
State	Pattern	for	both	Composite	States	and	specialization	of	
State	Machines	
BIRGER	MØLLER-PEDERSEN,	RAGNHILD	KOBRO	RUNDE,	University	of	Oslo,	Norway	

Most	modelling	 languages	 support	 full	 state	machine	modelling,	 including	 both	 composite	 states	 and	 specialization	 of	 state	machines.	
Existing	 approaches	 to	 programming	 with	 states	 (state	 design	 patterns)	 either	 represent	 composite	 states	 by	 means	 of	 subclassing	
between	 state	 classes	 (and	 then	 do	 not	 support	 specialization	 of	 state	machines),	 or	 do	 not	 support	 composite	 states	 and	 instead	 use	
subclassing	for	specialization	of	state	machines.	In	this	paper,	we	present	a	state	machine	design	pattern	that	accomplish	both,	by	using	
method	forwarding	to	support	composite	states	and	subclassing	to	support	specialization	of	state	machines.	

Categories	and	Subject	Descriptors:	D.2.11	[Software	Architectures]	Patterns;	D.2.2	State	diagrams	

General	Terms:	Design	

Additional	Key	Words	and	Phrases:	State	Machine,	Composite	State	

1. INTRODUCTION	

In	 order	 to	 avoid	 inconsistent	 model	 and	 program	 artefacts	 when	 using	 both	 modelling	 and	 programming	
languages	 during	 software	 development,	 (Madsen	 and	Møller-Pedersen,	 2010)	 proposed	 the	 definition	 of	 a	
combined	modelling	 and	 programming	 language.	 The	 definition	 of	 such	 a	 language	 should	 be	 based	 on	 an	
analysis	of	how	important	modelling	concepts	can	be	supported	by	programming	languages.	Before	embarking	
upon	making	new	language	constructs,	it	is	regarded	a	good	idea	to	implement	the	construct	in	some	existing	
language.	 This	 paper	 describes	 a	 state	 machine	 design	 pattern	 for	 programming	 that	 supports	 important	
elements	of	state	machine	modelling.	

We	 require	 all	 of	 the	 most	 commonly	 supported	 mechanisms	 in	 modelling	 languages:	 composite	 states	
(with	history,	 entry	 and	exit	 actions),	 and	 specialization	of	 state	machines	 (all	 of	 this	 supported	by	 e.g.	 SDL	
(ITU,	2011)	and	UML	(OMG,	2015)).		

As	 already	 introduced	 in	 1987	 (Harel	 1987)	 a	 composite	 state	 is	 a	 state	with	 interior	 states	 (contained	
states)	such	that	all	events	and	corresponding	transitions	that	apply	to	the	composite	state	by	default	apply	to	
all	 of	 the	 sub	 states,	 unless	 specified	 differently.	 The	 original	 state	 design	 pattern	 (Gamma	 et	 al.,	 1995)	
represent	states	as	subclasses	of	a	general	 class	State,	 redefining	 the	event	methods	of	State	 in	 the	different	
state	 subclasses.	 This	 readily	 supports	 simple	 states.	 A	 composite	 state	 is	 usually	 accomplished	 by	making	
subclasses	 (representing	 the	 interior	 sub	 states)	 of	 the	 class	 representing	 the	 composite	 state.	 The	 event	
methods	of	 the	 composite	 state	 class	are	 therefore	 inherited,	 and	event	methods	may	be	overridden	 for	 the	
subclass	states	where	the	default	behaviour	specified	for	the	composite	state	shall	not	apply.		

In	2008,	(Chin	and	Millstein,	2008)	demonstrated	the	need	for	specialization	of	state	machines	(by	adding	
states	and	events	methods,	and	by	extending	states),	and	how	to	do	that	by	means	of	a	state	design	pattern.	
However,	using	subclassing	 for	specialization	 implies	 that	 this	pattern	does	not	support	composite	states.	 In	
order	 to	support	both	composite	states	and	specialization	of	state	machines	we	therefore	pursue	 the	 idea	of	
representing	composite	states	by	interior	state	objects	each	having	a	link	to	the	state	object	for	the	composite	
state.	Subclassing	may	then	be	used	for	specialization	of	state	machines.	With	the	link	from	a	sub	state	object	to	
the	composite	state	object,	an	event	method	call	on	a	sub	state	that	does	not	define	this	event	method	will	be	
forwarded	to	the	composite	state.		

