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1. INTRODUCTION

Patterns are recurrent solutions used for problems on different software systems that share a specific context. In
the field of software design and architecture, patterns present technical solutions for how to structure software
components to achieve desired requirements. On the other hand, a reference architecture is a special type of
software architecture that can be used as a basis for the construction, standardization, and evolution of software
architectures of systems in a given domain. It defines elements, their roles and relationships needed to solve
common problems in targeted domains. Based on their description, it is possible to perceive that these two ways
of documenting reusable solutions have a lot in common with each other. However, despite few isolated works that
focus on specific domains [Stricker et al. 2010] [Guerra et al. 2013a] [Fernandez et al. 2015], this relationship is
not being explored. The goal of this paper is to explore the existing relationships between patterns and reference
architectures, and present a discussion to work with both in a complementary way and, as a consequence, to
more effectively support the development and design of software systems.

The target audience for this paper is both pattern and reference architecture specialists. On the one hand, it is
expected for a pattern expert to understand better how pattern languages can be a basis for reference architectures
and how they can be a source of information for pattern mining. On the other hand, reference architecture specialists
can understand how they can get benefit from patterns in the design of reference architectures.
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The paper is organized as follows: Section 2 presents an overview of reference architecture concepts and
Section 3 an overview of patterns and related concepts; Section 4 highlights differences between patterns and
reference architectures; Section 5 focuses on guidelines for using a pattern language as the basis for reference
architectures; Section 6 presents some research perspectives about using reference architectures for pattern
mining; Section 7 describes an existing process for reference architecture creation and presents a proposal to
introduce patterns usage on it; and, finally, Section 8 concludes the paper.

2. AN OVERVIEW OF REFERENCE ARCHITECTURES

The goal of this section is to describe what a reference architecture is, what its characteristics are and provide
some examples of existing ones. This information is relevant to compare them with patterns.

A reference architecture refers to an architecture that encompasses the knowledge about how to design concrete
architectures of systems of a given application domain; therefore, it must address the business rules, architectural
styles (sometimes also defined as architectural patterns that can also address quality attributes in the reference
architecture), best practices of software development (for instance, architectural decisions, domain constraints,
legislation, and standards), and the software elements that support development of systems for that domain. All of
this must be supported by unified, unambiguous, and widely understood domain terminology [Nakagawaa et al.
2015].

Reference architectures usually contain important knowledge about how to organize architectures of software
systems in a given domain, presenting several possibilities of use. Diverse purposes have guided their adoption
and use, such as the creation of concrete architectures to support the building of software systems, standardization
of systems of a given domain, evolution of existing software systems, construction of new reference architectures,
and support for the building of software product line.

A classification based on their goal divide reference architectures in two types [Angelov et al. 2012]: for
standardization and for facilitation. On the one hand, the standardization of concrete architectures aims to provide
system and component interoperability, and usually it is defined based on a set of existing architectures. On the
other hand, the facilitation of the design of concrete architectures aims to provide guidelines and inspiration for the
design of systems. This second one, despite can be defined for a domain with well established architectures, can
also be defined for new domains that do not have still reference architectures.

Considering their relevance, different domains have already understood the need for encapsulating knowledge in
reference architectures, with the aim of disseminating and reusing this knowledge and standardizing the systems
as well. Good examples are AUTOSAR (AUTomotive Open System ARchitecture) [Partnership 2015], for the
automotive domain, and Continua [Alliance 2013a] and UniversAAL [PROJECT 2013], for AAL (Ambient Assisted
Living). In particular, these architectures have been developed by consortiums that involve major industrial players
(such as manufacturers and suppliers) and researchers.

Besides that, platform-oriented architectures, i.e., architectures not related to a specific application domain, but
to a specific architectural style or technology, have also been proposed and widely used as reference architectures.
Some good examples are OASIS [OASIS 2008] and S3 [Arsanjani et al. 2007], for software systems based on SOA
(Service-Oriented Architecture) [Papazoglou et al. 2008], and OSGi (Open Services Gateway initiative framework)
[Alliance 2013b], a set of specifications and a layered architecture that define dynamic component systems for
Java. However, it is observed that these architectures were created without using a systematic approach, what can
be consuming extra effort, time, and even requiring rework.

In order to systematize the establishment of reference architectures, some initiatives can be found, such
as [Angelov et al. 2012] [Bayer et al. 2003] [Cloutier et al. 2010] [Dobrica and NiemelÃd’ 2008] [Galster et al.
2011] [Muller 2008]. They are in general high-level guidelines, principles, recommendations or domain-specific
processes. In this scenario, we proposed ProSA-RA [Nakagawaa et al. 2015], a process for the building of
reference architectures, focusing on how to design, represent, and evaluate such architectures. It has been widely
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used to create several architectures for different domains and scenarios (both industry and academia); however,
we had not still explored the use and benefits that could be provided by patterns.

