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The software development activities typically produce a large amount of data. Using a data-driven approach to decision making – such
as Software Analytics – the software practitioners can achieve higher development process productivity and improve many aspects of the
software quality based on the insightful and actionable information. This paper presents a set of patterns describing steps to encourage the
integration of the analytics activities by development teams in order to support them to make better decisions, promoting the continuous
improvement of software and its development process. Before any procedure to extract data for software analytics, the team needs to define,
first of all, their questions about what will need to be measured, assess and monitored throughout the development process. Once defined
the key issues which will be tracked, the team may select the most appropriate means for extracting data from software artifacts that will be
useful in decision-making. The tasks to set up the development environment for software analytics should be added to the project planning
along with the regular tasks. The software analytics activities should be distributed throughout the project in order to add information about
the system in small portions. By defining reachable goals from the software analytics findings, the team turns insights from software analytics
into actions to improve incrementally the software characteristics and/or its development process.
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1. INTRODUCTION

Nowadays, due to the considerable amount of data that are generated during the software development activities,
some large software companies are actively working to make their development processes data-driven [Kim et al.
2016] [Baysal et al. 2013a]. Thus, the practitioners have the chance to seek insight from data collected in their
projects in order to improve progressively and continuously the software quality such as reliability, performance,
and security [Bird et al. 2013]. In this context, Software Analytics (SA) is a data-driven approach to decision making
that encompasses monitoring, analysis, and understanding of software development data mined from different
sources to obtain insightful and actionable information. These valuable insights can allow software practitioners to
achieve higher development process productivity, and improve many aspects of the software quality, including a
good user experience [Maalej et al. 2016] [Zhang et al. 2011].
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There are many computing technologies such as pattern recognition, machine learning, and data mining
which can enable software practitioners to perform an efficient data exploration. However, the visualization and
interpretation of insights are key in the SA to facilitate decision making. And, one the greatest challenges consists
of finding out how to leverage potentially large amounts of data into real and actionable insights for making
decisions at different levels – strategic, tactical and/or operational [Buse and Zimmermann 2012].

More in-depth studies are needed to provide not only appropriate techniques and tools to assist those who
make critical decisions in software projects but also to investigate their information needs, according to [Buse and
Zimmermann 2012]. In addition, the data analysis should be focused on data that are really useful rather than
data that are convenient to collect [Shull 2014]. Therefore, the practitioners need to define what data are really
needed before beginning collection in order to avoid any delays in delivery and, at the same time, any wastage of
resources. In effect, data easy to retrieve bringing partial answers may make more sense to collect, than data
bringing more insights that can be costly to gather. In this case, a cost-benefit analysis could be performed to
determine whether or not to proceed. Surely, it is a trade-off to be resolved together with the customer.

Some patterns have been identified in the field of data analysis – e.g., pattern designed to trace code changes
from user requests – CONCEPT TO COMMIT [McGrath et al. 2013], pattern about significance testing and effect
size – EFFECT SIZE ANALYSIS [Giger and Gall 2013], and patterns for cleaning up invalid bug data – LOOK OUT

FOR MASS UPDATES and OLD WINE TASTES BETTER [Souza et al. 2013]. However, we have noted that there is
still a lack of patterns on how to integrate software analytics into industrial practice. This paper presents a set of
patterns describing steps to encourage the use of SA by development teams. We present below a brief description
of each pattern as patlets. Additionally, Figure 1 shows an overview of the patterns and how they relate to each
other.

(1) WHAT YOU WANT TO KNOW: adopting a data-driven approach for decision making, the team can define the
issues to guide them in the identification of what kind of data should be extracted in order to obtain meaningful
information about the system, process, and/or usage patterns.

(2) CHOOSE THE MEANS: the team can choose the metrics, methods, and tools that will be used to extract and
analysis of data in order to inform their decision making.

(3) SOFTWARE ANALYTICS PLANNING: with the purpose of highlighting useful information and drawing conclusions
from it, the team can add the tasks related to the software analytics to their task list to be prioritized with the
regular project tasks.

(4) ANALYTICS IN SMALL STEPS: this pattern suggests adjusting the granularity of the analytic activities in order
to distribute them throughout the project without to impose excessive demands on the teams.

