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1. INTRODUCTION

Open Source Software (OSS) has had a tremendous impact on the software industry. Software organizations
benefit in various ways from open source software, one of which is the use of the OSS development principles
and practices. O’Reilly referred to this as “Inner Source” [O’Reilly 2000], and several authors have suggested that
companies “steal and borrow” ideas from the open source domain to improve their software development capacity
[O’Reilly 1999; Mockus and Herbsleb 2002; Fitzgerald 2011].

Some of the benefits that the open source development paradigm offers are ones that enterprise companies
can leverage through InnerSource. These include setting up internal, thriving communities, leveraging the “wisdom”
of the crowd (i.e. an organization’s global developer workforce), transparency and visibility, software quality, and
shorter time to market [Stol and Fitzgerald 2015; Capraro and Riehle 2017]. Many of the reasons companies
pursue inner source are tied to the problems associated with closed development models that may be used within
isolated business units—this is often referred to as “development silos.”

The existence of ‘silos’ is due to the way large organizations are typically managed, which tends to be a ‘divide
and rule’ approach. Large companies are usually divided into business units or divisions, each of which may be
further divided into smaller units (e.g. departments, teams). While such an approach may make intuitively sense, in
practice this leads to local optimization of resources. Business units, departments, and teams are each evaluated
based on their efficiency and productivity, but this comes at the price of a number of drawbacks.

In a software development context, one key problem with silos is that of duplicative development—or building
the same functionality many times and in a variety of ways. Instead, it would be much more cost-effective to write
software once and have different divisions reuse, and make contributions to that software. Duplicative development
has a number of clear drawbacks. Firstly, the mere fact that multiple teams work on similar functionality is wasteful.
Furthermore, it can lead to products within the same portfolio that look and feel very different. Defects may have to
be fixed multiple times. It also may lead to products do not work together seamlessly, if at all. Customer using
multiple products in your portfolio expect a seamless and consistent experience.

Silos and duplicative development may also lead to a longer time to market [Stol et al. 2011; van der Linden
2009]. If a product is dependent on other components, a market release may be delayed if features are missing or
defects must be fixed in the latter. Companies may miss the market opportunities and lose out to competitors.

Closed-development companies mean that projects are limited to testers within a specific group. This could also
mean limitations in terms of resources for vulnerability response and issue resolution. How many issues could be
found and resolved with a wider crowd that has diverse experience and perspective? Could more eyes on the
code have a positive impact on its quality?

Silo-oriented organizations may also limit their engineers in that their collaborations tend to be limited to a
smaller number of people that work within the same division. Building relationships, and perhaps more importantly,
building trust with colleagues in other divisions of the same company is inhibited because this can only be achieved
when collaborations take place. In addition, this inhibits learning and knowledge sharing—given that software
development is inherently a knowledge-based activity, this is a very severe shortcoming in organizations that have
separated their workforce into divisions. Opening up collaboration via inner source enables engineers to build
relationships and work with a broader crowd, which enables them to learn skills beyond their domain, and provides
opportunities for synergy and innovation. These opportunities are also attractive to engineering talent.

Inner-sourcing improves software reuse, delivers greater efficiency, inspires innovation and helps with talent
acquisition and retention [Riehle et al. 2009; Stol and Fitzgerald 2015; Capraro and Riehle 2017]. The most
important aspect of open source that is adopted in InnerSource is actually the culture [Neus and Scherf 2005]—
while there is no definite set of features that characterizes the culture of open source, key aspects that contribute
to successful open source projects include openness, transparency, voluntariness, self-organization, meritocracy,
and mentorship. Because changing an organization’s culture can be very challenging, effective implementation of

InnerSource Patterns for Collaboration — Page 2



an InnerSource program is difficult, and due to the different organizational contexts there is no single solution to
this challenge.

In recent years, an industry-led community called the “InnerSource Commons” has emerged. This community
has gained significant momentum since it was founded in 2015 by Danese Cooper when she was hired by
PayPal.1 The InnerSource Commons (ISC) is a forum for sharing experiences and best practices to advance the
InnerSource movement. As of November 2017, there are over 220 individual members of the ISC, representing
more than 60 organizations across the globe. The ISC conducts two summits annually where members from the
community gather to exchange knowledge and experiences. To maximize sharing of knowledge and experiences,
all communication within the ISC is subject to the Chatham House Rule [Chatham 2002].

Within the ISC, a patterns subcommunity has emerged which aims to distill and structure best practices for
adopting InnerSource and document these as InnerSource patterns. The ISC patterns community gathers regularly
in online meetings to write and review patterns. This paper presents a number of patterns that this community has
compiled thus far.

Because each organization has its own corporate culture, product architecture, and history of software devel-
opment processes, these InnerSource patterns may require tailoring prior to adoption in a different context—the
‘context’ and ‘forces’ in each pattern provides insight as to whether a pattern might be appropriate given a certain
setting. Notwithstanding the wide variety in organizational contexts, we have found that these patterns can provide
useful guidance to other organizations.