3. AN OVERVIEW OF PATTERNS AND RELATED CONCEPTS

Patterns can be defined as recurring solutions that can be reused in different contexts. Despite patterns were used
in other field before [Alexander et al. 1977], they became popular in the software development community with the
book "Design Patterns: Elements of Reusable Object-Oriented Software" [Gamma et al. 1995]. Today, patterns are
widely used by software developers and architects as a reference in software design.

The documentation of patterns usually uses a standard format, whose core elements are usually context,
problem and solution. Other important pattern elements are forces, solution description, consequences, related
patterns and known uses. Other sections complementary sections can also be included, such as implementation
details and examples, as well sections related to the pattern domain.

Patterns can be related to other patterns in different ways [Buschmann et. al 2007]. A Pattern Collection can
be used to organize and classify patterns related to a common domain. A Pattern Compound, also known as
Compound Pattern, can document a recurrent combination of patterns, which can be considered itself a pattern.
Moreover, a pattern language, which focuses on how patterns relate in a given domain, is a strongest relation that
patterns can have, documenting a broader knowledge in that context. Despite that, the term "pattern language"
is commonly used by the pattern community, there is no formal boundary that divides pattern collections from
pattern languages. Given this context, this paper refers to pattern language as a set of related patterns.

4. DIFFERENCES BETWEEN PATTERNS AND REFERENCE ARCHITECTURES

This section aims to compare patterns and reference architectures in several aspects, such as information novelty,
specificity, relation to application domain, documentation, and update. As a reference architecture is a broader
solution, in some cases, it is more fair to compare such architecture to a set of patterns instead of a single one.

An important difference between a pattern and a reference architecture is that a pattern must be a recurrent
solution already used in existing implementations. On the other hand, a reference architecture, specially the
facilitation one [Angelov et al. 2012], can propose innovative solutions in its structure, whose usage was not yet
proven in existing software. As a consequence, a reference architecture is more suitable for proposing a structure
for new domains, which are not still well established. Moreover, for a domain that already has many applications
implemented, it is interesting to examine such reference architecture, but it is necessary to identify the recurrent
solutions used by these applications.

Patterns and reference architectures document solutions differ at levels of specificity. While a pattern focuses on
a single problem and in a single recurrent solution, a reference architecture usually considers the target domain
as a whole. Hence, a pattern language or other kinds of pattern grouping are closer to the solution scope of a
reference architecture. However, even a pattern language does not have explicit requirements to fulfill and is not
necessarily complete, it documents recurrent solutions that are already well established for a specific domain.

A pattern can be more general or more specific to a given domain, depending on the problem in which it
is related to and the scope where the pattern mining was performed. It can be fine-grained or larger. On the
other hand, a reference architecture is commonly focused on a single domain, containing patterns that can be
appropriate for other architectures, too.

A pattern is documented based on a template composed by sections, which are at least its context, its problem,
and its solution. Other common sections present the forces, consequences, alternatives for implementations, and
examples of use. In a pattern language, the patterns usually have a standard structure. A reference architecture
has a more comprehensive documentation, usually with many pages, including models, tables, texts, and in some
rare cases a reference implementation.

When we consider evolution, a fast way to improve a pattern language is by adding new pattern to it. Being a
recurrent solution, this new pattern can complement the existing knowledge in different ways, either by offering an
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alternative solution or by adding a solution to a different problem. However, this addition should be done carefully,
avoiding redundancy and confusion. However, despite it is common to update a pattern language by adding new
patterns, rarely pattern authors go back and update individual patterns already documented. When evolving a
reference architecture, a new version is released. This version can present minor or major additions, but it should
be released as a whole. Table I summarizes the differences between both of them. The column related to patterns
presents characteristics for a single pattern and a pattern language, when applicable.

Table I. Summary of Differences between Patterns and Reference Architectures
Characteristic Single Pattern Pattern Language Reference Architecture

Information novelty Recurrent solution Recurrent solution Innovative solution (facilita-
tion) or recurrent solution

Specificity Single problem Related problems in a shared
domain

Multiple related problems

Relation to application domain Independent of or dependent
on the application domain

ndependent of or dependent
on the application domain

Dependent on the application
domain in most cases

Documentation Pattern description, usually
using a standard pattern tem-
plate

A diagram relating the pat-
terns

Many pages, including mod-
els, tables, texts, and even im-
plementation

Update New implementation strate-
gies and variations; Rarely
updated.

Additions of new patterns Minor or major additions con-
sidering the whole document

5. FROM A PATTERN LANGUAGE TO A REFERENCE ARCHITECTURE

The goal of this section is to develop guidelines for creating a reference architecture based on a pattern language. It
is worth highlighting that when reference architectures are created, several information sources must be considered,
including reference models, domain models, conceptual models, domain ontologies, and so on. In particular, our
proposal explicitly explores the use of pattern languages and patterns for that purpose. Reference architectures
can be also built out from analysis/design patterns; moreover, other patterns, such as for security, safety, or
reliability, can be combined into such architectures.