Author´s´	address	is	Department	of	Informatics,	University	of	Oslo,	Gaustadalléen	23	B,	0373	Oslo,	Norway,	email:	(birger,	
ragnhilk)@ifi.uio.no.	
Permission	to	make	digital	or	hard	copies	of	all	or	part	of	this	work	for	personal	or	classroom	use	is	granted	without	fee	
provided	that	copies	are	not	made	or	distributed	for	profit	or	commercial	advantage	and	that	copies	bear	this	notice	and	
the	 full	 citation	on	 the	 first	page.	To	 copy	otherwise,	 to	 republish,	 to	post	on	 servers	or	 to	 redistribute	 to	 lists,	 requires	
prior	specific	permission.	A	preliminary	version	of	this	paper	was	presented	in	a	writers'	workshop	at	the	23rd	Conference	
on	Pattern	Languages	of	Programs	(PLoP).	PLoP'16,	OCTOBER	24-26,	Monticello,	 Illinois,	USA.	Copyright	2016	is	held	by	
the	author(s).	HILLSIDE	978-1-941652-04-6	

	

	Page	-	2	
	

2. MOTIVATIONAL	EXAMPLE	

Figure	1	is	the	simple	state	machine	of	a	media	switch.	It	specifies	that	the	initial	state	of	the	media	switch	will	
be	Off	(indicated	by	the	black	dot	with	arrow).	When	powered	on	it	will	enter	the	state	On	with	its	initial	state	
CD.	The	mode	is	changed	by	the	mode	event.	The	state	On	has	an	entry	action	that	is	executed	whenever	On	is	
entered;	turning	on	the	display	backlight,	and	an	exit	action	that	is	executed	whenever	On	is	exited,	turning	off	
the	backlight.			

	

Figure	1	State	Machine	of	a	Media	Switch	

2.1 Composite	States	
State	 On	 is	 a	 composite	 state.	 The	 main	 property	 of	 a	 composite	 state	 is	 that	 transitions	 defined	 for	 the	
composite	state	apply	 to	 its	contained	states,	 if	not	specified	otherwise.	For	 the	MediaSwitch	 state	machine	
this	means	 that	 the	 event	off	will	make	 the	machine	 enter	 the	 state	Off,	 from	any	of	 the	 states	 in	On.	 The	
entry/exit	 actions	 defined	 for	On	 do	 not	 apply	 to	 the	 contained	 states;	 they	may	 have	 their	 own	 entry/exit	
actions.	However,	exiting	e.g.	CD	with	the	transition	to	Off	will	include	the	execution	of	an	eventual	exit	action	
of	CD	 followed	by	execution	of	 the	exit	 action	of	On.	Using	 the	 state	design	pattern	 the	 sub	states	CD	 and	TV	
would	be	represented	by	subclasses	of	the	class	representing	the	composite	state	On.	The	subclasses	for	CD	and	
TV	would	inherit	the	event	method	for	off	from	the	class	representing	On,	with	the	possibility	to	override	it.	In	
addition,	the	subclasses	would	implement	suitable	event	methods	for	mode.	
	

2.2 Specialization	of	State	Machines		
Recently,	 (Chin	 and	 Millstein,	 2008)	 demonstrated	 the	 need	 for	 specialization	 of	 state	 machines	 (called	
extensible	 state	 machines)	 and	 how	 to	 support	 that	 by	 a	 design	 pattern.	 This	 is	 achieved	 by	 not	 using	
subclassing	to	specify	composite	states,	but	rather	use	subclassing	for	extension.	The	implication	is	that	their	
state	 pattern	 only	 covers	 state	machines	with	 simple	 states	 and	 not	 composite	 states	 (as	 these	 are	 usually	
covered	by	subclassing).		

This	notion	of	specialization	of	state	machines	is	illustrated	by	defining	the	MediaSwitch	state	machine	as	
a	specialization	of	a	simpler	and	more	general	Switch	state	machine,	see	Figure	2.	
	

	

Figure	2	MediaSwitch	as	a	specialization	of	Switch	

MediaSwitch

On

Off

on

off

TVCD
mode

mode

entry/
exit/

MediaSwitch

On

TVCD
mode

mode

OnOff

on

off

Switch

	Page	-	3	
	

With	the	extensible	state	machine	design	pattern,	state	classes	are	defined	as	inner	classes	to	a	state	machine	
class.	 A	 specialization	 is	 specified	 by	 defining	 a	 subclass	 of	 the	 enclosing	 state	 machine	 class.	 In	 this	 case,		
MediaSwitch	would	then	be	represented	as	a	subclass	of	the	class	representing	Switch.	Extending	a	state	(e.g.	
in	order	to	handle	additional	events	or	to	have	inner	states)	is	done	by	making	a	subclass	of	the	state	class	from	
the	 super	 state	machine	 class.	 This	 is	 illustrated	 in	 Figure	 2	 with	 the	 On	 state	 class,	 as	 this	 is	 extended	 to	
become	a	composite	state	and	to	handle	the	new	event	mode.	The	class	for	On	in	MediaSwitch	would	then	be	a	
subclass	of	the	class	for	On	in	Switch.	

2.3 Problem	
There	are	two	problems	with	the	common	practice	of	using	subclassing	to	cover	composite	states.	First	of	all,	
subclassing	is	the	obvious	mechanism	to	use	for	covering	specialization	of	state	machines	as	described	above.	
Composite	states	must	then	by	supported	by	another	mechanism	in	order	to	be	able	to	distinguish	between	the	
two.	