The remainder of this paper is structured as follows. In Section 2, we present further background information on
extant research on InnerSource and on the ISC patterns community. This is followed by Sections 3 to 7, which
present five patterns that the patterns working group of the InnerSource Commons have distilled.

2. BACKGROUND AND RELATED WORK

One of the first studies on InnerSource dates from 2002 which reports efforts at Hewlett-Packard [Dinkelacker
et al. 2002]. Since then, numerous other organizations have reported on their programs [Stol et al. 2014; Capraro
and Riehle 2017], including Philips [Wesselius 2008], SAP [Riehle et al. 2009], Bell Laboratories [Gurbani et al.
2006; Gurbani et al. 2010], and PayPal [Oram 2015; Bonewald 2017].

Adopting InnerSource is different for each organization because of the different organizational contexts. Never-
theless, common “success factors” have been identified [Stol et al. 2014]. These factors can be used in assessing
whether an organization is “fit” for InnerSource. However, they do not provide hands-on guidance for adopting
InnerSource.

The InnerSource Patterns subcommunity within the ISC is actively pushing forward a better understanding of
how InnerSource works. The subcommunity uses the concept of patterns to document proven solutions for known
InnerSource problems [Yao and Sudarsan 2016], as well as to harness new problems and solutions from the
larger community. Patterns were first proposed by Christopher Alexander as a way to describe common solutions
to recurring design problems in architecture (buildings, cities)—in a similar fashion, the ISC captures “common
solutions” to problems that relate to adopting InnerSource.

Because the InnerSource Patterns movement is still new, there are a number of problems for which no proven
solution is known or documented. The InnerSource Patterns group has coined the term Donut Pattern for such
‘unproven’ patterns. Capturing Donut Patterns are an approach targeted brainstorming of solutions—we have
visualized this concept of a Donut Pattern in Fig. 1. A donut pattern is one for which the problem, context, forces
and even resulting context are known and specified. The solution, however, is unknown. Given the analysis of the
context and forces and knowing the desired resulting context, members of the community can more effectively

1This community spells “Inner Source” using “camel case” removing the space, to make the term easier to find online, and this is also the
spelling that we use in this paper.
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come up with constituent parts of a solution to try. One could think of this as a type of proto-pattern and a process
for encouraging collaboration.

Fig. 1. A Donut Pattern, or proto-pattern, is one for which the solution is not yet known, but all other primary fields have been specified.

When the solution has thus been created, donut patterns can become “pattern ideas” that can be tried and
evaluated. If successful, these pattern ideas can evolve to become proven, full-fledged InnerSource patterns.
Note that there is an intention for patterns to be collectively owned and maintained as living patterns within the
community. When patterns are used by members, the stories of their experiences are solicited to continue to hone
and improve the patterns.

This paper presents four patterns that the community has found to be effective across organizations: 30 Day
Warranty, Review Committee, and Common Requirements. In addition to these, a less well-proven idea is also
included, which we have named Improve Findability.

Table I. Patterns presented in this paper

Pattern Status Summary

30 Day Warranty Proven How do you get a team that owns a widely used software component to accept
major feature contributions from other internal teams, in spite of a history of
poor quality contributions?

Dedicated Community Manager Proven How do you ensure that a new InnerSource initiative has the right community
manager to grow its impact?

Review Committee Proven How do you convince middle management, who is unfamiliar with open source
methods, to support a new InnerSource program without micromanaging it
and causing it to fail?

Common Requirements Proven How do you resolve situations in which business lines sharing a common
component have incompatible requirements for it?

Improve Findability Pattern Idea How do you resolve the findability issue resulting from poor naming conven-
tions applied to InnerSource projects?
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3. PATTERN 1: 30 DAY WARRANTY

3.1 Context

A development unit that uses a software component depends on the team owning the component to accept their
contributions. The component-owner team does not have the resources, knowledge, permission, inclination to
write the contributed component changes.

3.2 Problem

A team developing a component which is used throughout an organization is resisting acceptance or rejects
contributions (feature requests) and as a result blocks progress or is disrupted by frequent escalations.

Fig. 2. Rejecting code contributions

3.3 Forces

—There is distrust of contributions due to a past history of "cheating": development units submitted half-finished
contributions and subsequently filed requests for fixes needed to made it ready for use in production.

—If code is contributed from outside the component-owner team, the team has the natural suspicion that the
contributing development unit does not know how to write code that would meet the component-owner team’s
expectations.

—Each team looks first to help its own leaders achieve their own goals. This direction of loyalty can complicate
resolution of this problem.

