Towards Extending Online Pattern Repositories: Supporting the
Design Pattern Lifecycle

CHRISTIAN KOPPE, HAN University of Applied Sciences, Netherlands
PAUL SALVADOR INVENTADO, School of Design, Carnegie Mellon University, USA
PETER SCUPELLI, School of Design, Carnegie Mellon University, USA
UWE VAN HEESCH, HAN University of Applied Sciences, Netherlands

Design patterns offer proven solutions to well-known problems and are an accepted way of knowledge preservation in various domains. Many design
patterns have been documented and are published in a variety of places and formats. This makes it difficult for people to find patterns that offer
solutions for a particular problem. Publishing the patterns in a repository seems to be a promising solution and, to date, many repositories have been
set up containing patterns of various domains and offering a wide variety of functionality to support pattern users. However, none of these repositories
seem to fulfill all user needs and there is certainly not “the one" common repository that serves as starting point for pattern search. We believe that
the main reason is that all repositories are strong in certain aspects, but miss functionality in other aspects. In this work, we try to identify the most
important parts of all relevant aspects, based on the existing work on pattern repositories. Building on that, we describe an initial set of high-level
requirements for a generic online design pattern repository.

Categories and Subject Descriptors: D.2.10 [Software Engineering]: Design—Design Patterns
General Terms: Design, Languages, Requirement
Additional Key Words and Phrases: Pattern Repository

Reference Format:

Képpe, C., Inventado, P.S., Scupelli, P, van Heesch, U. 2016. Towards Extending Online Pattern Repositories: Supporting the Design Pattern Lifecycle
— Proceedings of the 23rd Conference on Pattern Languages of Programs, PLoP '16(October 2016), 26 pages.

1. INTRODUCTION

In 1987 Howard G. (Ward) Cunningham, then with Tektronix, and Apple Computer’s Kent Beck co-published the paper
“Using Pattern Languages for Object-Oriented Programs" [Beck and Cunningham 1987]. This paper about programming
patterns was inspired by Christopher Alexander’s architectural concept of "patterns”. It was written for the 1987 OOPSLA
programming conference organized by the Association for Computing Machinery. Cunningham’s and Beck’s idea became
popular among programmers, because it helped them exchange programming and design solutions in a format that was
easy to understand and contains all relevant information. In 1994, the Portland Pattern Repository' (PPR) became the
first repository for computer programming design patterns. It was accompanied by a companion website, WikiWikiWeb?,
which was the world’s first wiki and allowed people to collaborate on pattern writing.

http://c2.com/ppr/
2nttp://c2.com/cgi/wiki?FrontPage

Corresponding author: christian.koppe@han.nl

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided
that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the
first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission. A prelimi-
nary version of this paper was presented in a writers’ workshop at the 23rd Conference on Pattern Languages of Programs (PLoP).
PLoP’16, October 24-26, Monticello, lllinois, USA. Copyright 2016 is held by the author(s). HILLSIDE 978-1-941652-04-6

Also in 1994, the first Pattern Language of Programs (PLoP) conference was held. It evolved into an international
conference series® with conferences such as EuroPLoP, AsianPLoP, SugarloafPLoP, and VikingPLoP, which are held
all over the world. The main focus of these conferences is on promoting, improving and publishing patterns, and many
patterns have been written since the first conference. The Pattern Almanac by Linda Rising [Rising 2000], published in
2000, contained an overview of 1.200+ patterns. In 2013, Hohpe and his co-authors estimated over 7.500 published
patterns [Hohpe et al. 2013].

Patterns are published in conference proceedings, journals, and books, but also websites and online repositories or
libraries. Each of these publication types has pros and cons. Peer-reviewed publications are usually of higher quality
than patterns published on websites. However, these pattern publications stop evolving once they are published. They
cannot be changed and adapted to changing environments or new insights. Existing websites and online repositories
(partly) address this issue by supporting the evolutionary character of patterns [Reiners et al. 2013]. Publishing pattern
versions online in a repository, in combination with a review process and quality gates, can support their aliveness,
without compromising the quality of the pattern descriptions.

A long list of pattern repositories emerged in the last years, but most of them silently disappeared again. Repository
systems such as the Portland Pattern Repository, PATONGO , PatternPedia, or the Open Pattern Repository offer
extensive support for pattern authoring and other parts of the pattern lifecycle, but none of these are widely used (or not
used at all) by the community around the various PLoP pattern conferences. However, all of them contain features that
are relevant requirements for a system that would support the pattern community in all activities related to the design
pattern lifecycle (pattern writing, application, evaluation, evolution etc.).

We think that there are two main reasons for this phenomenon of failing attempts to establishing a pattern repository
as supporting system in the pattern community: (1) an experienced lack or inappropriateness of functionality required
for supporting all activities in the pattern lifecycle and the shepherding process [Harrison 1999] and (2) the lack of a
community of stakeholders that actively evolves the repository and keeps it alive through adding or updating content.
Certainly, the latter reason is impacted by the former.

In this paper, we address the first reason with the goal to identify requirements and features for a pattern repository
which

—support all phases of the design pattern lifecycle (such as pattern writing, evolution, validation, application),

—can additionally support the processes as established in the pattern community around the PLoP conferences (such
as shepherding/review),

—cover the valuable features of existing repositories (such as browsing/searching, scenarios, examples, feedback
possibilities, versioning, continuous improvement/refinement, interlinking between patterns etc.),

—can be used for adapting existing repositories so that they could be used for xPLoPs, Hillside etc. or as meta-repository
with links to (patterns in) other repositories.

For achieving this goal, we use the results of a focus group on online pattern repositories, held at the PLoP’15
conference. We identify the potential stakeholders of a pattern repository and their needs. Based on these needs,
we analyze existing literature on pattern repositories as well as existing repositories themselves to extract aspects of
functionality that are relevant and required for fulfilling the stakeholder’s needs.

As a next step we will explore the community aspects necessary for establishing a pattern repository with an active
community, both generically and by the example of design patterns for pedagogy, which we plan to present in future
work.

The rest of this paper is organized as follows: In the next section, we give a summary of the results of the PLoP’15
focus group on “Developing and Open, Collaborative Design Pattern Repository". After that, we identify the stakeholders
of a pattern repository and their needs. Then we present relevant literature and existing repositories in Section 4, which
is accompanied by a more extensive and structured summary in the appendix. Based on these two sections, we present

3http://www.hillside.net/conferences

Towards Extending Online Pattern Repositories: Supporting the Design Pattern Lifecycle — Page Il

a set of requirements which are relevant for addressing the stakeholder’s needs in Section 5. The last section provides a
conclusion and an outlook on future work.

2. PLOP’15 FOCUS GROUP RESULTS

In PLoP 2015, the focus group entitled “Developing an Open, Collaborative Design Pattern Repository" was conducted
to get insights from design pattern authors regarding their thoughts on the hindrances to building pattern repositories
and possible ways to address them. These ideas are summarized below.

2.1 Locating patterns

Thousands of patterns have already been developed for multiple domains. It becomes harder for pattern authors and
users to find patterns that are relevant to them. When users go into a repository and find it difficult to locate what they
need, they may be less interested to come back and use that repository.

It is common for pattern repositories to provide text-search facilities and support hyperlinks between related patterns
to make them easier to navigate. However, these pattern-location methods require a certain level of understanding about
the domain of interest, some knowledge of patterns that already exist, and familiarity of pattern formats and the kind of
information they contain. It may be useful to provide pattern-location methods that search over pattern languages or
pattern categories to filter the search space and make it easier to locate relevant and related design patterns. Faceted
search might be a good option here to explore.

2.2 Pattern Fragmentation

Related to searching for patterns is the fragmentation of design pattern resources. Design patterns may be found in
books, publications, and websites aside from pattern repositories. These patterns need to be encoded into repositories
to take advantage of pattern repository facilities, but it takes a lot of effort to locate, encode, sort, and organize these
design patterns.

2.3 Pattern Repository Maintenance

Many pattern repositories were developed as part of research projects. Maintenance stops when a student managing the
repository graduates, a funded project that developed the repository is completed, or a sponsoring group loses interest
in the repository.

A central repository may help maintain interest in design patterns that belong to inactive repositories by assimilating
them into the repository so they can be searched and linked to other design patterns.

2.4 Pattern Presentation

Pattern authors have their own preferences on how to express patterns. Their preferences may be based on the domain
they are working on (e.g., programming codes are incorporated in a software pattern), their intended audience (e.g.,
short descriptions make it easier for teachers to use patterns), their experience with patterns (e.g., novice pattern authors
may find it easier to read and write patterns organized into sections), and so forth.

It is difficult to identify a general pattern format to accommodate the needs of pattern authors. It may be a good idea to
take a bottom-up approach by taking a template that works for one group of authors and expanding it to accommodate
pattern formats from more groups. A simpler approach may be to support multiple pattern formats, but keep a core set of
elements shared across all pattern formats (e.g., context, problem, forces, solution).