Another	problem	with	 the	use	of	 subclassing	 for	 composite	 states	 is	 that	entry/exit	 action	methods	 then	
will	be	inherited	by	contained	states,	and	as	described	above	this	is	not	the	semantics	of	entry/exit	actions	of	
composite	states	according	to	UML	(OMG,	2015).	In	our	example,	if	the	states	CD	and	TV	inherit	the	entry/exit	
actions	 of	 the	 enclosing	 state	On,	 then	 changing	 back	 and	 forth	 between	 the	 states	CD	 and	TV	 (by	 the	 event	
mode)	would	imply	that	the	display	backlight	would	be	turned	on	and	off	for	each	state	change.		

3. COMPOSITE	AND	EXTENSIBLE	STATE	MACHINE	PATTERN	

3.1 Pattern	name	
Composite	and	Extensible	State	Machine	

3.2 Problem	
How	 can	 composite	 states	 and	 specialization	 of	 state	 machines	 be	 combined	 when	 programming	 state	
machines?	

3.3 Context	
Whenever	 the	 simple	 state	 design	 pattern	 is	 not	 enough,	 and	 there	 is	 a	 need	 for	both	 composite	 states	and	
specialization	of	state	machines.	Even	in	situations	where	only	one	of	composition	or	specialization	is	needed,	
the	pattern	is	useful	as	 it	supports	further	development	and	in	particular	history	and	entry/exit	actions.	The	
pattern	 assumes	 an	 object-oriented	 language	 or	 framework,	 with	 mechanisms	 like	 inner	 classes,	 method	
forwarding,	and	subclassing.	

3.4 Forces	
Subclassing	 is	a	powerful	object-oriented	mechanism,	but	should	only	be	used	 for	either	composite	states	or	
specialization	of	state	machines.	

All	 object-oriented	 languages	 support	 a	 notion	of	 subclassing,	 but	 they	differ	with	 respect	 to	what	 other	
language	features	and	specific	language	constructs	are	available.	

State	machines	may	later	be	extended	into	more	complex	ones,	so	the	solution	should	be	scalable	without	
being	unnecessary	complicated.	

3.5 Solution	
The	 solution	 is	 to	 use	 method	 forwarding	 for	 composite	 states	 and	 subclassing	 for	 specialization	 of	 state	
machines.	 A	 template	 state	machine	 diagram	 containing	 both	 composite	 states	 and	 subclassing	 is	 shown	 in	
Figure	3.	The	original	state	machine	SM1	contains	a	number	of	states,	including	A	and	B.	The	state	machine	SM2	
is	a	specialization	of	SM1,	where	the	composite	state	B`	(consisting	of	a	number	of	states	including	B1	and	B2)	
is	a	specialization	of	B.	
	
	

	Page	-	4	
	

	
Figure	3	SM2	is	a	specialization	of	SM1,	the	composite	state	B`	is	a	specialization	of	B	

A	state	machine	like	the	one	in	Figure	3	can	be	implemented	as	illustrated	by	the	template	class	and	object	
diagrams	 in	 Figure	 4.	 In	 order	 to	 use	 a	 combination	 of	 method	 forwarding	 and	 subclassing	 for	 making	
extensible	 state	machines	 with	 composite	 states,	 there	 is	 a	 need	 for	 a	 general	 class	 StateMachine,	 with	 a	
general	 class	 State	 as	 an	 inner	 class.	 The	 enclState	 association	 between	 instances	 of	 State	 is	 used	 to	
support	composite	states.	

A	 specialized	 state	machine	 (e.g.	SM1)	 is	defined	by	a	 subclass	of	 the	StateMachine,	 defining	 the	 special	
states	for	this	machine	(A	and	B)	as	subclasses	of	the	inherited	class	State.	Further	specializations	(SM2)	are	
made	by	making	subclasses	of	SM1	and	further	add	new	states	and/or	extend	inherited	states	(e.g.	B	extended	
into	B`).	
	

	
	

Figure	4	Composite	and	extensible	state	machine	implemented	using	subclassing	and	method	forwarding	

	
	

:Top state

:B`:A

:B1 :B2

:enclState

:enclState

:enclState

:enclState

...

...

?StateMachine

State
0..1

enclState

SM1

State

A B
Top

state
...

SM2

State

B1 B2B ...

B`

SM2

B`

B2B1

BA
...

SM1

...

a

b

	Page	-	5	
	

Using	method	 forwarding,	 an	event	method	 call	 to	 a	 state	 is	 forwarded	 to	 its	 enclosing	 (composite)	 state	 in	
case	 the	event	method	 is	not	defined	specifically	 for	 the	current	 state.	Each	sub	state	object	will	have	a	 link	
(enclState)	to	its	composite	state	object,	as	illustrated	in	the	object	diagram	in	the	right	part	of	Figure	4.	The	
Top state	root	state	is	reached	when	event	method	calls	are	forwarded	to	the	root	(i.e.	not	handled	in	any	of	
the	 other	 states).	 The	 composite	 state	 structure	 should	 be	 set	 up	 as	 part	 of	 the	 constructors	 for	 the	 state	
classes.	Each	constructor	should	get	a	reference	to	the	enclosing	state	object	as	parameter.	
	
