/f.
More specifically, readings generated during period Pk
are consumed by CONTROLLER at time EOP(Pk) So,
it looks like outputs of sensors are received by the
CONTROLLER synchronously.

(2) Readings received and accepted by the CONTROLLER
originate from legitimate sensors.

(3) At each EOP(Pks), the CONTROLLER will be able to
detect whether the source density is enough for reliable
control.

4. TOWARDS A QSP PATTERN FORMAT
TO BUILD A PATTERN LANGUAGE
FOR CPS

4.1 Goals for QSP Patterns
Our QSP patterns will support the development of CPSs in several
respects. First, they will identify all components (e.g. individual
services, sensing and communication components, etc.) needed
for the system to satisfy the functional requirements. Additionally,
they will specify the requirements to be satisfied by these

1 NOTE: In our pattern, these guarantees are expressed by a single

property called Synch-Complete-Communication.

components in order for the CPS as a whole to meet specific QSP
requirements. In other words, QSP pattern-based development can
focus on ensuring that CSP components and their composition
comply to the specification provided by the pattern. There is no
need to reason about resulting QSP properties, these are assured
by the pattern, i.e. hold by-design. Finally, QSP patterns being
machine-readable enables tool-assisted engineering processes:
The developers select adequate patterns that in turn can induce the
query for and the selection and composition of the components
specified by those patterns.

QSP patterns will further support the preservation of QSP
properties at runtime. More specifically, a QSP pattern will
include information about the conditions that need to be
monitored and/or dynamically tested at runtime in order to
preserve the QSP properties guaranteed by the pattern. The
monitoring/testing information allows detecting changing
operational conditions, as well as violations and threats to their
desired QSP properties. It further allows verifying that CPS
components satisfy specific QSP properties and configurations
that had been used as assumptions in proving the QSP properties
guaranteed by the pattern to hold. Finally, QSP patterns contain
information about actions to be taken at runtime in order to adapt
the compositional structure of the CPS in ways that preserve or
restore the desired QSP properties.

4.2 Using QSP Patterns
QSP patterns will be used to support both the development and
the runtime management of cyber physical systems. During the
development of a CPS they can be used to

a) analyze a given design of a CPS in order to check if it
satisfies a desired QSP property; or to

b) generate a partial design of a CPS that is guaranteed to
satisfy a given property.

At runtime, QSP patterns can be applied in order to

c) determine and monitor the conditions that need to be
satisfied by the components of a CPS for it to satisfy a
given QSP property; and to

d) adapt the compositional structure of a CPS in ways that
can guarantee the desired QSP property.

QSP patterns could be used under (a) to check if a CPS design as
a whole (or parts of it) satisfies a given QSP property. In our
example SCDL pattern, for instance, a gas distribution CPS
design can be analyzed based on the pattern to check if the
topology of pressure sensors required by the SCDL pattern for
guaranteeing a minimum accuracy of pressure readings is
preserved by each of the different pipelines of the gas distribution
CPS. In this case, based on the SCDL pattern, the analysis would
check that the distance between sensors on each of the system’s
pipelines does not exceed the maximum threshold established by
the pattern in order to guarantee the accuracy property. Specific
components of the gas distribution CPS design could also be
checked according to the pattern to ensure the preservation of
other properties. The controllers of different pipelines or the
general controller of the CPS could, for instance, be checked to
establish whether they are capable of consuming sensor readings
with the minimum frequency, a property that is important for
guaranteeing the freshness of pressure information within the gas
distribution CPS. The main benefit arising from the use of QSP
patterns for such analysis is avoiding to carry out reasoning based
on first-principles (i.e., using the analytic model that underpins the
conditions regarding the topology of sensors in order to check and

guarantee the accuracy of sensor readings). As a consequence of
not having to reason from first principles, pattern based analysis is
scalable to large systems models.

As an example of (b), the physical model of the SCDL pattern
could be used to dictate where exactly to place sensors on
different pipelines of the gas distribution CPS. Similarly, once the
structure of pipelines and sensors has been established, the pattern
could be used to dictate the number and types of controllers that
will be required in order to process the readings from the sensors,
and how sensors should be allocated to them. This could be
derived from the characteristics of different types of controllers
(e.g. max signal processing frequency per time unit) and sensors
(e.g. signal frequency). Further, the ICT (cyber) model of the
pattern would specify the actual communication protocol to be
used in order to guarantee the reliability of messages consumed by
the controller.