2.5 Copyright and Ownership

There may be legal issues with uploading design patterns to repositories when they have been published in proceedings,
journals, books, or other copyrighted medium. There may also be issues with uploading design patterns developed
through funded projects due to funding agency requirements or limitations. For example, the data needs to be hosted in
a server within the country that funded it.

Towards Extending Online Pattern Repositories: Supporting the Design Pattern Lifecycle — Page Il

A possible solution to avoid copyright or ownership issues may be to allow uploading pattern abstracts or pattern
descriptions instead of the actual patterns and providing links to the original source. It may also be a good idea to prefer
publishers that allow pattern authors to retain copyright over their patterns. For example, most PLoP conferences are in
agreement with ACM to give authors the option to keep their copyright.

2.6 Pattern Evolution

Some design patterns may benefit from continued refinement. For example, new findings may require the addition of
forces, the modification of the solution, or the inclusion of more known uses of the pattern. It will be useful to keep track
of information regarding the changes made to the pattern, the justification for the changes, and the contributing authors.

2.7 Pattern Quality

The usefulness of a pattern repository is certainly related to the quality of patterns it contains. While some agree to
only accept patterns of a certain quality, others argue that enforcing a strict evaluation process will discourage authors
to submit patterns. Selecting the acceptable level of quality or assigning moderators tasked to assess the quality of
submitted patterns are complicated issues. Furthermore, there are different aspects of the pattern that can be evaluated.
For example, will quality refer to the readability of the design pattern or the effectiveness of the design pattern when
applied in actual cases.

There were several suggestions to address this problem. First, a quality measure may be based on the number of
people who find the pattern useful or the number of positive reviews on the pattern. Reviewers may be ranked to consider
the weight of their review. This is a similar measure used by systems that involve customer reviews (e.g., Amazon
shopping, TripAdvisor, Yelp). Usage metrics may also be used to measure quality (e.g., frequency of actual pattern use).
The use of such measures requires much care, however, to avoid assigning high scores to design patterns that are
frequently used because of their simplicity despite having relatively low impact; and assigning low scores to patterns that
are less-frequently used because of their complexity despite having relatively high impact.

2.8 Community-related Issues

There were other issues discussed during the focus group that required the community’s involvement to resolve. For
example, most pattern authors choose to submit their patterns to PLoP conferences because it does not only allow
them to share their patterns and get feedback, but it also gets their papers published, which they can use towards their
promotion or to satisfy funding requirements. However, there seem to be few incentives for pattern authors to submit
their patterns to pattern repositories. Similarly, patterns may need to be updated after they are published (e.g., additional
known uses, link to new related patterns, improvements in presentation), but it is difficult to encourage authors to do so.
Thus, there is a need to find creative ways to encourage pattern authors to upload and update their patterns.

Another issue is the case when pattern authors think of ways to refine their own patterns or other authors’ patterns,
but run into legal issues because of copyright and ownership concerns. Standards may need to be developed to ensure
continued development and improvement of design patterns.

Finally, allowing multiple authors to refine and extend existing design patterns leads to issues regarding attribution.
Methodologies and standards may need to be defined to ensure authors are properly attributed for their work and to
encourage collaboration among various stakeholders.

These challenges are important to promote the use of the repository, but are outside the scope of this paper.
Functionalities discussed in the paper might help enable the community to resolve these issues, but these will be
addressed specifically in future work.

3. PATTERN REPOSITORY STAKEHOLDERS AND THEIR NEEDS

For identification of the repository stakeholders, we used as starting point the work of Derntl and Botturi on essential use
cases for pattern systems [Derntl and Botturi 2006]. Even though their work is focused on the domain of pedagogical
patterns, the functionality they describe is very generic and therefore likely applicable to other pattern domains too. We

Towards Extending Online Pattern Repositories: Supporting the Design Pattern Lifecycle — Page IV

did not find conflicts or discrepancies during the analysis of relevant literature and existing repositories. Derntl and Botturi
identified four actors in a pattern system:

—Author - writes the patterns

—Maintainer - maintains the pattern system (authors are also maintainers)
—Analyst - uses the patterns to analyze design artefacts

—User - all other actors plus people who apply the patterns

The User actor defined by Derntl is quite generic. We think there may be more specific roles to address the needs of
a pattern system such as:

—Reviewer - a user who reviews patterns (and other repository content) and provides feedback, additional examples, or
suggestions for improvement; shepherds are specific instances of such reviewers

—Domain Expert - a user with deep knowledge of a certain domain and can identify elaborate scenarios that may exist
in that domain (e.g., combinations of patterns); the domain expert may not necessarily be a pattern author

—Domain Novice - a user new to design patterns who may need help to navigate the large amount of information on
design patterns; novice lecturers in the domain of education are examples of novice users who may need help to find
information related to their teaching tasks

Derntl and Botturi described a set of essential use cases for a pattern system, namely Write Pattern, Revise Pattern,
Remove Pattern, Maintain Patterns (as abstract use case for the previous three ones), Browse Patterns, Identify Pattern,
Apply Patterns, and Analyze an Artifact. While the last three are certainly relevant for a pattern system, they are not
directly part of the functionality of a pattern repository, but are executed outside of it. Still, the repository needs to take
them into account by providing the necessary information (Apply Patterns and Analyze an Artifact) or by offering a way
of connecting the results of them with the repository (/dentify Pattern).

From our analysis of existing repositories and relevant literature, we used the following simplified features to cover the
core functionality described by Derntl and Botturi as well as additional features we believe are essential to a pattern
system:

—Repository Content - the information included in the repository and the way this is structured

—Pattern Writing - all aspects of adding/updating patterns and related information in the repository

—Browsing/Searching - all aspects of finding relevant patterns and the presentation of them

—Other Requirements - all other aspects that do not fall into one of the other categories, e.g. import/export functionality,
reviewing aspects, evaluation/validation, or layout/visualisation aspects

—Comments - relevant information which is not directly related to requirements

4. PRESENTATION OF RELEVANT LITERATURE AND EXISTING REPOSITORIES

In this section, we introduce related work we used to identify the requirements of a pattern repository. A summary of the
relevant properties can be found in the appendix.

Cunningham and Mehaffy show that a wiki offers a good base for a design pattern repository, as wikis and pattern
languages share fundamental structural characteristics such as being open-ended sets of information (consisting of
unitary subsets), being topical essays with a characteristic structure (easy to create, share and edit by many people),
in principle evolutionary, falsifiable and refinable, and aim to create useful ontological models of a portion of the world
[Cunningham and Mehaffy 2013]. In fact, wikis were initially developed as a tool for supporting the development of
pattern languages (mainly for software)*.

4Ward Cunningham interview with Michael Mehaffy, Youtube video from "Lightning Interview Series" 2009: https://www.youtube.com/watch?v=
FyclJGXP-hc, accessed July 17, 2016

Towards Extending Online Pattern Repositories: Supporting the Design Pattern Lifecycle — Page V

Fehling et al. introduced PatternPedia: “a collaborative tool chain to document existing solutions and manage patterns
abstracted from them" [Fehling et al. 2015]. In their work, they present an extensible pattern metamodel (including typed
references such as InContextOf, ConsiderAfter, or Alternative) where concrete repository implementations can be based
on.

In 2010, Birukou did a structured survey of existing approaches for pattern search and selection [Birukou 2010]. For
the survey, he identified potential problems of pattern repositories and documented a set of features and properties of
pattern repositories and catalogs (available in 2010), which potentially help to solve these problems. The results show
that the Open Pattern Repository (discussed below) contains most of the valuable features and properties. However, the
described features and properties can also be seen as valuable part of requirements for a pattern repository and are
therefore included in our work.

Both Mundie et al. [Mundie et al. 2012] and Kdppe [Képpe 2013] suggest to use a faceted classification and the
facet map approach for better support of browsing and searching for patterns in an online repository. Facet maps
provide a mechanism to filter resources (such as patterns) based on selections of combinations of resource-specific
attributes. These attributes are grouped in facets according to classifiable characteristics. This approach requires a
multi-dimensional categorization such as the one proposed for security patterns [VanHilst et al. 2009]. The more generic
Facet-Map based search itself is described in [Smith et al. 2006]

Reiners et al. focused on the collaborative formulation process of evolutionary patterns and described high-level
requirements that support such process [Reiners et al. 2013]. The results were applied in the development of the BRIDGE®
pattern library, where additionally also a workflow for evolutionary pattern formulation was introduced. Requirements
which do directly address functionality are summarized in the appendix and reflected in this work.

Inventado and Scupelli [Inventado and Scupelli 2015b] investigated the design of an open, collaborative repository
whose goal is to foster collaboration between design pattern authors and stakeholders throughout the design pattern
lifecycle. The design of the repository is tied to a data-driven design pattern production (3D2P) methodology, which
utilizes data collected from existing systems to implement a five-step iterative process of (a) pattern prospecting, (b)
pattern mining, (c) pattern writing, (d) pattern application, and (e) pattern evaluation and refinement [Inventado and
Scupelli 2015a]. Stakeholders are envisioned to collaborate with each other and design pattern authors in each of these
processes. A prototype of their open, collaborative repository® is currently available to interested parties.