Example.	The	MediaSwitch	state	machine	from	Figure	1	uses	composite	states,	but	not	specialization.	Applying	
the	current	pattern	gives	that	MediaSwitch	should	be	implemented	as	given	in	Figure	5.		
	

	

Figure	5	Class	diagram	and	object	diagram	with	method	forwarding	links	for	the	MediaSwitch	state	machine	

	
The	way	in	which	inherited	state	classes	may	be	extended	depends	upon	the	programming	language,	see	the	
following	section	on	Implementation.	
	
Implementation.	The	 following	 describes	 how	 the	 combined	 pattern	may	 be	 implemented	 in	 Java.	 Figure	 6	
defines	 the	general	classes	of	StateMachine	 and	State.	 In	addition,	we	have	 included	 the	 interface	IState	
which	is	used	as	the	type	of	the	enclState	 link.	For	each	state	machine,	a	subinterface	of	IState	should	be	
created,	defining	the	event	methods	for	that	state	machine.	In	case	the	design	pattern	should	be	extended	to	a	
framework,	then	predefined	code	for	states	would	be	in	the	class	State.	The	context	object	(the	object	that	has	
a	 state	machine)	will	 then	also	 implement	IState	 and	 forward	any	event	method	 call	 to	 the	 corresponding	
method	of	its	StateMachine	object	which	in	turn	will	call	the	method	on	the	current	state	object.	In	order	not	
to	generate	new	State	objects	for	each	next	state,	the	constructor	for	the	state	machine	should	generate	state	
objects	and	set	the	links	to	their	enclosing	state.		

	

	

Figure	6	StateMachine	and	State	

When	it	comes	to	specialization	of	state	machines,	(Chin	and	Millstein,	2008)	provides	a	detailed	description	of	
what	is	required	to	make	a	design	pattern	in	Java,	and	show	how	it	is	possible,	by	means	of	subclassing,	to	add	

 StateMachine

:SwitchState

:On:Off

:CD :TV

On

MediaSwitch

State

Off CD TVSwitch
State

State
0..1
enclState

:enclState

:enclState

:enclState

:enclState

interface IState {}

class StateMachine {
 IState cS; // current state
 void changeState(Class ns){}

 class State implements IState {
 IState enclState; // enclosing state
 }
}

	Page	-	6	
	

new	states	and	extend	states	with	new	states	and	new	events.	The	following	is	a	simplified	description	of	this.	
A	 final	 combined	design	pattern	using	 forwarding	 for	 composite	 states	 and	 subclassing	 for	 specialization	 of	
state	machines	will	have	to	include	all	the	details	of	(Chin	and	Millstein,	2008).	

The	 idea	 behind	 (Chin	 and	 Millstein,	 2008)	 is	 that	 states	 of	 a	 general	 state	 machine	 are	 extended	 in	
specialized	state	machines.	Java	does	not	provide	extension	of	inner,	inherited	classes,	so	that	has	to	be	done	in	
this	way:	

• For	 states	 that	 shall	 be	 extended,	 subclasses	 of	 these	 state	 classes	 are	 defined	 in	 the	 special	
StateMachine	class.	

• Instead	 of	 denoting	 state	 objects	 by	 references,	 state	 objects	 are	 referenced	 by	 ‘reference	methods’	
(much	like	factory	methods),	and	these	may	then	be	overridden	to	reference	state	objects	according	to	
the	subclasses.	

Using	IState,	StateMachine	and	State	from	Figure	5,	the	generic	state	machine	SM1	in	Figure	4	can	then	be	
implemented	 as	 shown	 in	 Figure	 7.	 For	 illustration	 purposes,	 it	 is	 assumed	 that	 the	 state	 machine	 has	 a	
transition	 from	 state	A	 to	 state	B	with	 event	a	 as	 seen	 in	 Figure	 3.	 In	 order	 to	 keep	 it	 simple,	we	 have	 not	
included	 the	 constructors	of	 the	 state	 classes,	 and	we	have	not	 specified	what	 should	be	 the	behaviour	of	a	
(and	other	event	methods)	in	case	they	are	forwarded	to	the	root	TopState.	Implementation	of	these	methods	
will	tell	whether	it	is	an	error	or	simply	a	no-op	to	get	such	events	in	states	where	these	events	do	not	define	
any	transition.	
	