As an example of (c), the SCDL can be used to establish
monitoring conditions regarding the aliveness and faultless
operations of sensors on different pipelines. These conditions can
be derived from the fact that the pattern requires sensors to be
placed on a maximum distance from each other on a pipeline. It is
thus possible to figure out the minimum number of sensors that
should be alive at an instance of time on a pipeline of given length
in order to guarantee the accuracy of readings. Furthermore, as the
pattern establishes the maximum difference between the pressure
readings of sensors placed at a given distance from each other, it
is possible to derive conditions for cross checking the pressure
readings of adjacent sensors and ensure that they remain within
the boundaries indicating that they are correct.

Regarding (d), assuming a scenario where there is some localized
or wider failure of controllers, the SCDL pattern can be used to
trigger the search, binding, and activation of new controllers into
the gas distribution CPS as well as the dynamic assignment of
sensors to them (the latter would be based on an analysis similar
to what underpins case (b) above but at runtime).

4.3 Extensions to pattern formats required
for QSP Patterns

Traditional pattern description formats, like the Alexandrian,
POSA, GoF, or Schumacher and Fernandez Security Patterns, or
even recent computer-readable formats like COSSPs, fall short of
providing detailed information for systematically capturing the
characteristics of CPSs. In particular, they do not support the
identification of and differentiation between physical and ICT
components, and (more importantly) the description of their
relations. Further, these generic pattern formats are very flexible
and therefore it is highly likely that patterns produced by different
authors are neither consistent nor comparable. Yet in order to
enable the CPS developer to choose an adequate pattern, aspects
like marking the physical and ICT components, describing their
relations, supporting the systematic and consistent cross-
referencing of those elements and relations, among others, need to
be supported by the pattern format.

More specifically the following extensions to existing pattern
formats will be necessary for QSP patterns to serve effectively as
a tool for engineering CPS systems:

• Component characterization. To adapt to the composite and
socio-technical nature of CPS we add a section to describe
the components (both physical and cyber components are
considered here). Each component is described by a unique
ID (identity), a set of scopes (e.g. Physical, ICT, Human), a

set of types (e.g. sensor, actuator, control, interface), and the
QSP properties they provide. In order to ensure
comparability and interoperability of the pattern descriptions,
in this paper we will assume that the possible values are
standardized, but our goal is to later introduce the use of
ontologies to support more flexible schemes for this purpose.

• Component relations. To cover the highly interconnected
nature of CPS we add a section describing the different
relations between CPS components. Each relation has a
unique identifier (ID), points to the involved components,
and defines the nature of the relation and its role in the
pattern.

• Component orchestration. To adequately represent
dynamically-adaptive CPSs, a QSP pattern must incorporate
a description of the architecture and orchestration of the
components. In this paper we will describe it using natural
language but we envisage the use of more formal
descriptions such as BPEL or SySML.

• Physical model. A QSP pattern must also describe the
physical aspects of the solution it represents. The focus of
this section is to describe the physical processes that are
controlled by the CPS.

• Cyber model. This section will be used to describe the ICT
aspects of the solution presented in the pattern. The focus of
this section is to describe the ICT components that are used
in the CPS and the ways they are connected. This section will
also deal with the interface components (e.g. sensors and
actuators).

• QSP Properties. This section will be used to specify the QSP
properties provided by the pattern (as a whole), given that the
components satisfy the QSP properties listed in their
respective characterizations.

Examples of the use of these extensions are included in the
revised description of the SCDL pattern in section 4.4 below. It
should be noted that the above list of extensions is not exhaustive.
Indeed, our expectation is that in the course of modeling
additional examples of CPS systems, we will identify the need for
further extensions or for extending or adapting the ones presented
above.

4.4 The Synchronously-controlled
distribution line (SCDL) pattern revisited

In this section we present the example pattern in a more formal
way using the proposed extensions. We also discuss why the
extensions and modifications introduced above result in an
accurate description of the pattern and how they enable the pattern
to be used to actually build a specific system. In order to compare
the improvements and advantages introduced by the proposed
extensions, we will use again the Fowler Form as a basis.