Pavlic et al. [Pavli¢ et al. 2009] describe an ontology-based repository system that makes use of semantic web
technologies in order to also support question-answer expert systems and full-text search.

Schimmer and Haake introduce PATONGO (Patterns and Tools for Non-Profit Organizations), a pattern-based
approach for helping voluntaries to identify and share good practices [Schimmer and Haake 2010]. They focus
on organizational learning and communication between repository users (with emphasis on learning inside of an
organization). The described process supports various levels of abstractions, starting with challenges and ideas, then
good practice descriptions, pattern descriptions and overview articles with introductory overviews of the patterns of a
specific domain and also successful applications of combinations of patterns (we will call these scenarios in this work).

Finlay et al. present the Pattern Language Network (PLaNet) for Web 2.0 in Learning [Finlay et al. 2009]. This project
included a participatory pattern workshop methodology for mining patterns from domain experts (with the focus on
learning through web 2.0 technologies) and the development of a collaborative software platform to facilitate community
based pattern creation and use. The source code of the final version of the platform is available for download”.

Birukou and Weiss describe a service for selecting patterns [Birukou and Weiss 2009]. This service makes use of the
content of existing pattern repositories and adds functionality that is not included in them, such as recommendations
based on various criteria.

Shttp://bridge-pattern-library.fit.fraunhofer.de/pattern-library/
6http://www.learningenvironmentslab.org/openpatternrepository/
Thttps://code.google.com/archive/p/patternlanguagenetwork/

Towards Extending Online Pattern Repositories: Supporting the Design Pattern Lifecycle — Page VI

Fincher specifies the Pattern Language Markup Language (PLML), which is the result of a CHI2003 workshop [Fincher
2003]. PLML describes an XML-format that is supposed to serve as common pattern format for HCI patterns (and is likely
also appropriate for other domains according to the author). It contains a set of essential elements and sub-elements
(see related work table in Appendix) and aims at providing a format that can be used for interchanging their pattern
descriptions and as basis for pattern collections.

Deng et al. discuss “the main requirements for a tool to be used by researchers and user interface designers
that can manage a repository of possibly disparate pattern collections" [Deng et al. 2005]. They build on existing
specifications for Ul pattern tools and define a feature framework, which addresses identified problems when building
pattern management tools. The features comprise authoring, manipulating forces, browsing, searching, modification
(versioning and customizing), relating patterns, manipulating collections, and input/output (see the table in Appendix A
for a more detailed description of the features).

Welicki et al. introduce the Entity Meta-Specification Language (EML) for pattern specification [Welicki et al. 2006].
EML can be used for describing patterns from different languages and in different formats using the same semantic and
syntactic elements. A pattern is hereby defined as an entity with properties, and the properties are the specific sections
of the pattern. They show how EML can be used for specifying a pattern catalog and introduce a web-based catalog
visualization tool that allows searching, linking and using the patterns in a catalog.

Weiss and Birukou propose using wiki as repository platform, as this offers some technical and social benefits due to
the open, lightweight, and participative nature of wikis [Weiss and Birukou 2007].

Van Heesch and colleagues developed the Open Pattern Repository®, which supports most activities of the pattern
lifecycle. The source code and documentation of the repository is publicly available and the repository is used by different
institutions for internal pattern documentation. A publicly deployed version is currently not available.

The Integrated Learning Design Environment® (ILDE) was the result of the European project Metis'® on Lifelong
Learning. It offers a place for capturing Learning Design Solutions (LdS) with varying levels of abstraction and scope
such as design patterns, course maps, scenarios, user stories etc.. It is community-focused and offers various ways of
interaction such as reviewing, commenting, adding your own LdS, integrating exisitng LdS into scenarios etc.. At the time
of writing (september 2016), ILDE does not contain much mature content.

The Placepatterns'? repository contains architectural patterns similar and additional to the ones described in A Pattern
Language [Alexander et al. 1977]. It uses the same Alexandrian format and contains the patterns as published in a book
(no linking or followable references). Browsing is possible via tags and scale and places can be added which have the
patterns

The Liberating Voices Pattern Language focuses on positive social change and is part of the Public Sphere Projec
The patterns are published in a book [Schuler and Douglas 2008] and also (slightly altered) online in an online repository'3.
At this moment (september 2016) the patterns are only published as is, but the website states that in the future they will
also work on allowing comments on patterns (including questions, suggestions, examples of pattern usages, and relevant
references), adding functionality so that people and groups can develop their own pattern languages (allowing re-using
existing patterns and addition of new patterns), and a general software effort to support all of the patterns (similar to our
work).

The BRIDGE pattern library'* was developed to better handle knowledge acquisition and transfer between different
(research) project partners and work packages. The repository supports an extensive workflow called Evolutionary
Pattern Formulation, with varying degrees of maturity of the patterns based on reviews, feedback and comments of

t12,

8nttps://github.com/wizzn/openpatternrepository
9nttp://ilde.upf.edu/

Onttp://www.metis-project.org

http://placepatterns.org

2http://publicsphereproject.org/
Bnttp://publicsphereproject.org/patterns/LV
Yhttp://bridge-pattern-library.fit.fraunhofer.de/pattern-library/

Towards Extending Online Pattern Repositories: Supporting the Design Pattern Lifecycle — Page VII

other users and experts. The functionality also supports community aspects with e.g. a Hall of Fame for the most active
contributors or the presentation of a list with patterns that need to be rated or need evidence.

Martijn van Welie hosts an online pattern library with patterns in interaction design'®. The patterns are presented as is,
but visitors can comment on them. No information is available about latest changes or if the library is actively maintained
and updated.

5. COMMON REQUIREMENTS FOR THE DESIGN PATTERN PROCESS

The requirements presented in this section are based on the reviews of existing repositories and related literature. Per
publication we summarized all relevant features, grouped by different aspects of the pattern life cycle. Furthermore,
existing pattern repositories were analyzed regarding the features they offer and the findings documented. All results
were included in the summary table (in Appendix A). Based on these results, we identified requirements that subsume
all features of existing repository approaches. These requirements can then be used for ensuring that a pattern
repository—either existing ones such as the Open Pattern Repository, PatternPedia, or PATONGO, but also new
repositories—supports the whole design pattern lifecycle.

The presented requirements are grouped by different aspects of the pattern life cycle, consistent with the summary
table.

5.1 Pattern Writing Requirements

Patterns can be written by individual authors, but it's more likely that pattern writing is a collaborative effort. This can be
either through a group of authors and/or the combination of author/s and shepherd/s. In that way the repository can also
be used for shepherding, for example, as part of the xPLoP process.

Collaborative authoring can be realized by allowing a defined group of authors to work on the patterns or by making
one author responsible for adapting the pattern based on the suggested adaptations by the other authors.

The repository should support various collaboration activities within the community, which may include communication,
collaborative editing, and versioning (see separate section below).

5.1.1 Authorship. Patterns can have one or more registered authors. The author/s are the only users that are allowed
to change the content of the patterns. Other users can make suggestions for improvements. Subsequently, the authors
can accept suggestions by improving the pattern based on them, getting more clarification from the suggesting user if
needed, or rejecting them (with the reasons communicated to the user who made the suggestion).

5.1.2 Pattern Status. In order to support the pattern writing process, each pattern is always in one specific status.
Different repositories made use of different statuses (such as seed idea/alpha/beta in PLaNet or "pattern under
consideration" / "pattern candidate" / "approved pattern” in the BRIDGE Pattern Library). The concrete statuses (and
likely the corresponding workflow) still need to be discussed in the community. It might also be possible that different sets
of statuses and workflows will be defined for different domains or kinds of patterns. We therefore propose that statuses
can be flexibly defined.

Aside from pattern status, the maturity of published patterns may also be defined (similar to the star system Alexander
used) based on different sources such as user ratings or expert judgments. See the section on ratings and validation for
more details.

5.1.3 Shepherding. A repository that covers the complete pattern life cycle could also be used for supporting the
shepherding process as established in the pattern community. Authors can add pattern drafts to the repository and open
that for the shepherd to make suggestions for improvement, hereby improving the pattern/s iteratively. Functionality
is required that allows exporting the patterns to e.g. Word or Latex in a desired format so that they can be included
in the conference submissions (see section on export/import functionality). A limitation is that usually submissions to

Bhttp://www.welie.com/patterns/

Towards Extending Online Pattern Repositories: Supporting the Design Pattern Lifecycle — Page VIII

conferences do not only contain the patterns themselves, but also some introduction, background information, running
examples etc. One way of handling this limitation could be to make use of the proposed overview articles inside of the
repository, which include also the described patterns and can serve as paper outlines. However, this likely requires some
more effort and still needs to be discussed by the community.