Figure	7	Generic	implementation	of	a	state	machine	

Using	 the	 same	principles	 as	 above	 for	 specialization,	 and	using	method	 forwarding	 for	 composition,	 the	
state	machine	SM2	in	Figure	4	can	be	implemented	as	shown	in	Figure	8.	Here,	the	state	B	has	to	be	extended	in	
order	 to	become	a	composite	state	 (with	B1	 and	B2	 as	 contained	states).	 Java	does	not	 support	extension	of	
classes,	 so	 we	 define	 B`	 as	 a	 subclass	 of	 the	 inherited	 B,	 and	 then	 override	 the	 corresponding	 referencing	
method	for	B	to	yield	the	an	object	according	to	B`.		

interface ISM1 extends IState {
 public void a();
}
class SM1 extends StateMachine implements ISM1 {
 SM1(){
 // generate state objects stateTopState, stateA, stateB
 }
 public void a(){(ISM1)cS.a()};

 class TopState extends State implements ISM1 {}

 class A extends State implements ISM1 {
 public void a(){changeState(stateB());}
 }

 class B extends State implements ISM1 {
 public void a(){}
 }

 // referencing methods for A and B
 ISM1 stateA(){ return stateA; }
 ISM1 stateB(){ return stateB; }
}

	Page	-	7	
	

	
	

Figure	8	Generic	implementation	of	an	extensible	state	machine	with	composite	states		

	
Example.	 Following	 the	 implementation	 design	 for	 MediaSwitch	 given	 in	 Figure	 5,	 this	 can	 then	 be	
implemented	in	Java	as	given	in	Figure	9.	

The	 ‘...’	 in	 the	event	methods	 represent	 the	actions	of	 the	 transition,	 followed	by	a	 specification	of	 the	
next	 state.	 In	 case	 there	 is	 no	 method	 forwarding,	 then	 programmers	 of	 the	 event	 method	 simply	 use	 the	
changeState	method,	see	e.g.	changeState(stateOn)	in	the	event	method	on	in	state	Off.	In	case	of	method	
forwarding,	 programmers	 have	 to	 call	 the	 corresponding	 method	 on	 the	 enclosing	 state,	 see	 e.g.	
(SwitchState)enclState.off()in	the	event	methods	off	in	state	CD	and	TV.	
	

3.6 Rationale	
While	 a	 subclassing	 solution	 to	 composite	 states	 creates	 the	 composite	 states	 by	 making	 the	 state	
class/subclass	hierarchy,	 the	method	forwarding	solution	specifies	 the	state	structure	by	a	structure	of	state	
objects.	 The	 benefit	 of	 using	 method	 forwarding	 in	 addition	 to	 subclassing	 is	 that	 it	 is	 a	 well-known	
mechanism;	in	addition,	we	do	not	have	to	invent	a	mechanism	just	for	the	purpose	of	composite	states.		
	

interface ISM2 extends ISM1 {
 public void b()
}
class SM2 extends SM1 implements ISM2 {
 SM2(){
 // generates state objects stateB`, stateB1, stateB2
 }
 public void b(){(ISM2)cS.b()};

 class B` extends B implements ISM2 {
 public void b(){enclState.b();}
 }

 class B1 extends State implements ISM2 {
 public void a(){ (ISM2)enclState.a(); }
 public void b(){ changeState(stateB2); }
 }

 class B2 extends State implements ISM2 {
 public void a(){ (ISM2)enclState.a(); }
 public void b(){}
 }

 //overriding referencing method for B
 IState stateB(){ return stateB`; }
}

	Page	-	8	
	

	

Figure	9	MediaSwitch	by	method	forwarding	

3.7 Resulting	context	
The	 above	 design	 pattern	 is	 based	 upon	 a	 more	 elaborate	 framework	 (Andresen	 et	 al.,	 2015).	 In	 order	 to	
support	entry/exit	actions	and	history,	the	design	pattern	above	has	to	be	combined	with	such	a	framework	of	
predefined	classes	for	StateMachine	and	the	inner	State.	Entry/exit	actions	are	in	the	framework	defined	as	
methods	 in	 the	class	State;	 these	may	 then	be	overridden	 in	specific	 states,	and	 the	 framework	will	ensure	
that	they	are	called	in	the	right	order	when	states	are	entered/exited.	In	order	to	support	transition	to	history	
states,	 the	 framework	ensures	 that	 each	 time	a	 state	 is	 entered,	 the	 state	 is	 set	 as	 the	 shallow	history	of	 its	
immediate	 enclosing	 composite	 state.	 In	 order	 to	 support	 transition	 to	 deep	 history	 states,	 each	 time	 the	
current	state	changes,	one	will	have	to	traverse	the	state	hierarchy	from	the	current	state	and	up	to	the	root	
state,	and	for	all	composite	states	on	the	path	store	current	state	as	their	deep	history.	

3.8 Related	Patterns	
According	to	the	classification	scheme	of	(Noble,	1998)	our	design	pattern	is	an	extension	of	the	original	state	
design	pattern,	in	that	it	supports	both	composite	states	and	specialization	of	state	machines.		

(Dyson	and	Anderson,	1998)	present	seven	refinements/extensions	of	the	original	state	design	pattern.	Our	
design	 pattern	 is	 also	 based	 upon	 the	 original	 state	 design	 pattern,	 so	 all	 of	 these	 seven	
refinements/extensions	may	be	 applied	 as	well.	Among	 the	 seven	 there	 is	no	 extension	 for	 specialization	of	
state	machines.	