(5) REACHABLE IMPROVEMENT GOALS: this pattern suggests small steps for implementation of the improvements
based on software analytics findings.

We have outlined these patterns from results of a systematic mapping that we performed in order to investigate
the current trends in the use of SA for decision making in software development context and identify the main
issues that are commonly addressed in this research field. Therefore, the main target audience for these patterns
are the software practitioners, such as project managers, analysts, and software developers from small, large, or
multiple teams.

Taking into account the different levels of decision-making, we also emphasize that these patterns can address
different categories of questions. Such questions may be related to the source code (e.g., code quality, bug
proneness, number of defects, and amount of effort to fix bugs); development process (e.g., productivity and ROI);
product business (e.g., usage of features, data quality and user satisfaction); and software runtime properties (e.g.,
performance, number of transactions and error log).

It is worth noting that sometimes the companies already have a ready structure with metrics and tools used
to monitor their development processes. In these cases, this structure can perfectly be utilized to support the
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Fig. 1. Overview of the patterns and their relationships.

software analytics; and practitioners can focus efforts on the optimization of the process of analysis and decision
making in order to solve more specific issues. In the remainder of this paper, we describe the proposed patterns in
more detail.

2. WHAT YOU WANT TO KNOW

Also known as Find Important Decisions, Highlight Your Questions, Find Your Questions

Development teams know that metrics and other kinds of information can be extracted from their systems
in order to support decision making. Development activities generate a large amount of data. Various artifacts
including source code, bug reports, commit history, test executions, etc. could provide valuable insights about a
software project. There are several tools that can extract such data from the development environment. However, it
is common that even development teams that have them available might not know how to use them.

What issues do you want to know about the software system and/or the software development pro-
cess?
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—Without data, the team is sailing in the dark.

—The tools that collect raw data about a software system can be time-consuming to install and configure.

—The tools can generate a huge amount of data by default.

—With a huge amount of data about the system, development teams might not know where they should focus.

—Several teams do not use data analysis to inform their decision making about possible software or process
improvements.

Therefore:

Define the key issues that the development team wants to focus on, in order to guide their selection
of the appropriate means for measurement, assessment and monitoring these issues throughout the
project.

The team frequently has some decisions that they need to make and sometimes they are made mostly based
on developer’s intuition. The team should identify important issues that they consider that they do not have enough
information to solve them. For instance, the issues can be related to the internal quality of the system (i.e., code
quality), external quality of the system (i.e., performance, bug density, the effort required to fix defects), productivity,
and/or usage patterns. By raising such issues, practitioners can use them as a guide to define what data should
be extracted from the system in order to obtain meaningful information to make their decisions related to these
issues.

Some decisions might lead to one-time action, for instance, when the team needs to prioritize the implementation
of an architectural component to improve the system performance. Or it might be a series of continuous decisions
and actions that need to be performed throughout the project, such as for what part of the system do I need to
prioritize refactoring.

As an example, imagine that a development team wants to improve their tests and need to decide where in
the system they should put their effort. Using WHAT YOU WANT TO KNOW, a possible question highlighted by
development team might be “What data is required to verify software test adequacy?”. Answering this question,
the team can set up the development environment according to needed data.

As a consequence, the team will understand the reason behind the data being collected, making a better use of
them. Additionally, unnecessary data will not be collected and will not take away the focus of the team on what is
more important.

A negative consequence of this pattern is that tools can detect unexpected problems based on measurements
that do not have a known reason. Focusing only on a subset of that information, the team can fail to notice a
potential problem.

� � �

The pattern FIND ESSENTIAL QUALITIES [Yoder and Wirfs-Brock 2014] is linked to this pattern. However, the
related pattern focuses specifically on software quality, while this pattern also encompasses other issues inherent
in the software, its development process, and business requirements. For instance, as the supporting to strategic
and tactical decisions, a need for a reduction in overworks of developers. Therefore, software analytics is not just
for quality attributes. After choosing to make the WHAT YOU WANT TO KNOW the team need to CHOOSE THE

MEANS to fulfill this needs.
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Regarding the known uses, Jian-Guang Lou et al. formulated questions about incident-management as a
software-analytics problem [Lou et al. 2013]. For them, incident management of an online service requires the
service provider to take actions immediately to resolve the incident, since the cost of each hour’s service downtime
is high. As the use of debuggers to conduct diagnosis on services is usually impracticable, the teams need to
highlight other questions in order to detect anomalies and quality issues at runtime of the service.