An advantage would be that by using the repository also for shepherding, the patterns would already evolve inside of
the repository and the final versions are therefore automatically included in it (besides also being published e.g. in the
proceedings of a XPLoP or other conference). This automatic inclusion removes the earlier described hurdle of having to
do an extra effort to add the pattern to a repository after having it finished for some proceedings.

5.2 Pattern Application Requirements

Authors may be interested to see who used their patterns, how many times it has been used, where their patterns have
been used, when it was used, how it was applied, and so forth. The information can easily be stored into the repository,
but a bigger challenge is encouraging pattern authors or stakeholders to update the system. This is outside the scope of
this paper, but we plan to address this in future work.

5.3 Pattern Evaluation Requirements

Evaluating patterns involves many complex issues, which may need to be resolved before a system can be developed to
support it. Some issues that we think might need to be addressed would include:

—pattern-evaluator requirements and selection process (e.g., pattern-writing experience, knowledge of the domain,
community participation)

—appropriate pattern evaluation process (e.g., peer-review, expert-review, forums)

—appropriate pattern evaluation metrics (e.g., pattern clarity, effectiveness in actual applications, usage frequency)

—requirements for evaluation contexts (e.g., pattern usage in diverse domains, pattern usage by a large population,
pattern usage over an extended period of time)

The issue of an appropriate evaluation process requires the functionality to provide feedback and comments on patterns,
independent of who is doing the review or commenting. Such general functionality is included in our requirements.

The issue of evaluation metrics is addressed by adding a rating functionality that allows various rating possibilities. It
is furthermore possible to collect user data such as if a pattern has been applied or the number of provided example
applications.

The other issues are outside the scope of this paper, but we plan to address them in future work.

5.4 Pattern Evolution Requirements

All registered users can suggest improvements or add new examples to an existing pattern. For example, a teacher
who applied a pedagogical pattern in class and found the pattern effective can share his/her experience with the author,
which the author can decide to include in a pattern’s list of known uses. It may also be possible that a teacher is unable
to replicate the benefits of applying the pattern, which can be clarified with the author to identify if the issue was with the
pattern’s application or if the issue was with the design pattern that needs to be addressed by the author.

Issues and suggestions need to be verified and, if valuable, addressed by the author/s. If the author/s do/es not
agree with the suggestions or has questions about them, they should be discussed. All suggestions need to be either
incorporated or declined with good reason. All made suggestions for a pattern show up in the activity list of the author of
this pattern (or if the author is part of the assigned author group).

5.5 Repository Content

5.5.1 Multiple Pattern Structures and Pattern Views. The format of a pattern can be defined as the set of semantically
coherent and named sections of a pattern. Pattern authors often select pattern formats according to their personal
preferences, but there are cases when certain pattern formats are more appropriate for a domain. For example, domains

Towards Extending Online Pattern Repositories: Supporting the Design Pattern Lifecycle — Page IX

that need elaborate descriptions may benefit from pattern formats that split content into multiple sections. Pattern readers
may also have their own preferences, which could be different from that of the pattern author. For example, a novice
pattern author or someone interested in applying a design pattern may have less experience with design patterns and
may find it difficult to understand the Alexandrian form, but find it easy to understand a sectional format.

In many repositories (appr. 50% of the ones we analyzed), there is one pattern format defined that contains both the
set of sections of a pattern and their visual representation. We believe that this is not sufficient for a pattern repository that
aims at including patterns of different domains and different authors. Such repository needs to support multiple pattern
formats. Furthermore, consistent with [Welicki et al. 2006], we propose to separate the information and the representation
of a pattern in order to allow multiple representations of the same pattern, all based on the same information.

We there therefore propose the two concepts of Pattern Structure, which contains information on how the pattern
content is divided into separate sections (perhaps of specific types such as text, images, multimedia data, or combinations
of these), and Pattern View, which defines how (and which of) the sections are visually represented. Sections can also
be divided into sub-sections, e.g. for specific parts of a more generic section (like “Core" and “Details" for a “Solution"
section, “example" and “rationale” in an “evidence" section as in PLML, or for lists of specific forces or consequences).

An example of a pattern structure for a pedagogical pattern could be: Name, Summary, Context, Problem, Forces,
Solution, Solution Details, Benefits, Liabilities, and Examples. Figure 1 shows how a pattern that is described using that
structure could be represented in different ways (Alexandrian-inspired, with heading and as pattlet).

The list below highlights some benefits of supporting multiple pattern structures and pattern views:

—pattern authors are not limited to a particular pattern format (structure and view), which may encourage them to submit
their patterns into the repository

—several pattern variations written using different structures can be associated with the pattern author’s source pattern

—pattern readers may choose to view the pattern using the view that is easiest for them to understand or utilize (e.g.,
learning scientists might want to see literature references in pedagogical patterns, while practitioners might want to
see a summarized rationale; novices may want to see examples first before other sections etc.)

—pattern views for specific use-cases may be created (e.g., pattern formats that are easily viewed on small screens —
mobile phones vs. tablets vs. desktop computers; pattern formats that are printer-friendly; pattern formats that can be
printed into pattern cards)

—clearly-defined pattern structures may facilitate translation between structures and even the possibility of automatic
pattern translation

The definition of a pattern format needs to include a name for the format, the obligatory sections, and, if appropriate,
the content format per section. The actual content of each of these sections should be freely definable and can comprise
text, pictures, or other digitally storable information. It is important to note that the definition of the pattern sections should
be driven by the semantics of each pattern part and not just the visual layout.

There are three pattern sections that are obligatory for all formats: name, summary, and original source. Having these
sections ensures that all patterns have this common base and all patterns can be included, independent of the copyrights
of the initial publication (as a self-written summary including a reference to the original publication will always be allowed).
Additionally, all patterns need to be connected to at least one author.

A pattern author who submits a pattern to the repository can upload a pattern using any preferred format with the
obligatory sections. The source pattern can be freely modified by the author. Other pattern authors or pattern readers
who wish to view the pattern in other formats can submit pattern variations following other pattern formats. People
accessing the repository may then see the source pattern and variations to that pattern. They can easily switch between
variations to choose their preferred format.

5.5.2 Pattern View. A pattern view defines how a pattern will be visually represented. It hereby makes use of the
semantic information contained in the pattern structure, e.g. that a pattern section contains the problem statement and
that this section should be represented using a bold font. For each pattern structure, multiple views can be defined

Towards Extending Online Pattern Repositories: Supporting the Design Pattern Lifecycle — Page X

Assessment Diversity
Assessment

Use a variety of assessment techniques in each course to account for different
learning modalities and to increase the richness of student experience.
You are designing the assessment structure for a new course.

-

Every student is different.
Some students are better test takers and some are better writers, speakers, ...
Students need to learn to express themselves in a variety of ways.

Some students may do especially poorly on some assessment
instruments independent of their learning. If every such measurement
uses that mode they will do poorly overall, even with good learning.

*ax

Therefore, use a variety of assessment vehicles within the course.
Don’t depend on just exams. You can evaluate project work, writings,
presentations, etc. Even within exams, use a variety of question types.

Almost any variety here is good. Flash Quizzes, Tallying participation, peer
review along with formal exams as required. Use YOUR CHOICE OR MY CHOICE
to make sure that the activities cover all the aspects that you want.

Each measurement should not have a large impact on the overall assessment
of the student. Let grades be determined by the overall performance.

You may expect: You will tend to assure that if a student is somehow
disadvantaged by a particular vehicle it will have low impact on overall
performance measurement.

However, this takes a bit of thought and exploration, of course, but
otherwise, few negatives.

Iteratively grading a project as it is developed + a couple of exams + an oral
presentation of the project.

In the programming courses at HAN University of Applied Sciences, the
students have to do two exams for grading and an additional practical
assignment in order to address different aspects of the content.

Pattern: Assessment Diversity

Context:
You are designing the assessment structure for a new course.

Problem:

Some students may do especially poorly on some assessment instruments
independent of their learning. If every such measurement uses that mode they
will do poorly overall, even with good learning.

Forces:
Every student is different.
Some students are better test takers and some are better writers, speakers,

Students need to learn to express themselves in a variety of ways.

Solution:
Therefore, use a variety of assessment vehicles within the course.

Solution Details:

Don’t depend on just exams. You can evaluate project work, writings,
presentations, etc. Even within exams, use a variety of question types.

Almost any variety here is good. Flash Quizzes, Tallying participation, peer
review along with formal exams as required. Use Your Choice or My Choice
to make sure that the activities cover all the aspects that you want.

Each measurement should not have a large impact on the overall assessment
of the student. Let grades be determined by the overall performance.

Benefits

Benefits:
You will tend to assure that if a student is somehow disadvantaged by a
particular vehicle it will have low impact on overall performance measurement.

Liabilities:
This takes a bit of thought and exploration, of course, but otherwise, few
negatives.

Examples:

Iteratively grading a project as it is developed + a couple of exams + an oral
presentation of the project.