In	(Henney,	2003),	states	are	not	represented	by	objects	according	to	state	classes,	but	by	methods,	or	 in	
fact	by	references	to	methods.	This	requires	the	language	to	support	references	to	methods,	and	the	approach	
will	have	difficulties	in	supporting	specialization	of	state	machines.	

interface IMedia extends IState{
 public void on();
 public void off();
 public void mode();
}

class MediaSwitch extends StateMachine implements IMedia {
 MediaSwitch(){
 // constructor setting up state objects and their enclosing state object
 // state objects: stateOn, stateOff, stateCD, stateTV
 }
 public void on(){(IMedia)cS.on();}
 public void off(){(IMedia)cS.off();}
 public void mode(){(IMedia)cS.mode();}

 class SwitchState extends State implements IMedia {
 public void on(){} public void off(){} public void mode(){}
 }
 class On extends State implements IMedia {
 public void on(){}
 public void off(){ ...; changeState(stateOff); }
 public void mode(){}
 }
 class Off extends State implements IMedia {
 public void on(){ ...; changeState(stateOn); }
 public void off(){}
 public void mode(){}
 }
 class CD extends State implements IMedia {
 public void on(){}
 public void off(){ ...; (IMedia)enclState.off(); }
 public void mode(){ ...; changeState(stateTV); }
 }
 class TV extends State implements IMedia {
 public void on(){}
 public void off(){ ...; (IMedia)enclState.off(); }
 public void mode(){ ...; changeState(stateCD); }
 }
}

	Page	-	9	
	

The	only	approach	in	the	survey	(Adamczyk,	2003)	that	is	similar	to	ours	is	the	one	called	Subclassing	State	
Machines	 (Sane	 and	 Cambell,	 1995).	 It	 describes	 how	 to	 specialize	 a	 state	 machine,	 and	 it	 composes	 state	
machines,	 but	 it	 does	 not	 support	 hierarchical	 state	machine	 by	means	 of	 composite	 states.	 They	 have	 the	
notion	of	composite	state,	but	that	is	rather	a	state	that	stems	from	a	composed	state	machine	and	therefore	is	
e.g.	a	pair	of	states	from	each	of	the	composed	state	machines.	

The	Pattern	Language	of	Statecharts	 (Jacoub	and	Ammar,	1998)	 is	also	similar	 to	our	approach	 in	 that	 it	
devise	hierarchical	statecharts	by	means	of	references,	one	from	leaf	states	(state	being	part	of	another	state)	
to	 its	 container	 states,	 and	 another	 (currentState)	 from	 a	 	 container	 state	 to	 the	 current	 state	 with	 the	
container.	 This	 last	 reference	 also	 facilitates	 History.	 However,	 specialization	 of	 state	 machines	 is	 not	
supported.	

4. DISCUSSION	

4.1 Language	support	
The	 implementation	 described	 above	 is	 based	 upon	 the	 existing	 language	 mechanisms	 of	 Java.	 However,	
although	 it	works,	 it	 is	 cumbersome	 and	 error-prone	 to	 have	 to	make	 subclasses	 of	 the	 states	 that	 shall	 be	
extended	(in	order	to	cope	with	new	events	or	to	be	changed	from	a	simple	state	to	a	composite	state),	and	in	
addition	override	referencing	methods	correspondingly.	

Extension	of	states	means	extension	of	state	classes.	A	solution	would	therefore	be	to	define	the	framework	
class	 State	 as	 a	 virtual	 class	 (Madsen	 and	 Møller-Pedersen,	 1989),	 see	 Figure	 10.	 	 Virtual	 classes	 are	
supported	by	a	number	of	languages		((Madsen	et	al.,	1993),	(Ernst,	1999),	(Aracic	et	al.,	2006),	(Bracha	et	al.,	
2010)),	however	in	the	following	the	idea	is	simply	just	sketched	graphically.	Composite	states	are	still	handled	
by	method	forwarding.	A	virtual	class	is	just	like	a	virtual	method:	it	must	be	an	inner	class,	and	in	a	subclass	of	
the	 enclosing	 class	 it	 may	 be	 given	 a	 new	 definition.	 While	 a	 virtual	 method	 may	 be	 overridden	 (that	 is	
completely	redefined,	except	for	its	signature),	a	virtual	class	can	only	be	extended,	as	if	making	a	subclass	of	
the	 virtual	 class.	 The	 reason	 that	 virtual	 classes	 can	 only	 be	 extended	 is	 obvious:	 it	 must	 be	 ensured	 that	
references	typed	by	a	virtual	class	can	only	denote	objects	with	at	least	the	properties	of	the	virtual	class.	