Robert L. Nord et al. presented a series of questions related to measurement and analysis for software
architecture and about how to meet the business goals of software [Nord et al. 2014]. According to them, there is
an increasing need to provide ongoing insight into the quality of the system being developed. Thus, the team’s
questions might be, for instance, about how to improve feedback between development and deployment through
means to measure intrinsic quality, value, and cost.

In the case presented by Gregorio Robles et al., the information about the development effort invested in a
project was considered a business strategy [Robles et al. 2014]. And, the question highlighted by development
team was related to how to obtain software development estimations with bounded margins of error.

3. CHOOSE THE MEANS

Also known as Approach to Answer, Choose Appropriate Means, Choose the Right Means

Following the pattern WHAT YOU WANT TO KNOW the team may collect information related to issues which need
to be traced in order to support their decisions. Often, software practitioners and stakeholders rely heavily on their
experience and intuition to make a decision when solving problems that have occurred during the project. However,
that can lead to wrong paths that can have bad consequences in the future. Moreover, there is much information
that can be extracted from the development environment that can provide concrete evidence and reasons for their
decisions.

How can you gather data about the issues that you intend to track during the project?

—The intuition of the development team might not reflect the reality of the software system.
—Decisions based on intuition can be based on false premises.
—Tasks related to non-functional requirements sometimes are not easy to justify to stakeholders without presenting

well-founded arguments – based on actual data.
—There are different types of techniques and tools that can be used in data extraction from the development

environment.

Therefore:

Define the data sources and most appropriate means, such as tools, techniques and other approaches
for extracting data that will be useful in the future decisions.

Based on the question that should be answered, the developers can identify data that can provide a concrete
evidence to support their decision. Thus, they first define the data they need and then find out how to gather it. For
instance, to find points that should be modified to improve system performance; they can extract the execution
time from the software components. As another example, to find places that need to be prioritized for refactoring,
information like commit history for bug correction, object-oriented metrics, and frequency of modification can
be considered. From the stakeholders’ point of view, the impact of the addition of a new feature might be more
precisely estimated with usage data from similar or related ones.

Based on the sources of data identified, the team needs to find tools and/or other approaches that can be
used to extract them from the system. There might be ready-to-use tools or, sometimes, the team would need to
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implement something to retrieve some more specific data from the system. In this situation, the team does not
need to implement the extraction, but only to raise possibilities for the extraction.

It is worth mentioning that, when the team defines the necessary data, they should also evaluate how easy it
will be or not to get these data based on a cost-benefit model. Sometimes the raw data does not directly provide
information to support the decision. You might need to filter, interpret or combine them to meet your information
needs by reflecting on that you want to know. The approach for this does not need to be defined at this point, but it
is important to know what kind of information you need in the end, taking into account where you are going to keep
the extract data and how to manage them

Considering the previous example, where the development team wants to improve their tests and need to decide
where they should put their effort. Using CHOOSE THE MEANS, developers define that they need to extract testing
coverage values and the number of commits that modified each class since they want to prioritize classes that are
highly modified and that have low test coverage. After that, they find out that they can use a test coverage tool
that is available in their continuous integration environment, but they did not find a tool to count the commits for
each class. However, they think that it is not difficult to create a script that can extract that information and put in a
CSV file. As the last step, an analysis should be made to locate classes with a low test coverage and with a high
modification frequency.

As a consequence, the team can have a view of how they can have concrete evidence for a decision. Now, they
can consider if it worth to follow the software analytics approach based on the cost of the decision and the penalty
of choosing a wrong alternative. Stakeholders that usually do not have experience in software development would
be able to understand better technical tasks and their impact.

A negative consequence is that this process might take a precious time from the team and take away the focus
of the product itself. Therefore, a cost-benefit analysis should be performed to determine whether proceed.