Our guidelines can also be followed to apply other types of pattern groupings such as patterns collections to
contribute to the reference architecture building. It is important to highlight that a reference architecture does not
necessarily need to be completely based on patterns. For problems in which the solution is not consolidated in
existing implementations, some ad-hoc solutions can also be used.

As stated before, a pattern language is a set of related patterns that capture recurrent solutions for common
problems in a given domain. Despite patterns can document relations and dependencies with other patterns in the
language [Noble 1998], a pattern language does not present a single structure. To create a reference architecture
based on a pattern language, it is important to show how the patterns fit together to support it.

A pattern usually present components (often described in a "Participants" section), which interact to solve a
target problem. In a pattern language, patterns handle problems in the same domain. Hence, it is common to have
components that play the same role in different patterns of the language. Based on that, the structure can be
unified by using the common components as points to bind the pattern solutions together.

When there is some patterns or group of patterns that end up without a connection to other patterns, there can
be some missing pattern on the pattern language. That can be a problem, because the participants need to be
bound to a single structure in the reference architecture. One option is to perform some pattern mining on the
existing systems to specifically search for solutions that binds to the reference structure. If the solution used by the
systems is not uniform, in other words, there is not a consolidated pattern, a new or a particular solution can be
proposed and used in the reference architecture. Pattern solutions can also be complemented by new proposals
or solutions inspired in more general patterns.
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When a pattern language presents alternative patterns for the same problem, one of them should be chosen to
be used in the reference architecture. Despite having a discussion on how to add this kind of variability to reference
architectures [Nakagawa 2012], it is not common to find alternative solutions in existing reference architectures.
An alternative to add both solutions is to define variabilities in the reference architecture, representing different
implementations. However, supporting both solutions in the same structure might not represent faithfully the
domain’s needs, since only one of them should be used.

It is important to highlight that these ways for identifying missing patterns or alternative solutions to define
reference architectures from a pattern language need deeper investigations and validation. The presented
approaches are proposals of how they can be handled.

An example of use of this proposed processes happened in the reference architecture for metadata based
frameworks [Guerra et al. 2013a]. This reference architecture was created based on a pattern language [Guerra
et al. 2013b] that documents eight patterns focused on recurrent solutions for metadata processing and reading
used in this kind of framework. In this case, the patterns in the pattern language were enough to bind all the
components referenced on the patterns.

The same happened in the Adaptive Object Models (AOM) domain. Initially, some patterns documented practices
on how to create adaptive objects using metadata [Foote and Yoder 1998]. After that, it evolved to what was called
an architectural style [Yoder and Johnson 2002], which is way closer to a reference architecture. Since it is easier
to add extensions to a set of patterns, follow on work focused on other aspects of the AOM architecture, such
as graphical interface rendering [Welicki et al. 2007] and the creation of objects [Welicki et al. 2010]. Despite
these extensions, a new reference architecture was not defined nor the architectural style was redefined, since
these new patterns were meant to be used with the initial AOM patterns, they are perfectly compatible with the
documented AOM architectural style. Other similar examples are the reference architecture for service-based
systems [Stricker et al. 2010] and a security reference architecture for cloud systems [Fernandez et al. 2015].

6. USING REFERENCE ARCHITECTURES FOR PATTERN MINING

The goal of this section is to present a future perspective of how reference architectures can be used for pattern
mining. It is important to highlight that this proposal was not evaluated yet and should be considered just as a
proposal of this approach.

Pattern mining consists of searching for recurrent solutions in a target domain. For architectural design and, more
generally, software patterns, this search can be conducted by using code inspection. Software documentation, such
as diagrams and descriptions, can also be used in this activity. This search can be focused on the problem, looking
at how a software solves a particular issue. The pattern mining can be also based on the structure of several
software applications related to the same domain, searching for common practices. In both activities, the reference
architecture can be used as a source for the pattern mining. It can be compared to actual implementations to
identify if the practices proposed by the reference architecture are actually used on real software. A reference
architecture that was already used on several projects can also be a source of information.

7. REFERENCE ARCHITECTURE CREATION

Similar to processes for constructing software architectures, reference architectures should be built using a set of
systematized steps, as already discussed by the software architecture community. This section is organized as
follows: 7.1 aims to present one process that has supported the building of reference architectures [Nakagawaa
et al. 2015], and 7.2 presents a proposal of how patterns might be introduced in such process.