	

	

Figure	10	State	as	a	virtual	class	in	the	framework	

A	specific	state	machine,	e.g.	the	Switch,	is	then	defined	as	a	subclass	of	StateMachine,	extending	the	virtual	
class	State	so	that	it	implements	the	event	methods	for	the	switch	(on	and	off),	and	then	define	the	states	of	
Switch	as	subclasses	of	the	extended	State	class,	see	Figure	11.	The	new	subclasses	of	State	are	defined	to	
be	 virtual	 classes	 as	 well,	 so	 that	 further	 specializations	 may	 extend	 them.	 Further	 specializations	 may	
therefore	also	redefine	event	methods	for	the	states.	The	extended	virtual	class	State	in	Switch	is	still	virtual	
(although	 extended),	 so	 a	 further	 specialization	 of	 Switch	 may	 extend	 State	 in	 order	 to	 add	 new	 event	
methods.		
	

	

Figure	11	A	specialized	StateMachine	with	extended	State	and	specific	states	

virtual
State

StateMachine

0..1

enclState

virtual
On

Switch

extended
State

virtual
SwitchState

virtual
Off

StateMachine

	Page	-	10	
	

Figure	12	illustrates	how	the	MediaSwitch	is	defined	as	a	subclass	of	Switch.	The	class	State	is	extended	in	
order	to	implement	the	new	event	method	mode,	the	states	CD	and	TV	are	added	as	subclass	of	State,	and	On	is	
extended	 in	order	 to	become	a	composite	state.	The	 fact	 that	 the	state	classes	of	a	 state	machine	are	virtual	
classes	 implies	 that	 the	construction	of	 the	 state	object	hierarchy	may	be	 inherited	and	does	not	have	 to	be	
made	again	for	specialized	state	machines.	As	an	example,	the	constructor	for	Switch	in	Figure	11	will	have	a	
statement	 that	generates	an	On	 state	object	and	sets	 the	encloser	 to	be	an	object	of	 class	SwitchState.	The	
MediaSwitch	state	machine	 inherits	this	constructor,	and	as	On	has	been	extended,	 the	 inherited	generation	
statement	will	now	generate	an	object	of	the	extended	On.	In	this	respect	a	virtual	class	works	the	same	way	as	
a	virtual	method:	like	a	call	of	virtual	method	implies	a	call	of	the	overridden	method	in	case	the	call	is	made	in	
the	 context	 of	 a	 subclass,	 generation	 of	 an	 object	 of	 a	 virtual	 class	will	 imply	 generation	 of	 an	 object	 of	 the	
extended	class.	
	

	

Figure	12	MediaSwitch	as	a	specialization	of	Switch	

As	 part	 of	 extending	 a	 virtual	 state	 class,	 it	 is	 possible	 to	 override	 inherited	 event	methods.	 In	 principle	 an	
event	method	may	be	completely	overridden,	i.e.	changing	also	the	next	state	of	the	transition,	and	that	is	not	
desirable.	A	simple	solution	 is	 to	define	 the	event	methods	as	non-virtual	 (like	 final	 in	 Java)	and	then	rather	
define	for	each	event	method	a	corresponding	virtual	action	method	that	is	called	by	the	event	method.	

5. RELATED	WORK	

As	described	 in	 the	 introduction,	 the	 original	 state	 design	pattern	does	not	 cover	 composite	 states.	 Existing	
state	 machine	 APIs	 in	 various	 programming	 languages	 also	 support	 full	 state	 machines,	 but	 without	 any	
attempts	to	integrate	the	state	machine	mechanisms	with	the	mechanisms	of	language.	

Among	 the	 approaches	 that	 are	 integrated	with	 existing	 language	mechanisms,	 the	Actor	model	 (Hewitt,	
Bishop	 et	 al.	 1973)	 was	 the	 first	 approach.	 Actors	 can	 change	 description	 (class)	 explicitly	 and	 thereby	
accepting	a	new	set	of	messages.	The	Modes	approach	(Taivalsaari,	1993)	also	belongs	to	the	well-integrated	
approaches,	and	it	is	directed	towards	supporting	state-oriented	programming	in	that	an	object	does	not	have	
to	change	its	class,	only	its	virtual	method	dispatch	pointer.		

State-Oriented	Programming	(Sterkin	2008)	is	very	similar	to	our	approach.	It	recognizes	that	states	have	
to	be	defined	by	objects	that	are	linked	to	represent	state	hierarchies,	but	does	not	use	method	forwarding.	

The	 Typestate-Oriented	 Programming	 ((Aldrich,	 Sunshine	 et	 al.	 2009),	 (Sunshine,	 Naden	 et	 al.	 2011))	
supported	by	the	Plaid	language	is	a	quite	different	approach.	It	is	in	line	with	Modes	and	with	our	approach	in	
that	state	mechanisms	are	well	integrated	in	the	language,	however,	it	only	supports	simple	states.	The	reason	
is	 that	 the	main	 objective	 is	 to	 define	 a	 corresponding	 type	 system	 that	will	make	 it	 possible	 to	 check	 that	
objects	behave	in	accordance	to	the	constraints	specified	by	state	types.	