—There is a natural aversion to taking responsibility for code not written by oneself.
—Contributed code often has to be heavily rewritten before being accepted into the codebase. This can be due to

lack of familiarity by the contributing development unit with the code base.
—There is the fear of the contributors not being available to provide support and bug fixes after the time spent on

contribution.
—Teams fear code contributed by others will lead to high(er) maintenance costs but do not know how to control for

that
—Receiving/component-owner teams may fear that teaching others how to contribute code will expose technical

debt in their system and that visibility may be damaging
—Receiving/component-owner teams may not believe that they will get acceptable code no matter how much

mentoring they provide
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—Either team may not feel confident in measuring risks or certifying that they are mitigated in a contribution; the
system itself is somewhat brittle (may not be ways to fully test and catch all problems).

3.4 Solution

Address the fears of both the receiving and the contributing teams by establishing a 30 day period starting with the
time the contributed code goes into production, during which the contributing team consents to provide bug fixes
to the receiving team.

Provide clear contribution guidelines spelling out the expectations of the receiving team and the contributing
team.

Note that the warranty period could be 45, 60, or 100 days too. The duration may vary based upon the constraints
of the project, the software life cycle of the project, commitments to customers, and other factors.

Fig. 3. Sketch of the 30-Day Warranty pattern

3.5 Resulting Context

—The receiving team is willing to accept contributions and able to share the workload of initial adaptations/fixes

—Increased transparency and fairness

—Keeps escalations from becoming too heavyweight

—Once the warranty period has concluded, full ownership of the contributed code is transitioned to the receiving
team

3.6 Known Instances

This was tried and proven successful at PayPal.

3.7 Authors

Cedric Williams (PayPal)

3.8 Acknowledgments

Dirk-Willem van Gulik, Padma Sudarsan, Klaas-Jan Stol, Danese Cooper, and Georg Grütter.
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3.9 Status

Drafted at the 2017 Spring InnerSource Summit; reviewed 18 July 2017.

3.10 Variants

Ensure cooperation of dependent teams by making them a community by having more than one, meritocratically
appointed “Trusted Committers” (TCs) take responsibility.

4. PATTERN 2: DEDICATED COMMUNITY LEADER

4.1 Context

The company is a large and old company. It has no prior experience in Open Source or other, community based
working models. The company culture is best characterized as a classical top-down management style—it is
generally at odds with community culture. While there are supporters and a sponsor in top level management,
middle management in the company is not yet sold on InnerSource. Management was not convinced to provide
more than a limited budget to fund only a part time community leader.

The initially selected community leader has little or no prior experience with the Open Source working model
and also does not have an extensive network within the company.

4.2 Story

Consider the following story. A company wants to start an InnerSource initiative in order to foster collaboration
across organizational boundaries. They have decided to start with an experimental phase with limited scope.
Management has selected a suitable pilot topic for the first InnerSource community and expects contributions from
many business units across the organization. The company has nominated a new hire to head the community for
50% of his work time, because he was not yet 100% planned for. After 6 months, the community has received only
a few contributions, most of which are from a single business unit. The company replaces the community leader
with someone who has a longer history in the company, this time for only 30% of his time. After another 6 months,
the number of contributions has picked up only marginally. The company is no longer convinced that InnerSource
helps to achieve their goal of increased, cross divisional collaboration and abandons InnerSource.

4.3 Problem

How do you ensure that a new InnerSource initiative has the right community manager to grow it’s impact?
Selecting the wrong persons and/or not providing enough capacity for them risks wasted effort and ultimately the
failure of a new InnerSource initiative.

4.4 Forces

If a company does not significantly invest in the initial InnerSource community in terms of budget and capacity
for InnerSource, the credibility of its commitment to InnerSource might be perceived as questionable. A common
impulse of a company with a traditional management culture to a project or initiative not performing as expected
will be to replace its leader. Doing that without involving the community and following meritocratic principles will
further undermine the companies commitment to InnerSource by highlighting the friction between the current
company culture and the target culture—a community culture.

The value contribution of InnerSource projects will not be obvious for many managers which are steeped in
traditional project management methods. Those managers are less likely to assign one of their top people, who
are usually in high demand by non InnerSource-projects, to an InnerSource project for a significant percentage of
their work time.

Communication takes up a significant percentage of a community managers daily work. At the same time, he or
she will likely also have to spearhead the initial development, too. In the face of limited capacity, inexperienced
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leaders will tend to focus on development and neglect communication. The barrier for potential contributors to
make their first contribution and to commit to the community will be much higher if the community leader is hard to
reach or is slow to respond to feedback and questions for lack of time. Furthermore, technically inexperienced
leaders will most likely have a harder time to attract and retain highly experienced contributors than a top performer
with a high degree of visibility within a company would have.

If a community can not grow fast enough and pick up enough speed, chances are they won’t be able to
convincingly demonstrate the potential of InnerSource.