In the programming courses at HAN University of Applied Sciences, the
students have to do two exams for grading and an additional practical
assignment in order to address different aspects of the content.

ASSESSMENT DIVERSITY

Some students may do especially poorly on some assessment
instruments independent of their learning.

e

Therefore, use a variety of assessment vehicles within the course.

Fig. 1: Three different views of the same pattern structure (adapted from [Bergin et al. 2015]).

where one view will serve as default (can be changed by user). An example for three different views of the same pattern
(structure) is shown in Figure 1.
The definition of a specific pattern view comprises following parts:
—To which pattern structure the view belongs,
—if it is the default view (can be changed by the user),
—the selection of sections, their order and optionally separators between the sections, and
—the layout per section, incl. information on how to treat specific section elements.
5.5.3 Pattern Relations. The power of patterns is even stronger when applied in combinations, likely as part of
pattern languages. However, these relations contain more information than simple hyper-linking does. Providing more

Towards Extending Online Pattern Repositories: Supporting the Design Pattern Lifecycle — Page XI|

Add Relation

New pqttern name |Helalmn Type _‘v] Lﬁelaled Pattern (—2‘_3
1

Description Q search Pattern

Pattern One
Pattern Two
Pattern Three

Fig. 2: Example Ul sketch for adding a relation to another pattern: (1) the relation type can be selected, (2) the related pattern, (3) a search support for
finding the correct related pattern. Furthermore, additional information about the relation can be provided.

information about pattern interrelationships can help pattern authors and stakeholders find relevant patterns. Properties
of these relations are the relation type, the direction, and, if necessary, additional information.

The relations are included as part of the pattern section content (see YOUR CHOICE OR MY CHOICE in the examples
in Figure 1) and can be added with extra functionality as shown in Figure 2.

Adding relations to patterns is part of pattern writing and therefore has to be done by the author/s. However, as other
users can suggest improvements in general, they also can suggest adding missing relations to other patterns. It is then
the responsibility of the author to incorporate these suggestions into the pattern content if appropriate.

5.5.4 Pattern Categorization. Nearly all pattern collections provide some categorization of the patterns. These
categorizations hereby reflect different aspects of the patterns, such as quality goals, moment of implementation,
context-related aspects, or properties of the elements involved in the solution. In some cases the categorization is very
flexible and unorganized, using a simple tagging mechanism. Other cases provide a more organized categorization
system, where mostly a couple of (sometimes distinct) categories are grouped together under a higher level topic,
sometimes defining a deeper hierarchy too. The number of categories (or dimensions) varies from few (such as two
categories in the GoF book [Gamma et al. 1994]) to many (such as six for security patterns [VanHilst et al. 2009] or more
than six in the PLaNet repository [Finlay et al. 2009]).

In order to reflect these forms of categorization, we propose a hierarchical organization into key categories (classifiable
characteristics) and specific categories (attributes of such characteristic). A specific category hereby can also become a
lower-level key category in the hierarchy, e.g. the specific category “Lecturing" as part of the key category “Educational
Methods" also can be a key category on a lower level with specific categories such as “Lecture Design", “Lecture
Execution", or “Lecture Evaluation".

Finding suitable categories is not easy and requires involvement of experts and/or a community of practice. In many
cases, some of these key and specific categories are implicit to the original publication of the patterns. For example, the
patterns in a paper on lecture design are implicitly mapped to the key category Lecturing, which is part of the key category
Educational Methods. The Fearless Change patterns [Manns and Rising 2005] do contain categories on the moment of
implementation, but no explicit categorization as “organizational” patterns or patterns for “change management".

Having such an extensible categorization system based on key categories and specific categories that can dynamically
reflect various aspects of the patterns offers a good base for various search and filter mechanisms, such as FacetMaps
[Smith et al. 2006].

Towards Extending Online Pattern Repositories: Supporting the Design Pattern Lifecycle — Page XII

5.5.5 Pattern Versioning. Versioning is important in most collaborative projects because it keeps track of specific
changes in the document, the contributor who made the change, and provides facilities to revert the changes. Pattern
authors whose patterns are linked to a changed pattern need to know about such changes to make sure their patterns
remain coherent and updated. It is also important to provide proper attribution for authors who contributed to the pattern’s
development. Finally, it is convenient to provide a facility for reverting changes to allow the review and reuse of previous
versions.

5.6 Requirements related to using the patterns: Browsing/Searching

There should be different ways of browsing and searching the repository.

5.6.1 Faceted Search. As described in the related work section, multiple authors suggest the use of faceted search
in pattern repositories[Mundie et al. 2012; Képpe 2013]. Faceted search makes use of facets (a classifiable characteristic)
and headings (attributes of this characteristic). Each selection of a specific heading (or category) a pattern belongs to
limits the list of relevant patterns but also the still available facets and headings for the resulting list. This is a powerful
mechanism for supporting users searching for patterns based on known characteristics (the categories the patterns are
connected with).

5.6.2 Free-text Search. Besides using the facet and heading for filtering, one can also make use of a free-text search
in the pattern content (maybe limited to specific pattern sections or in combination with facet map-based search).

5.6.3 Sorting. The sorting of patterns in the list with search results can be dependent on the user: a regular
repository visitor might want to see the newest additions to the repository first while a repository novice might want to
see the list with the highest valued or easiest to apply patterns on top of the result list.

5.6.4 Browse/Search Result. The result of the browse or search should be presented as a list and include as
minimum the name and summary of the patterns and links to the complete pattern description. Additionally, information
such as ratings or date of last change can be provided.

5.7 General Access to Repository

Browsing the repository is possible for everyone. Registered users can place comments and examples, rate various
aspects of patterns, and make suggestions for improvement.

5.8 Other Requirements
—Software is open source, multiple instances are possible

—there is an import/export functionality, that makes exchanging the repository content (or parts of it) possible between
different instances of the repository software, furthermore, via a mapping functionality it also should be possible to
import content from other repositories (e.g. defined using the Pattern Language Markup Language'®)

—it should be possible for pattern authors to gain access to patterns that are no longer maintained

5.9 A Conceptual Domain Model for the Repository

In order to get a better overview of the concepts and their relations contained in the previously described requirements,
we decided to make use of a conceptual domain model using UML class diagram as notation. Due to the number of
included concepts, the model has been split into three parts: Pattern Description (Figure 3), Pattern Writing/Evolution
(Figure 4), and Pattern Browsing/Searching (Figure 5).

18see https://www.cs.kent.ac.uk/people/staff/saf/patterns/plml.htnl and https://www.cs.kent.ac.uk/people/staff/saf/
patterns/diethelm/plmlx_doc/index.html

Towards Extending Online Pattern Repositories: Supporting the Design Pattern Lifecycle — Page XIII

is Sub-Section of
1 Overview
SectionType | PatternSection 0.* Scenario _Content
-Name - -Content -Content —Domain
0. |-pescription
consists of . 0..*
1" 1.*

PatternStructure | | Pattern Relation ‘ RelationType
-Name ——|-Name 1 from 0.* |-Description T |-Name
-Description —Summary 1 —Description

-OriginalSource o
L ~Aliases ta -
1

P L 0" C i KeyC i

atternLanguage | 0..° . ategorie |1 - eyCategorie

-Name Example ~Name W name
-Description -Description EBaseritionsual Paradiom Coh{=Dasgription &

Fig. 3: Domain Model - Pattern Description
SuggestionForimprovement
1 -Content
-isResolved 1 | applies to
SuggestionReaction . PatternSection 1 Version
-Content -Content i -VersionNumber
-DateTime - -CreatedOn
-LastModified
made by
1 1.#
User ‘ 1
1 |-Name L.* _ Pattern
- is author of
— Email 15 authar —;lame . Status
- 1 Dy -Name
L -OriginalSource 1
- -Aliases
Role 0.
-Name Credit 0.* 1
-Type Powered By Visual Paradigm Community Editior @

Fig. 4: Domain Model - Pattern Writing/Evolution

The focus of the conceptual domain model lies on the concepts that are part of the domain pattern repository, the
concepts are therefore independent of the technical realization of the repository. All concepts are also described in more
detail below (in alphabetical order).

—Category - The specific categories a pattern maps to.

—Credit - Indicates which users contributed to a pattern description, e.g. as shepherd, writers’ workshop participant, or
reviewer.

—Example - Examples are an obligatory section for all patterns and can also be used for validation purposes, e.g. a
higher number of examples (or known uses) equals a higher validity of the pattern.

—Key Category - The groupings of categories used for characterizing various aspects of the patterns (as described
earlier).

—Overview - An introduction to the most important pattern (and pattern combinations) for a specific domain.