� � �

The pattern MEASURABLE SYSTEM QUALITIES [Yoder and Wirfs-Brock 2014] is related to this pattern because
both deal with quality attributes. As we mentioned earlier, the quality concerning the product is one of the items
that can be considered for measurement in this pattern. The most common quality attributes are performance,
reliability, and usability. However, there are others internal and external attributes related to process, business
and/or resources that also can be monitored and measured – e.g., effort, number of coding faults found, cost-
effectiveness, communication level, system structure, etc. Some attributes may be relatively easy to measure,
while others may be difficult or costly to measure. In addition, the software measurement activities can be either
assessment or prediction. After choosing to make the WHAT YOU WANT TO KNOW and CHOOSE THE MEANS, the
team need to SOFTWARE ANALYTICS PLANNING to fulfill their needs.

Regarding the known uses, according to Stella Pachidi et al., the collecting usage data for software development
is an important mean to monitor, for instance, which applications are most often used, which features are
underutilized, and which features could be improved [Pachidi et al. 2014]. Software usage concerns knowledge
about how end-users use the software in the practice, and how the software meets their needs.

Taking into account that the developers’ communication – as contained in emails, issue trackers, and forums –
is a precious source of information to support the development process, Luigi Cerulo et al. proposed the extracting
this content to support some software engineering tasks for software analytics [Cerulo et al. 2015].

According to Jin Guo et al., software project artifacts such as source code, requirements, and change logs can
provide actionable information about which classes are fault-prone [Guo et al. 2016].
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4. SOFTWARE ANALYTICS PLANNING

Also known as List Your Tasks, Software Analytics Implementation, Software Analytics Tasks

After the identification what and how to extract information from the system, the means still need to be
implemented. On the one hand, the tasks are prioritized based on stakeholders’ needs, and a task that is not
related to the implementation of the software functionality may consume a lot of time and a significant effort. On
the other hand, a decision made based on actual data could avoid technical debt [Li et al. 2015] and/or optimize
the impact of other tasks. There are several kinds of technical debt. Some of them might come from a conscious
decision, however, there can be technical debt that the team is not aware of it. By definition, technical debt is a
problem that grows with time, and the effort to handle or correct it also grows with time. Thus, an analytic approach
can help to detect and monitor them.

How to implement software analytics along with other tasks, fitting into the project planning?

—To install tools and to implement data extraction from the system can be time-consuming.

—The project team has a limited time and all tasks related to the extracting and analyzing data from the system
will take time from the system implementation.

—Data extracted from the system and development environment can provide valuable information that can avoid
rework and possible technical debt.

—The decisions that can benefit from the data extraction might not be necessary to be made immediately.

—To be worth the implementation, software analytics needs to add more value than the cost to be implemented.

Therefore:

Add tasks related to the software analytics on the to-do list to be prioritized with the regular project
tasks.

The tasks for the implementation of the data extraction, filtering and analysis identified when you CHOOSE THE

MEANS should be added to the planning. They should be estimated and prioritized. The team should consider that
to be implemented, the value added by the information extracted from the software analytics need to be superior
from the cost of its implementation.

Software Analytics must be implemented at the time a decision-making is required. For instance, considering a
decision that will be necessary to be made in two months, the implementation of analytics to support that decision
is not a priority for the next iteration.

Considering the aforementioned example in which developers want information that can help them to focus the
effort on improving tests. They estimated the time for installing the tool for measuring test coverage, and it would
not consume much time. On the other hand, for the creation of the script to extract the most modified classes and
the implementation of the analysis that combine both data would consume a considerable time.

Since the number of classes is not large at the current project phase, the team and stakeholders decide to add
in the next iteration scope only the task for the configuration of test coverage measurement tool. The tasks for
creating the scripts and for analyzing the data combined remained in the product backlog1, but were not considered
a priority at this point.

1As described in the Scrum Guide, product backlog refers to the list of functional and nonfunctional requirements, such as a to-do list [Schwaber
2004].
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As a consequence, the implementation of data extraction will be considered in the project planning. Since they
are motivated by decisions that should be made in the project context, it would be easier for the stakeholders to
understand its need and prioritize appropriately its implementation.