	
	

ACKNOWLEDGEMENTS	
We	would	first	like	to	thank	our	shepherd	Stefan	Sobernig	for	valuable	feedback,	both	in	terms	of	the	shape	of	
the	paper	and	on	 its	details.	Secondly	we	would	 like	 to	 thank	our	group	during	 the	PLoP'16	 for	 feedback	on	
writing	patterns	the	right	way.	

	

MediaSwitch

Switch

extended
On

extended
State

virtual
CD

virtual
TV

	Page	-	11	
	

REFERENCES	

ADAMCZYK,	P.	2003.	The	Anthology	of	the	Finite	State	Machine	Design	Patterns.	Pattern	Languages	of	Program	

Design	2003	(PLoP'03).	
ANDRESEN,	 K.,	 MØLLER-PEDERSEN,	 B.	 &	 RUNDE,	 R.	 K.	 Combined	Modelling	 and	 Programming	 Support	 for	

Composite	States	and	Extensible	State	Machines.	 	MODELSWARD	2015	-	3rd	 International	Conference	on	
Model-Driven	 Engineering	 and	 Software	 Development,	 ESEO,	 9-11	 February	 2015	 Angers,	 Loire	 Valley,	
France.	kapittel:	SciTePress,	231-238.	

ARACIC,	 I.,	GASIUNAS,	V.,	MEZINI,	M.	&	OSTERMANN,	K.	2006.	Overview	of	CaesarJ.	Transactions	on	AOSD	 I,	
LNCS,	3880,	135	–	173.	

BRACHA,	G.,	AHÉ,	P.,	BYKOV,	V.,	KASHAI,	Y.,	MADDOX,	W.	&	MIRANDA,	E.	Modules	as	Objects	in	Newspeak.	In:	
D’HONDT,	T.,	ed.	ECOOP	2010	–	Object-Oriented	Programming:	24th	European	Conference,	2010	Maribor,	
Slovenia,	June	21-25.	Springer	Berlin	Heidelberg,	405-428.	

CHIN,	B.	&	MILLSTEIN,	T.	An	Extensible	 State	Machine	Pattern	 for	 Interactive	Applications.	 In:	VITEK,	 J.,	 ed.	
ECOOP	2008,	2008.	

DYSON,	P.	&	ANDERSON,	B.	1998.	State	Patterns.	In:	MARTIN	,	R.,	RIEHLE,	D.	&	BUSCHMANN,	F.	(eds.)	Pattern	
Languages	of	Program	Design	3.	Chichester,	England::	John	Wiley	&	Sons	Ltd.	Wiley.	

ERNST,	 E.	 1999.	 gbeta	 -	 a	 language	 with	 virtual	 attributes,	 Block	 Structure,	 and	 Propagating,	 Dynamic	
Inheritance.	PhD,	University	of	Aarhus,	Denmark.	

GAMMA,	E.,	HELM,	R.,	JOHNSON,	R.	&	VLISSIDES,	J.	1995.	Design	Patterns:	Elements	of	Reusable	Object-Oriented	
Software,	Addison-Wesley.	

HENNEY,	K.	2003.	Methods	 for	States.	First	Nordic	Conference	of	Pattern	Languages	of	Programs	(VikingPLoP	
2002).	Copenhagen,	Denmark.	

ITU	2011.	Z.100	series,	Specification	and	Description	Language	SDL.	
JACOUB,	S.	M.	&	AMMAR,	H.	H.	1998.	A	Pattern	Language	for	Statecharts.	5th	Annual	Conference	on	the	Pattern	

Languages	of	Programs	(PLoP	'98).	Illinois,	US.	
MADSEN,	 O.	 L.	 &	 MØLLER-PEDERSEN,	 B.	 Virtual	 Classes—A	 Powerful	 Mechanism	 in	 Object-Oriented	

Programming.	In:	MEYROWITZ,	N.,	ed.	OOPSLA'89	–	Object-Oriented	Programming,	Systems	Languages	and	
Applications,	1989	New	Orleans,	Louisiana.	ACM	Press.	

MADSEN,	O.	L.	&	MØLLER-PEDERSEN,	B.	A	Unified	Approach	to	Modeling	and	Programming.	 	MoDELS	2010,	
2010	Oslo.	Springer.	

MADSEN,	 O.	 L.,	 MØLLER-PEDERSEN,	 B.	 &	 NYGAARD,	 K.	 1993.	 Object-Oriented	 Programming	 in	 the	 BETA	
Programming	Language,	Addison	Wesley.	

NOBLE,	 J.	 1998.	 Classifying	 Relationships	 Between	 Object-Oriented	 Design	 Patterns.	 Software	 Engineering	
Conference.	Australia.	

OMG	2015.	UML	2.5.	
SANE,	 A.	 &	 CAMBELL,	 R.	 H.	 Object-Oriented	 State	 Machines:	 Subclassing,	 Composition,	 Delegation	 and	

Genericity.		OOPSLA,	1995.	
TAIVALSAARI,	A.	1993.	Object-Oriented	Programming	with	Modes.	.	Journal	of	Object-Oriented	Programming,	6,	

25-32.	