Title
Synchronously-controlled distribution line (SCDL)

Problem
In order to avoid failures and counter attacks, a control system for
a distribution pipeline must ensure that it will operate in virtual
synchrony and with the desired density of readings. However, the
asynchronous nature of the sensors used to obtain information
from physical variables can originate failures or impose the
system to attacks if the control system has to operate with an
unpredictable density of readings. The purpose of this pattern is

precisely to guarantee that a physical system (a distribution
pipeline, say for gas or electricity) controlled by a distributed
asynchronous sensor system subject to attacks/failures will
operate in virtual synchrony and with the desired density of
readings. This pattern allows the entire system logic to work as if
it was executed on a synchronous platform robust with respect to
attacks.

Solution
Use a synchronizing controller that stores readings received from
sensors and processes them periodically in fixed intervals. All
readings received in a period are consumed at the end of the fixed
interval. The controller is connected to the sensors using a
Reliable Bounded Message Delivery protocol that ensures data
origin authenticity. Additionally, the controller uses an
Interpolation routine to compute linear interpolation of the closest
sensors at the same EOP to substitute missing or corrupted
readings. Therefore, the guarantees-2 after applying the pattern
are:

(1) CONTROLLER will consume readings at
approximately the same times, with period P = 1/f.
More specifically, readings generated during period Pk
are consumed by CONTROLLER at time EOP(Pk) So,
it looks like outputs of sensors are received by the
CONTROLLER synchronously.

(2) Readings received and accepted by the CONTROLLER
originate from legitimate sensors.

(3) At each EOP(Pks), the CONTROLLER will be able to
detect whether the source density is enough for reliable
control.

The elements involved in the pattern are the PIPELINE and a
number of SENSOR nodes (PHYSICAL part) and one or more
CONTROLLER nodes (CYBER part).
The arguments of the pattern are (i) a matrix M expressing inter-
sensor distances, (ii) the minimum density of sensors per meter
required for a reliable control r (iii) the frequency f of readings
from each sensor node to the controller.

Component characterization

Pipeline
ID: Pipeline_1
scopes: Physical
types: physical component

Sensors
ID: Sensor_1 … Sensor_n
scopes: Physical, ICT
types: interface

Controller
ID: Controller_1
scopes: ICT
types: controller

Component relations

Pipeline_1-Sensor_i (1 ≤ i ≤ n)
ID: Pipeline_1-Sensor_i
nature: physical_to_ICT
components: Pipeline_1, Sensor_i

2 NOTE: In our pattern, these guarantees are expressed by a single

property called Synch-Complete-Communication.

Sensor_i-Controller_1 (1 ≤ i ≤ n)
ID: Sensor_i-Controller_1
nature: ICT, asynchronous
components: Sensor_i, Controller_1

Component orchestration
(1) Components are statically connected in this pattern. All n

sensors (Sensor_1 … Sensor_n) are connected to the pipeline
(Pipeline_1) through appropriate physical connections
(Pipeline_1-Sensor_1 … Pipeline_1-Sensor_n) and are
connected to the controller (Controller_1) using a Reliable
Bounded Message Delivery protocol (Sensor_1-Controller_1
… Sensor_n-Controller_1).

Physical model
The physical system model specifies three constraints.

• Bounded Local Clock Error - Each sensor (Sensor_i)
has access to an approximation of the true global time t
via a local clock Ci, where the maximum error (of each
local clock) is ε, i.e.,

| Ci – t | < ε.
• Bounded Reading Time Variation - Each sensor

(Sensor_i) executes its reading in a time Ti having a
maximum variation w.r.t. a nominal value of d, i.e.,

| Ti – t | < d.
In other words, the time required for the read action lies
in the interval t ± d.

• Minimum density – The number of physical readings per
meter must never fall below r

Cyber model
The SCDL pattern’s ICT model includes the following
components:

1. Model of Reliable Message Delivery protocol. Messages
are (1) delivered to their destinations reliably and (2)
time-stamped by sources (the SENSORS) with a locally
computed timestamp based on d and ε so that each
received message can be mapped to an end-of-period
(EOP) time by the CONTROLLER.

2. Model of density control. SENSOR failures could result
in the CONTROLLER receiving different message sets
at each period; the density control model represents (i) a
mechanism to control if the density r is achieved and
(ii) a routine for computing linear interpolation of the
closest sensors at the same EOP to substitute the
missing readings if the minimum density is not
achieved.