7.1 Existing Reference Architecture Creation Process

From our experience in working with reference architectures, as well as in systematizing the steps to build them
[Nakagawa et al. 2012] [Nakagawa 2012] [Nakagawaa et al. 2015] [Guerra et al. 2013a], we can summarize the
whole building process as presented in Figure 1. To adequately apply this process, first, it is specially important to
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establish the scope of the reference architecture, i.e., the target application domain. This scope can be defined
using the set of systems that are intended to be produced based on this architecture. In short, four steps compose
this process:

Fig. 1. Outline Structure of ProSA-RA

—Step RA-1: Information Source Investigation: In this step, the main information sources are selected. These
sources must provide information about processes and activities that can be supported by software systems of
the target domain. Since reference architectures should be the basis for several software systems in a given
domain, these sources must involve a more comprehensive knowledge about the domain, than compared
to information sources used when developing the architecture of a specific system. From this perspective,
ProSA-RA highlights the most relevant sources: people, documents, systems of the domain, related reference
models and reference architectures, and domain ontologies, if available;

—Step RA-2: Architectural Analysis: Based on the selected sources, three set of elements are identified. First,
the set of requirements of software systems of that domain is identified and, based on these requirements,
the set of requirements for the reference architecture is then identified. These requirements include functional
and non-functional requirements. After that, the set of concepts that must be considered in this reference
architecture is established. For this, three main tasks are performed: (i) identification of the system requirements;
(ii) identification of the reference architecture requirements; and (iii) identification of the domain concepts;

—Step RA-3: Architectural Synthesis: In this step, the architectural description of the reference architecture is
built following a model for reference architectures, such as RAModel [Nakagawa et al. 2012]. For instance,
architectural styles, as well as a combination of these and other styles, identified in Step RA-1, must be
considered. These styles are the basis on which concepts previously identified are organized. For instance,
if a three-tier architecture is used as an architectural style of the reference architecture, the concepts related
to the business rules should be organized into the application tier, since this tier usually contains these rules.
Considering the effectiveness of using architectural views to represent concrete software architectures, they can
be also adopted to describe reference architectures; and

—Step RA-4: Architectural Evaluation: In the context of this work, reference architecture evaluation refers to the
task of reviewing the architectural description together with diverse stakeholders intending to detect defects
in this description. For this, ProSA-RA uses a checklist-based inspection approach, called FERA (Framework
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for Evaluation of Reference Architectures). In short, FERA is composed of 93 multiple choice questions
whose answers vary from “fully satisfactory” to “totally unsatisfactory”, and fields to add comments. It can be
evaluated by a range of stakeholders (namely architects, domain experts, analysts, software project manager,
designers/developers/implementers, integrators, testers, and quality assurance stakeholders).

7.2 Pattern-based Method for Reference Architecture Creation

Aiming at exploring the benefits of using recurrent, well-tested solution during the construction of reference
architectures, patterns become quite interesting to be included in ProSA-RA. In particular, Step RA-3 can benefit
by these patterns, what includes mainly design patterns and architectural patterns. However, depending on the
reference architecture domain, other kinds of patterns can also be considered, such as security patterns, safety
patterns, and testing patterns.

During this step, there are several sources for patterns that can be used, such as patterns repositories, pattern
collections or pattern languages related to the reference architecture domain, as well as patterns related to a
problem domain that is facing the reference architecture (security, reliability, distribution, etc...). A particular good
source can be also specialists in patterns or domain specialists. The patterns can be used in the following activities:

—Identification of a set of candidate patterns. For this, requirements for the reference architecture identified in the
last step must be considered;

—Selection of patterns that fit the needs of the reference architecture. Benefits and drawbacks of adopting each
pattern must be investigated separately;

—Joint analysis of all patterns that are intended to be adopted;
—Decision of the Points of Application (PA), i.e., part/component of the reference architecture where each pattern

will be applied and also when two or more patterns are concurrent in the same PA. This last issue characterizes
the variation points of the reference architecture regarding pattern application; and

—Design of the reference architecture by creating architectural views and models that include the selected
patterns.

Besides using patterns for these architectures, the use of pattern languages are also aligned with goals of such
architectures.

When the search does not find a pattern for a given problem related to a reference architecture, an alternative is
to conduct a pattern mining activity to find a pattern on existing systems. This pattern can be documented and
stand on its own, and can be further be incorporated in the reference architecture.

8. CONCLUSION

Patterns, pattern languages, and reference architectures must be investigated in a complementary way to provide
a more complete solution to the development of software systems. Initiatives in that direction can be already
found and there are still good open research perspectives. The use of patterns and pattern languages to create
reference architecture could bring important contributions, such as reduction in time and efforts to design reference
architectures and improvement in the reference architecture quality, as parts of such architecture adopt proven
solutions. It is important to highlight that both areas (patterns and reference architecture) have already achieved a
consolidated status, with recognized advantages and solutions; therefore, it seems natural to investigate them
together, contributing to the advance of the state of the art of these areas.
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