Towards Extending Online Pattern Repositories: Supporting the Design Pattern Lifecycle — Page XIV

PatternStructure | Pattern
-Name —|~Name Categorie KeyCategorie
-Description -Summary _{-Name 1. B
1 -OriginalSource . -Description |— ’—Description
-Aliases
1.
PatternView
Powered By Visual Paradigm Community Editior Q

Fig. 5: Domain Model - Pattern Browsing/Searching

—Pattern - The core concept for a single pattern. Properties are Name, Summary (also called synopsis in PLML),
Original Source (if it has been published elsewhere before), and Aliases. Name and aliases can also be used for
identifying if a newly added pattern already exists in the repository.

—Pattern Language - A collection of interrelated patterns that are applicable in a specific (sub-)domain.
—Pattern Section - The section type content for a concrete pattern.
—Pattern Structure - Defines a collection of section types that can function as template for pattern authors.

—Pattern View - The definition of how patterns with a specific pattern structure are visually represented. Intentionally left
at this high abstraction level, as more fine-grained concepts of pattern view would likely draw already on implementation
or technology decisions and are therefore omitted.

—NRating - The specific ratings per pattern, version, user, and rating type.

—Rating Type - Patterns can be rated using multiple types such as "Easy to Apply", "Maturity”" etc. The concrete types
still need to be determined.

—Relation - Defines the relation between two patterns.
—Relation Type - The types relations between patterns can have.

—Role - The roles a user can have (determining the accompanying grants) such as author, administrator or “normal”
user.

—Scenario - A description of a situation where combinations of patterns are used to realize a higher level goal.

—Section Type - The specific section of a pattern that forms together with other sections the format of a group of
patterns. Examples are Context, Problem, Solution, Forces, Intent, etc. Section types can be hierarchically ordered
so that e.g. sub-sections can be defined such as “Core" and “Details” for a solution section or unique forces in a
list-of-forces section.

—Status - The status of the pattern with respect to the pattern writing process, such as “Draft", “pattern candidate", or
“pattern”. The concrete statuses need to be determined and agreed on by the community.

—Suggestion for Improvement - Registered users can suggest improvements of patterns. These need to be resolved
by the author/s of the patterns.

—Suggestion Reaction - The author/s and other registered users can react on suggestions for improvement until these
are resolved. These reactions can be used for discussion and/or clarification of the suggestions.

—Version - The latest version of a pattern, also related to the updated pattern sections. Includes same attributes as
proposed for PLML.

—User - A registered user, registration is necessary for becoming an author of patterns and also for providing suggestions
for improvement on existing patterns.

Towards Extending Online Pattern Repositories: Supporting the Design Pattern Lifecycle — Page XV

6. CONCLUSION

In this paper, we presented the requirements for a online design pattern repository that supports the whole design pattern
life cycle and therefore offers a place to:

—write and edit patterns,

—read published patterns,
—collaborate on pattern writing,
—consolidate known patterns,
—share design patterns,
—evaluate design patterns, and
—evolve and refine design patterns.

Open challenges for the design repository community include:

—copyright and ability to share published design patterns,

—design pattern evolution based on the experiences of a community,

—encouraging pattern authors and stakeholders to contribute, and

—qgiven the fragmentation of knowledge in past three decades, connecting distributed patterns and existing repositories.

In future work, we will address the challenge of how to build a community (or multiple communities) that fill the
repository with life and make it a valuable place for both people new to a field and experts. We furthermore seek to
explore the particular needs of the pedagogical (or educational) pattern community as example domain.

Towards Extending Online Pattern Repositories: Supporting the Design Pattern Lifecycle — Page XVI

7. ACKNOWLEDGEMENTS

This material is based upon work supported by the National Science Foundation under DRL-1252297. We thank our
shepherd Rosana Teresinha Vaccare Braga for her insightful and encouraging feedback.

REFERENCES

ALEXANDER, C., ISHIKAWA, S., AND SILVERSTEIN, M. 1977. A Pattern Language: Towns, Buildings, Construction. Oxford University Press.

BECK, K. AND CUNNINGHAM, W. 1987. Using pattern languages for object-oriented programs. Tech. rep., Tektronix Inc.

BERGIN, J., KOHLS, C., KOPPE, C., MOR, Y., PORTIER, M., SCHUMMER, T., AND WARBURTON, S. 2015. Assessment-Driven Course Design - Fair
Play Patterns. In Proceedings of the 22nd Pattern Languages of Programs conference, PLoP’15. Pittsburgh, USA.

BIRUKOU, A. 2010. A survey of existing approaches for pattern search and selection. In Proceedings of the 15th European Conference on Pattern
Languages of Programs - EuroPLoP ’10. ACM Press, Irsee, Germany, 1.

BIRUKOU, A. AND WEISS, M. 2009. Service for selecting patterns. In Proceedings of the 14th European Conference on Pattern Languages of
Programs (EuroPLoP’09). 1—12.

CUNNINGHAM, W. AND MEHAFFY, M. W. 2013. Wiki as pattern language. In Preprints of the 20th Pattern Languages of Programs conference, PLoP’13.
The Hillside Group, Monticello, lllinois, USA, 32.

DENG, J., KEMP, E., AND ToDD, E. G. 2005. Managing Ul pattern collections. In Proceedings of the 6th ACM SIGCHI New Zealand chapter’s
international conference on Computer-human interaction making CHI natural - CHINZ '05. ACM Press, New York, New York, USA, 31-38.

DERNTL, M. AND BOTTURI, L. 2006. Essential use cases for pedagogical patterns. Computer Science Education 16, 2, 137-156.

FEHLING, C., BARZEN, J., FALKENTHAL, M., AND LEYMANN, F. 2015. PatternPedia - Collaborative Pattern Identification and Authoring. In Proceedings
of the International Workshop on Pursuit of Pattern Languages for Societal Change (PURPLSOC). epubli GmbH.

FINCHER, S. 2003. Perspectives on HCI patterns: concepts and tools (introducing PLML). Interfaces 56, 26-28.
FINLAY, J., GRAY, J., FALCONER, |., HENSMAN, J., MOR, Y., AND STEVEN, W. 2009. Planet: Pattern Language Network for Web 2.0 in Learning.

GAMMA, E., HELM, R., JOHNSON, R., AND VLISSIDES, J. 1994. Design Patterns: elements of reusable object-oriented software. Addison-Wesley,
Boston, MA.

HARRISON, N. 1999. The Language of Shepherds: A Pattern Language for Shepherding. In Proceedings of the 6th Annual Conference on the Pattern
Languages of Programs (PLoP).

HoHPE, G., WIRFS-BROCK, R., YODER, J. W., AND ZIMMERMANN, O. 2013. Twenty Years of Patterns’ Impact. /IEEE Software 30, 6, 88—88.

INVENTADO, P. S. AND SCUPELLI, P. 2015a. Data-driven design pattern production. In Proceedings of the 20th European Conference on Pattern
Languages of Programs - EuroPLoP '15. EuroPLoP '15. ACM Press, Irsee, Germany, 1-13.

INVENTADO, P. S. AND SCUPELLI, P. 2015b. Towards an open, collaborative repository for online learning system design patterns. eLearning
Papers 42, June, 1-15.

KoPPE, C. 2013. Towards a Pattern Language for Lecture Design: An inventory and categorization of existing lecture-relevant patterns. In Proceedings
of the 18th European Conference on Pattern Languages of Programs, EuroPLoP’13. ACM, Irsee, Germany.

MANNS, M. L. AND RISING, L. 2005. Fearless Change: Patterns for Introducing New Ideas. Addison-Wesley.

MUNDIE, D., MOORE, A. P., AND MCINTIRE, D. 2012. Building a Multidimensional Pattern Language for Insider Threats. In Preprints of the 19th
Pattern Languages of Programs conference, PLoP’12. Tucson, Arizona, USA.

PavLIC, L., HERICKO, M., PODGORELEC, V., AND ROZMAN, |. 2009. Improving Design Pattern Adoption with an Ontology-Based Repository.
Informatica 33, 2, 181-189.

REINERS, R., FALKENTHAL, M., JUGEL, D., AND ZIMMERMANN, A. 2013. Requirements for a collaborative formulation process of evolutionary patterns.
In Proceedings of the 18th European Conference on Pattern Languages of Program - EuroPLoP '13. ACM Press, New York, New York, USA, 1-12.

RISING, L. 2000. The Pattern Almanac. Addison-Wesley Longman Publishing Co., Inc.

SCHULER AND DOUGLAS. 2008. Liberating Voices: A Pattern Language for Communication Revolution. MIT.

SCHUMMER, T. AND HAAKE, J. M. 2010. PATONGO: Patterns and Tools for Non-Profit OrganizationsaATa pattern-based approach for helping
volunteers to identify and share good practice. New Review of Hypermedia and Multimedia 16, 1-2, 85—111.

SMITH, G., CZERWINSKI, M., MEYERS, B., ROBBINS, D., ROBERTSON, G., AND TAN, D. S. 2006. FacetMap: A scalable search and browse visualization.
IEEE Transactions on Visualization and Computer Graphics 12, 5, 797-804.