An STS is a finite state automaton that consists of states and
transitions between states, labeled with actions, guards, and
update mapping. In our pattern, the message delivery protocol can
be modeled via two STSs, one for the SENSORs and one for the
CONTROLLER. The CONTROLLER-side STS may consist of
just four states (IDLE, RECEIVING, COMPUTING and
ERROR). The transition from IDLE to RECEIVING is triggered
by the arrival of a message from a SENSOR, while the opposite
one (RECEIVING to IDLE) is triggered when the message has
been entirely received3. The transition from IDLE to
COMPUTING is triggered by the CONTROLLER’s internal
clock at each EOP and enabled by the guard [density > r]. Another

3 We leave it to the reader to consider an STS model for SENSORs so that

transmission is enabled only when CONTROLLER is IDLE.

transition, from IDLE to ERROR, is enabled by the opposite
guard [density ≤ r]. Finally, a transition from ERROR to IDLE
enables going back to receive messages from the next period.
.

Fig. 1: The CONTROLLER’s sample STS

It is important to note that the complexity and detail of the cyber
model in the pattern depend on the attack/failure representation.
The simple STS described above for the CONTROLLER supports
guarantee (2) in the case the only possible sensor failures are on-
off ones, where a faulty sensor (e.g., disabled by a physical attack)
is not able to send messages during one or more periods. A model
representing only this on-off failure would be simpler, but only
adequate for this pattern in the case perfect message security may
be assumed for some reason (e.g., physically unbreakable cable
connections between SENSORS and CONTROLLERS). A more
suitable model would include sophisticated attacks, like some
attacker tampering with sensor readings, thus allowing us to
test/prove that the system is robust with regards to those attacks.
Likewise, the cyber-model may not model data connections, but
assume that the required connections already exist and introduce
bounded latency µ, µmin ≤ µ ≤ µmax.

A pattern supporting guarantees in the case of on-off failures
would be adequate to the design of a real system only in the
(improbable) case message integrity may be assumed for some
reason (e.g., an unbreakable cable connection between SENSORS
and CONTROLLER). An SCDL++ pattern would include a more
complex STS (Anisetti et al., 2013) model featuring more
sophisticated attack models, like an attacker tampering with the
messages. This way, SCDL++ would allow us to test (or prove)
that a system designed according to SCDL++ is robust with
respect to tampering.
The inclusion of the simple STS illustrated in Figure 1 in the
pattern is not just a help to the design: it enables generating test
cases supporting the SCDL pattern’s guarantee (1), i.e. test cases
consisting of messages containing erroneous or missing
timestamps. Also, the STS supports testing the pattern’s guarantee
(2), generating test cases where CONTROLLER receives a
variable number of messages, i.e. where sensors fail in all possible
ways resulting in density greater or smaller than r. Likewise, it
can be used to derive monitoring rules for the pattern.

Note that STS is only one possibility to model CPSs. Other
possibilities include the Security Modeling Framework SeMF
(Gürgens, Ochsenschläger and Rudolph, 2005) that provides
means to prove QSP properties of a CPS using the QSP properties

of its components as assumptions, without the need to specify an
attack model.

Presenting the STS model (or any other model describing the
CPS) in a computer-processable way (e.g. as extended Symbolic
Transition Systems – eSTS) allows for tool-supported generation
of test cases and monitoring rules, given that the extended pattern
format we propose includes the computer-processable
characterization of the CPS’s components, their relations and
orchestration.
Our proposed pattern format fosters precision, homogeneity and
interoperability and enables CPS developers to identify the
requirements to be satisfied by the CPS components, thus
enabling them to verify whether the components to be used for a
concrete CPS comply with these requirements. Further, it supports
the composition of components by specifying the exact way of
composing these components in order to achieve certain QSP
properties both from the physical and ICT perspectives. The
pattern format further enables the comparison of patterns with
respect to specific characteristics of the components and/or their
composition, thus supporting the developer in choosing an
adequate pattern.