A negative consequence of this practice is that the task for the analytics implementation might remain in the
product backlog indefinitely, and never be done. To avoid this, the stakeholders need to be aware of how that effort
can benefit and bring value to the project.

� � �

This pattern can be complemented with SYSTEM QUALITY DASHBOARDS [Yoder and Wirfs-Brock 2014] in order
to facilitate the tracking of the software activities, allowing the team to identify and mitigate risks at runtime.

Regarding the known uses, defect prediction is one popular application area of software analytics. Taneli Taipale
et al. dealt with the challenges to deploying a defect prediction into practice [Taipale et al. 2013]. In order to solve
this issue, they proposed a defect prediction model and different representations of the results, such as an error
probability mapping to the source, and an approach to the visualization of interactions among teams.

Antonio Gonzalez-Torres et al. focused on software maintenance issues that require the comprehension of
software project details [Gonzalez-Torres et al. 2011]. Thus, they proposed a visual software analytics tool for the
exploration and comparison of project structural, interface implementation, class hierarchy data, and the correlation
of structural data with metrics, as well as socio-technical relationships.

Minelli and Lanza developed a visual web-based software analytics platform for mobile applications that mine
software repositories of apps and uses a set of visualization techniques to present the mined data [Minelli and
Lanza 2013].

5. ANALYTICS IN SMALL STEPS

Also known as Software Analytics in the Pace, Distributed Software Analytics, Gradual Software Analytics

Implementing the metrics and configuring the tools in the development environment can be time-consuming.
Despite they can be important, the priority is always to develop the target software. Moreover, if the teams receive
too much information at the same time, they will not be able to interpret it and to do something about it.

How to implement software analytics at a pace that it does not impact project activities and can be
consumed by the team?

—Because of the tight schedule, the team usually does not have much time to implement software analytics tasks.

—Too much information being generated at the same time cannot be easily consumed by the team.

—Some tools have a default configuration that generates a lot of information about the system.

—Sometimes different information that is collected from different points might be useful for the same question.

Therefore:

Distribute tasks related to the software analytics throughout the project, adding information to the team
about the system at small portions.

When you do ANALYTICS IN SMALL STEPS, it should be considered that the analytics tasks can be done
gradually. On the one hand, you should not leave the analysis which is the basis for decision-making on an
important issue. On the other hand, the analytics implementation should consume enough time without harming
the other tasks.
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It should be prioritized the implementation of analytics that collaborates to answer important questions. Especially
when different information can be used for the same question, their implementation can be divided into subsequent
steps.

Another side of this is that some tools already have several built-in features that provide different kinds of
information for the development team. Despite it can be tempting to have them all with a small effort; this amount
of information can take away the attention of what is important. Because of that, it is recommended to configure
the tool to collect only the data that is needed, hiding the information that will not be used by the team right now.

Considering the running example, the team decided to implement the SonarQube2 that can produce a test
coverage report integrated into the continuous integration server. This tool can generate many other kinds of
information, such as object-oriented metrics and bad practices detection. However, based on this pattern, the
team decided to disable the extraction of other kinds of information that would not be used by the team right
now. Considering other goals and questions, the other tool features might be enabled at a slow pace in the next
iterations.

As a consequence, the team will be able to introduce activities for software analytics without interfering too much
with the to-do list and its priorities. Additionally, the team will be able to respond and act based on the information
generated by analytics without losing their focus.

A negative consequence is that if an analytics can reveal a critical problem, the slow rhythm of analytics
implementation might postpone the problem detection. Moreover, tools that detect several kinds of problems might
also find something relevant that was not predicted or expected by the team.

� � �

The previous pattern about SOFTWARE ANALYTICS PLANNING is related to this pattern since it suggests to
distribute the software analytics tasks throughout the project, adding them to the to-do list. The main concerns
addressed here, however, refers to determining how much software analytics can be handled without overburdening
the team with too many assignments.

Regarding the known uses, Olga Baysal et al. discuss modern issue tracking systems that provide access
to an immense amount of raw information, but which are often irrelevant for certain tasks [Baysal et al. 2013b].
They suggest personalized development tools that highlight only the most important information for developers by
reducing information overload.