VANHILST, M., FERNANDEZ, E. B., AND BRAZ, F. 2009. A Multi-dimensional Classification for Users of Security Patterns. Journal of Research and
Practice in Information Technology 41, 2, 87-97.

WEISs, M. AND BIRUKOU, A. 2007. Building a Pattern Repository: Benefitting from the Open, Lightweight, and Participative Nature of Wikis. In
Workshop on Wikis for Software Engineering at ACM WikiSym, 2007 International Symposium on Wikis (WikiSym), Montre’al, Que’bec, Canada,
October 21-23.

Towards Extending Online Pattern Repositories: Supporting the Design Pattern Lifecycle — Page XVII

WELICKI, L., LOVELLE, J., AND AGUILAR, L. 2006. Meta-Specification and Cataloging of Software Patterns with Domain Specific Languages and
Adaptive Object Models. In EuroPLoP. Irsee, Germany.

Towards Extending Online Pattern Repositories: Supporting the Design Pattern Lifecycle — Page XVIII

Appendix

In the following table we present the results of our analysis of the relevant literature and existing pattern repositories.

Source Repository Content Pattern Writing Browsing/Searching Other Requirements Comments

Wiki as Pattern | limited characteristic | wiki-based (collabora- | via tags and free-text | evolutionary (patterns | suggest federation
Language [Cun- | structure for pattern | tive, shareable, refin- | search are alive, no "final" | approach (fork-
ningham and | descriptions, relations | able), crowd-based re- state) ing/sharing/merging)
Mehaffy 2013] by hyperlinks view and scenario modeling

PatternPedia -
Collaborative Pat-
tern Identification
and Authoring
[Fehling et al.
2015]

extensible pattern meta-
model, format definition

through metamodel
extensions, various
formats possible,
references between
patterns include type,
explicitly includes
solution documenta-

tion (existing pattern
implementations)

mainly intended for
importing already
documented patterns
(through a content
manager)

full text search and
browsing through cate-
gories and references,
interactive graph of pat-
tern references

import functionality for
existing documents
(XML)

working on tools for
automatically analyzing
solutions and extracting
patterns

A survey of exist-
ing approaches
for pattern search
and selection
[Birukou 2010]

Specify links/relations
between patterns
within repository or
other repositories,
pattern description in
human-readable and
machine-processable
format, ability to cus-
tomize the pattern
template

allow users to collab-
oratively add/edit pat-
terns and relations be-
tween them; tag, anno-
tate, comment on, rate
patterns; share expe-
rience with using pat-
terns

Searching:
tags/keywords, full
text search, search-
ing using additional
data (such as require-
ments, properties,
quality goals); Selec-
tion: support through
ranked list of results,
relevance scores, al-
gorithm/method for
selecting patterns;
Browsing: display pat-
tern list, view pattern
details, navigation via
links or relations

Crawling/Indexing for
finding links to patterns
in other places, Rec-
ommendation facilities:
suggestions of patterns
for problem at hand (or
personalized recom-
mendations); specific
method supported with
tool support, tool is
accessible (e.g. via
internet), available,
and interoperable
(possibility to access
tool/repository via
some API)

Suggestions made: pat-
tern search engine that
automatically crawls
pattern descriptions on
the Internet, support
of pattern sequences
(ways how patterns
are used together in
an application), natural
integration of approach
with the conventional
workflow of the user

Continued on next page

Towards Extending Online Pattern Repositories: Supporting the Design Pattern Lifecycle — Page XIX

Table | — continued from previous page

Source

Repository Content

Pattern Writing

Browsing/Searching

Other Requirements

PATONGO: Pat-
terns and Tools
for Non-Profit Or-
ganizationsaAfa
pattern-based
approach for help-
ing volunteers to
identify and share
good practice
[Schiimmer and
Haake 2010]

knowledge representa-
tion needs to be flexible
enough to allow differ-
ent levels of abstraction:
challenges and ideas
(title+summary), good
practice descriptions,

patterns, and ency-
clopedia overview
articles that provide

an overview on a
specific domain; all of

these levels contain
pre-defined fields such
as titte+summary
(all), innovative

idea+discussion (good
practice description)
and pattern-related
sections (for the pattern
descriptions); different
text formats repre-
sented as structured
hypermedia nodes;
experience reports of
pattern applications;
supports various ref-
erence types between
patterns (uses, is a
variant of, specializes,
but also address the
same keyword, address
a related keyword etc.);
patterns are positioned
in extendible semantic

network based on
related keywords;
additional to content

information also usage
information is collected

supports working from
higher level descrip-
tions (challenges/ideas
and good practice de-
scriptions) towards pat-
tern descriptions

search based on key-
words in semantic net-
work

focus on patterns as
living documents that
are improved by peers
(evolutionary ~ knowl-
edge process), allowing
communication about
patterns and experi-
ences with patterns
as part of standard
interaction; goal is
also improvement of
patterns over time and
extension of patterns
with experience reports;
also include overview
articles and descrip-
tions on successful
combinations of pat-
terns (not explicitly
named scenarios)

Comments

emphasis on orga-
nizational learning,
interaction between

practitioners applying
patterns and pattern au-
thors; wiki approaches
appropriate, but should
be complemented with
tools for coordination
and communication
(within an organization)

Continued on next page

Towards Extending Online Pattern Repositories: Supporting the Design Pattern Lifecycle — Page XX

Table | — continued from previous page

Source

Repository Content

Pattern Writing

Browsing/Searching

Other Requirements

Comments

Requirements for
a collaborative for-
mulation process
of evolutionary
patterns [Reiners
etal. 2013]

patterns available
in any development
stage; insertion and
adaptation of existing
patterns; rule system
for definition of pattern
maturity; reflecting
pattern hierarchies;
documentation of
anti-patterns; adding
semantic meta infor-
mation to patterns;
intorducing key per-
formance indicators
for patterns; additional
relations that express
AND/XOR semantics
for library structure

connection be-
tween author and
ideas/contributions for
preserving intellectual
properties

Smart visualization
methods (for state of
pattern, library struc-
ture, relations between
patterns); Management
cockpit

possibility of quick con-
tributions and extensi-
bility; role model for
access/contribution or-
ganization and main-
tenance of repository;
Involvement of practi-
tioners for determina-
tion of pattern validity;
decision support using
often chosen pattern
combinations; transpar-
ent process and mod-
eration (reflecting com-
munity’s activities); pro-
cess needed for han-
dling actuality of con-
tent and outdated pat-
terns

Improving Design
Pattern Adoption
with an Ontology-
Based Repository
[Pavli¢ et al. 2009]

semantically annotated
data using an ontology;
hierarchical organiza-
tion of pattern contain-
ers (and patterns); pat-
terns can be in multiple
containers; patterns are
connected as related,
similar (or theSameAs-
relation), composed or
as hierarchy; includes
also real-world exam-
ples of pattern usages;
patterns can be an-
notated with additional
knowledge

knowledge integration
of other sources (via im-
port using RDF)

a question-answer ex-
pert system for select-
ing patterns; indexing of
integrated data for full
text-search capabilities

Presentation of pat-
tern languages (i.e.
interrelated patterns);
a questions-answer

expert system for
selecting patterns;
transformations of

raw input data (import
functionality); service-
oriented, so that other
services can be built on
top

using semantic web
technologies

Continued on next page

Towards Extending Online Pattern Repositories: Supporting the Design Pattern Lifecycle — Page XXI

Table | — continued from previous page

Source Repository Content Pattern Writing Browsing/Searching Other Requirements Comments

Planet: Pattern | templates with pre- | wiki-based; template- | tagging framework | explicit evolution of | source code of platform
Language Net- | defined sections per | based on-line editor; | with key- and sub- | patterns from propos- | is publicly available, un-
work for Web 2.0 | status (based on PLML | owners of items can | categories; search | als to candidates to | known if there are run-
in Learning [Finlay | standard): proposal, | grant editorial rights to | using multiple di- | full patterns (with at | ning installations

et al. 2009]

candidate, and pattern;
section with related pat-

additional contributors,
other users can only

mensions (of key-
categories); searchable

least 3
cases);

application
index pages

terns, different relations | comment and sortable index per | of case studies, pat-
possible (extends, is status and for scenarios | terns, scenarios and
part of, contains, is the domain maps; discus-
same as); includes do- sion mechaanism for
main maps (overview) case studies, patterns,
and scenarios scenarios and domain
maps; support of mul-
tiple data formats for
interoperability (among
which PLML, XML,
REST, and PDF); (read)
access via REST-API
Towards an open, | hyperlinks between | wiki-based (collabora- | free-text search; pre- | evolutionary
collaborative patters, pattern mining | tive, shareable, refin- | defined categories
repository for | sources, application | able)
online learning environments; contains
system design | links to published
patterns [Inven- | literature
tado and Scupelli
2015b]
Service for Se- search via user- | includes service for
lecting Patterns provided tags tracking pattern usage
[Birukou and history (for document-
Weiss 2009] ing how patterns are

used within an orga-
nization, collaboration
by user linking and
perzonalization); rec-
ommendation service:
patterns for solving
specific problems,
key patterns in a
specific area, pattern
sequences for given
situation; different
roles for users such
as admin, repository
manager, developer (or
user) and writer