5. CONCLUSIONS
This paper has presented some challenges that arise when trying
to describe patterns for QSP-enabled CPS, has identified the
aspects of current pattern formats that need to be extended or
improved, and has proposed a set of extensions to adequately
capture the important aspects of CPS. Additionally, we have
illustrated the new format using a running example that has also
served to show what elements are needed for the adequate
description of this type of patterns. Based on our example, we
have described some extensions and improvements that we
consider necessary in order to adequately support the engineering
of CPS. We have then used the proposed format to present the
motivating example as a first pattern of a future pattern language
for CPS. We have the goal of producing a pattern language
composed of a relevant number of patterns for QSP-enabled CPS
and to describe them using our proposed extensions to pattern
formats. Therefore, we will also continue improving the proposed
format as we develop the collection of patterns. In particular, we
plan to follow the approach proposed by COSSPs of adding
computer-oriented extensions to the proposed pattern format. One
line of improvement will focus on using the novel capabilities
introduced by SysML for representing problems and rationales as
a way to improve the integration between the pattern description
and the pattern diagrams. It is also our interest to extend the use of
QSP Patterns to runtime situations and in particular to support
monitored operation of CPS.

6. ACKNOWLEDGMENTS
We would like to thank the members of our Writers’ Workshop at
PLoP’14 for their work in analyzing this paper and their help in
improving it, and very especially our shepherd Ralph Johnson, for
his guidance and support during the shepherding of this paper.

The work of A. Maña is supported by the CUMULUS and PARIS
projects. The work of E. Damiani is supported by the CUMULUS
project. The work of S. Gürgens is supported by the
ASSERT4SOA project. The work of G. Spanoudakis is supported
by the CUMULUS project.

REFERENCES
[1] Chen, D., Chang, G., Jin, L., Ren, X., Li, J., Li. F. A Novel

Secure Architecture for the Internet of Things. 2011 Fifth
International Conference on Genetic and Evolutionary
Computing:311—14, 2011. 2011 Fifth International
Conference on Genetic and Evolutionary Computing, 29
Aug.-1 Sept. 2011, Xiamen, China.

[2] Lioudakis, G.V., Kaklamani, D.I., Venieris, I.S. Personal
data protection under the InfoCity lights. 2009 European
Wireless Technology Conference (EuWIT):104—7, 2009.
2009 European Wireless Technology Conference (EuWIT),
28-29 Sept. 2009, Rome, Italy.

[3] Slomka, F., Kollmann, S., Moser, S. and Kempf, K. A
Multidisciplinary Design Methodology for Cyber-physical
Systems.

[4] Object Management Group (OMG). OMG Systems
Modeling Language (OMG SysML). Version 1.3. June 2012.
Available online at
http://www.omg.org/spec/SysML/1.3/PDF

[5] Object Management Group (OMG): Modeling and Analysis
of Real Time and Embedded systems, version 1.1 (MARTE).
June 2011. Available online at
http://www.omg.org/spec/MARTE/1.1/

[6] Pino L., Spanoudakis G., Fuchs A., Gürgens S., Discovering
Secure Service Compositions, 4th International Conference
on Cloud Computing and Services Sciences, Barcelona,
Spain, April 2014

[7] Pino L., Spanoudakis G.: Constructing Secure Service
Compositions with Patterns, 8th IEEE World Congress on
Services, Hawaii, USA, June 2012

[8] Mana, A. Fernandez, E.B., Ruiz, J.F. and Rudolph, C.
Towards Computer-oriented Security Patterns The 20th
International Conference On Pattern Languages Of Programs
PLoP’13. 2013

[9] Arjona, M., Ruiz, J.F and Mana, A, Security Patterns for
Local Assurance in Cloud Applications. International
Workshop on Engineering Cyber Security and Resilience
ECSaR’14 in The Third ASE International Conference on
Cyber Security 2014.

[10] Fernandez, E. B., Wu, J., Larrondo-Petrie, M. M., Shao, Y.
On Building Secure SCADA Systems using Security
Patterns. Proceedings of the 5th Annual Workshop on Cyber
Security and Information Intelligence Research: Cyber
Security and Information Intelligence Challenges and
Strategies. 2009.

[11] Fowler, M. Analysis Patterns: Reusable Object Models.
Addison-Wesley. ISBN 0-201-89542-0. 1996.

[12] Anisetti, M., Ardagna, C. A., Damiani, E., Saonara, F. A test-
based security certification scheme for web services. TWEB
7(2): 5 (2013)

[13] Gürgens, S., Ochsenschläger, P., Rudolph, C. On a formal
framework for security properties. Computer Standards &
Interfaces 27(5): 457-466 (2005)