Pinto et al. proposed a tool that provides architectural compliance checking as part of the continuous integration
process [Pinto et al. 2016]. When violations are detected, this tool can lock the integration to the software repository.

Towards to the useful software analytics, Turhan and Kuutti state that a simpler analysis to answer a simpler
question provided more actionable insights to the team than the more complex alternative [Turhan and Kuutti
2016].

6. REACHABLE IMPROVEMENT GOALS

Also known as Small Objectives, Measurable Results, Reachable Goals

There will always be something that the metrics indicate that could be better. Just letting the team works on
improvements based on the analytics automated feedback might lead them to act without focus. To have a goal of
fixing everything might leave the sensation that the team is not moving forward.

How to turn insights from software analytics into actions to incrementally improve the characteristics
of the software system?

2https://www.sonarqube.org
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—Without a clear goal on how the team should handle the software analytics insights in a given situation, can
make them waste time on the things that are not important right now.

—An ambitious goal that takes time to achieve, might leave the sensation that the team is not making much
progress.

—The result from an analytics might point to many places where the team can act.

—If a huge task to fix existing problems, might not be considered a priority because of the time and effort it will
consume.

Therefore:

Define reachable improvement goals from the software analytics findings, and break the activities down
into smaller tasks to fit together with the other tasks.

Based on the feedback received from the analytics, the team should define small actions that can be done. Such
actions should have a size that fits together with the other tasks, and a measurable result. In other words, the
change performed by this action should reflect an improvement from analytics findings.

As the first step, the team raised some questions that the analytics contributed to answering. These actions
should reflect the decisions that were made based on the data collected. However, these actions should be split in
a way that can fit within the scope of the project without harming the implementation of other features.

It is worthwhile noting that improvement actions can be planned to be carried out in future iterations, hence,
they do not need to be immediately implemented. The tests, for example, should be created gradually, and their
advances must be continuously measured and monitored.

As a consequence, the development team ends up establishing a culture of continuous improvement. By
balancing the amount of work in progress, the team avoids accumulating uncompleted works.

A negative consequence is when the team cannot handle the extra amount of work needed to act on software
analytics insights and enjoy its benefits. Additionally, a poorly thought out a distribution of work can increase the
technical debt rather than reduce it.

� � �

A related pattern is CHUNKING [Weiss and Mockus 2013] that shows how to conduct an analysis of the set
of changes made to a software system over time so as to be able to identify sets of code where a change
touching a chunk touches only that chunk. This pattern may be useful to help the team coordinate and optimize
its improvement actions since it provides an algorithm to identify uncoupled pieces of software (chunks) which
represents a module on which an individual or a small team can work independently. Furthermore, the LOW-
HANGING FRUIT pattern [Manns and Rising 2015] suggests that the successes of the changes in small doses can
provide evidence to convince stakeholders that the improvements can really add significant value at the end.

Regarding the known uses, Haron and Syed-Mohamad proposed a plug-in for IDE that integrates test coverage,
number of defects, number of unresolved defects, defects severity and lines of codes, aiming to provide an
analytical view for practitioners to assess and validate the testing results [Haron and Syed-Mohamad 2015].

As to continuously monitoring and measuring activities, Rodrigo Souza et al. noted that improving automated
testing tools and using integration repositories are two measures that can improve any project [Souza et al. 2015].
However, they pointed the importance of easier access to up-to-date information about the process, in order to
evaluate the impact of yet-to-be-made decisions.

As a practice of continuous inspection, Guerra and Aniche have recommended the use of static and dynamic
analysis tools that retrieve information about important quality attributes from the source code, such as test
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coverage, complexity, and decoupling [Guerra and Aniche 2015]. Based on this information, the developers
continuously can evaluate and refactor small portions of code – one piece at a time.

7. SUMMARY

In this paper, we have presented five patterns focused on informing decision-making through software analytics
– a data-driven approach that involves monitoring, analysis, and understanding of data extracted from software
development context. Aiming to encourage the use this approach by development teams, the proposed patterns
describe steps to integrate the analytics activities into the development process. As future work, we intend to
identify new patterns focusing on how to integrate software analytics into industrial practice.
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