Continued on next page

Towards Extending Online Pattern Repositories: Supporting the Design Pattern Lifecycle — Page XXII

Table | — continued from previous page

Source Repository Content Pattern Writing Browsing/Searching Other Requirements Comments
Perspectives on | Definition of Pattern Focus is on HCI pat-
HCI patterns: | Language Markup terns; the domain
concepts and | Language (PLML) with model proposed by us
tools (introducing | these elements: id, allows defining PLML
PLML) [Fincher | name, alias, illustra- as structure

2003] tion, problem, context,

forces, solution, synop-
sis, diagram, evidence
(examples and ratio-
nales), confidence
(with star rating), liter-
ature, implementation,
related patterns (via
pattern links, types are
is-a, is-contained-by
and contains), author,
credits, creation-date,
last modified, revision-
number

Building a Pat-
tern Reposi-
tory: Benefitting
from the Open,
Lightweight,

and Participa-
tive Nature of
Wikis [Weiss and
Birukou 2007]

minimal set proposed
that contains: pattlets
and their relationships,
tags on patterns, or-
ganization in pattern
collections and pattern
languages (via relation-
ships), metadata for pat-
tern descriptions

browsing by collection,
pattern name, or tag/s
(using a tag cloud).

propose use of wiki
as repository platform
because of openness,
free complex features
through plugin archi-
tecture, access con-
trol, lightweight syntax,
and participative archi-
tecture

Managing Ul Pat-
tern Collections
[Deng et al. 2005]

specific and alternative
pattern forms; support
mulitmedia data; in-
cludes implementation
code; focus on forces;
pattern annotations;
versioning; pattern re-
lationships of different
types

create new pattern
using template; reuse
forces; patterns can
be modified and cus-
tomized; import of
single patterns and
pattern collections

browsing a set of forces;
pattern lists; view pat-
tern details; different
views; keyword search;
full text search; other
types of search

implementation code
(for code generation);
visualizing pattern
relationships; collecting
sets of patterns for

personal use; cate-
gorize patterns into
named collections;

create new collections;
XML/PLML support for
input/output; alternative
output formats

Continued on next page

Towards Extending Online Pattern Repositories: Supporting the Design Pattern Lifecycle — Page XXIII

Table | — continued from previous page

Source Repository Content Pattern Writing Browsing/Searching Other Requirements Comments

Meta- freely definable pattern | provides template, | multiple views on a pat- | template definition sys- | specifies Entity Meta-
Specification format (with a set of | based on the sections | tern (such as complete, | tem that allows combi- | specification language
and Cataloging of | properties); source | included in pattern | summary, CRC, source | nations of elements of | (EML), where patterns
Software Patterns | (and event where | format; support for | code, or EML code), de- | any pattern form; sep- | are one kind of enitities

with Domain Spe-
cific Languages
and Adaptive
Object Models
[Welicki et al.
2006]

pattern first was pre-
sented); author group;
pattern language (with
collections of pat-
terns); different pattern
types; also relations
to (OO-)principles;
abstraction level of
pattern; targeted role;
tags for annotating
entities; relationships
between patterns (and

other entities); sum-
mary; also structure
and implementation,

which are both specific
to software design
patterns

growing and evolution

pending on interest of
user

aration of visualization
and pattern content; al-
lows discussing about
patterns and concepts;
ratings

Building a Multidi-
mensional Pattern
Language for
Insider Threats
[Mundie et al
2012]; Towards a
Pattern Language
for Lecture De-
sign: An inventory
and categoriza-
tion of existing
lecture-relevant

patterns [K&ppe
2013]

a faceted classification
and the facet map ap-
proach for better sup-
port of browsing and
searching for patterns

Continued on next page

Towards Extending Online Pattern Repositories: Supporting the Design Pattern Lifecycle — Page XXIV

Table | — continued from previous page

Source Repository Content Pattern Writing Browsing/Searching Other Requirements Comments

Open Pattern | Specify links/relations | Pattern writing online in | Searching: Support for formalizing | Sourcecode and doc-

Repository'” between patterns within | sections corresponding | tags/keywords, full | pattern relationships; | umentation of pattern
repository; pattern | toachosenpatterntem- | text search, search- | building new pattern | repository is publicly

description in human-
readable form; ability to
customize the pattern
template; focus on de-
sign and architectural
patterns including a
semi-formalization of
influence on software
quality attributes

plate; support for pro-
cessing pattern content
from PDFs or word files
using drag and drop
functionality

ing using additional
data (such as require-
ments, properties,
quality goals); Selec-
tion: support through
ranked list of results,
relevance scores, al-
gorithm/method for
selecting patterns;
Browsing: display pat-
tern list, view pattern
details, navigation via
links or relations

languages from existing
languages

available; repository is
used by different institu-
tions for internal pattern
documentation; a pub-
licly deployed version is
currently not available

Integrated Learn-
ing Design Envi-
ronment (ILDE'®)

Different Learning De-
sign Solutions (patterns,
scenarios, narratives,
course maps etc.)
with pre-defined text-
templates (thus all are
described in RTF-text);
url-hyperlinking for

text-template provided
with sections to be filled
in, but freely adaptable;
additional authors can
be added;

browsing per solution
type (pattern, scenario
etc.); free tags and
pre-defined tags in
key-categories (desci-
pline and pedagogical
approach); free-text
search

visibility can be con-
strained to specific
users; specific rankings
for completeness and
granularity

no mature content
present, seems not to
be used extensively

references; tagging-
mechanism

Place Patterns' Alexandrian form with | requires registration | Browsing via a scale- Focus on architecture;
only few required | (notpossible anymore) | category and free seems to be not actively

sections (title, context,
conflict and resolution);
scale and tags as cat-
egorization; examples
of pattern applications
(real places); refer-
ences to other patterns
as text only (not linked)

defined tags; free-text
search (in complete
documents/pages)

used anymore

Continued on next page

Thttps://github.com/wizzn/openpatternrepository
Bhttp://ilde.upf.edu/
Yhttp://placepatterns.org

Towards Extending Online Pattern Repositories: Supporting the Design Pattern Lifecycle — Page XXV

Table | — continued from previous page

Source Repository Content Pattern Writing Browsing/Searching Other Requirements Comments
Liberating fixed pattern format with | requires registration | browsing via tags and | translations into other | focus on positive social
Voices®® pre-defined sections | (access requested) links to other patterns | languages; emphasis | change; actively sup-

(name, number within

set, links (to other
patterns), problem,
context, discussion,

solution, verbiage for
pattern card, pattern
status, tags); refer-
ences to other patterns
via hyperlinks; support
of pattern languages
(as sets of patterns)

or per pattern language
(as sorted by num-
bers in set); free-text
search (in complete
documents/pages)

on knowledge dissemi-
nation via pattern cards

porting the building of
communities

Patterns in Inter-
action Design?!

fixed pattern format
with pre-defined sec-
tions (problem, solution,
use when, how, why,
more examples, imple-
mentation, literature)

index page with all pat-
terns, grouped by cate-
gories; free-text search
(that does not seem to
work well)

comments section per
pattern

focus on HCl-patterns

BRIDGE Pattern
Library??

fixed pattern for-
mat with pre-defined
sections (context, sum-
mary, problem details
and forces, solution
summary, solution illus-
tration, solution details
and consequences,
related patterns, origin,
author, created on,
modified by); different
pattern statuses (new
submission, under
consideration, pattern

candidate, approved
pattern, revalidation
needed)

extended workflow for
evolutionary pattern for-
mulation; explicit inclu-
sion of quality assess-
ments and (collabora-
tive) shepherding

simple browsing per
hierarchy-level and
overview

patterns are continu-
ously monitored and
revalidated; discussion
section per pattern,
also evidence section
(supporting and refut-
ing); pattern maturity
grows through reviews
and collection of evi-
dence; different roles
with different responsi-
bilities (visitor, member,
author, domain expert,
librarian); ratings of
patterns (readabil-
ity, understandability,
appropriateness); ques-
tions for ratings and
evidence of patterns on
dashboard; community

supported by "Hall
of Fame" (for # of
submits, comments,

votes, evidences)

focused on handling
knowledge acquisition
and transfer between
different (research)
project partners and
work packages

Table I. : Results of analysis of relevant literature and existing repositories

2Onttp://www.publicsphereproject .org/patterns/
2lpttp: //www.welie.com/patterns/
22http://bridge-pattern-library.fit.fraunhofer.de/pattern-library/
PLoP’16, October 24-26, Monticello, lllinois, USA. Copyright 2016 is held by the author(s). HILLSIDE 978-1-941652-04-6

Towards Extending Online Pattern Repositories: Supporting the Design Pattern Lifecycle — Page XXVI