If the company selects an experienced project or line manager steeped in traditional management methods to
be the community leader, he or she is likely to focus on traditional management topics such as resource allocation,
providing structure and reporting channels rather than leading by example through meritocratic principles. This will
undermine the credibility of the InnerSource initiative in the eyes of developers.

4.5 Solution

Select a community leader who:

—is experienced in the Open Source working model or similar community based working models;
—has the required soft-skills to act as a natural leader;
—leads by example and thus justifies his position in the community meritocracy;
—is an excellent networker;
—inspires community members;
—can communicate effectively to both executive management and developers;
—is able to handle the managerial aspects of community work.

Empower the community leader to dedicate 100% of his time to community work including communication and
development. Inform management of the need to be sensitive to the views of the community when engendering a
change in community management. Ideally, empower the community to nominate a community leader themselves.

Fig. 4. Sketch of the Community Leader pattern
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4.6 Resulting Context

A community leader with the properties described above will lend a face and embody the company’s commitment
to InnerSource. It will make it more likely that other associates in his network will follow his lead and contribute to
InnerSource. Over time, he or she will be able to build up a stable core team of developers and hence increase the
chances of success for the InnerSource project. By convincing a large enough audience within his company of the
potential of InnerSource, he or she will make an important contribution to changing the company culture towards a
community culture.

Having excellent and dedicated community leaders is a precondition for the success of InnerSource. It is,
however, not a silver bullet. There are many challenges of InnerSource which are above and beyond what a
community leader can tackle, such as budgetary, legal, fiscal or other organizational challenges.

4.7 Known Instances

Bosch Internal Open Source (BIOS) at Robert Bosch GmbH. Note that InnerSource at Bosch has, for the majority,
aimed at increasing innovation and to a large degree dealt with internal facing products.

4.8 Status

This pattern was first drafted in Fall 2016, reviewed on 6 November 2016, and again on 6 April 2017.

4.9 Authors

Georg Grütter (Robert Bosch GmbH) and Diogo Fregonese (Robert Bosch GmbH)

4.10 Acknowledgements

Tim Yao, Padma Sudarsan, Nigel Green, Nick Yeates, Erin Bank, Daniel Izquierdo

5. PATTERN 3: REVIEW COMMITTEE

5.1 Context

A company wants to introduce its first InnerSource initiative. Most managers are not familiar with the Open Source
working model and are instead accustomed to hierarchical, top-down control style management.

5.2 Problem

Managers perceive the InnerSource working model as a radical departure from the working models they are
accustomed to and have experience with. As a consequence, it is likely that they will either reject or micro-manage
the InnerSource initiative to try and minimize the perceived risk of this change. In both cases, the benefits of
InnerSource cannot be realized. As a result, InnerSource is subsequently discredited.

5.3 Forces

—The more perceived control a manager has over work done in the InnerSource space, the more likely it is that
he or she will support the initiative without prior experience.

—The less experience a manager has with the open source working model the more likely it is that he or she will
want to tightly control the risk of the initiative.

—The more heavy-handed and micro-managerial InnerSource initiatives are managed, the less likely it is that the
open source working model can be adopted to the required extent. As a result, the benefits of InnerSource will
not be realized.
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5.4 Solution

Establish a review committee comprised of senior managers of all business units which participate in the Inner-
Source initiative.

—The review committee members are given the authority to decide as a group which InnerSource projects will
receive support in general and funding in particular.

—Applicants can be elected by review committee members before meetings, to present their proposed InnerSource
project for consideration during review committee meetings.

—Leaders of InnerSource projects currently funded by the review committee are obliged to report on the status of
their project during every review committee meeting.

—Review committee members are obliged to provide constructive feedback to both new applicants and current
project leaders during review committee meetings.

—Every InnerSource project is to be given the chance to react to feedback in between review committee sessions,
in order to avoid shutting down the project prematurely.

—An InnerSource project leader can also present to the review committee the motion to shut down its own initiative.
The review committee then has to decide whether or not the business units using the software require time to
put measures in place which will ensure that development and/or maintenance of the codebase continues until
an alternative solution to development by the InnerSource community is found (if business relevant or mission
critical).

—The review committee should convene regularly. A cadence of two meetings per year has proven successful.

5.5 Resulting Context

—Managers apply a tool they are comfortable with to InnerSource in order to get the required amount of information
about and control over the InnerSource initiative. This familiarity will make it more likely for them to sign off on
the InnerSource initiative and grant the required degree of freedom for InnerSource projects.

—Developers can still self organize to a sufficient degree. Micro-management does not happen because the
review committee convenes rather infrequently.

5.6 Known instances

BIOS at Robert Bosch GmbH

5.7 Status

Finalized and Reviewed as of August 31, 2017.

5.8 Authors

Georg Grütter (Robert Bosch GmbH) and Diogo Fregonese (Robert Bosch GmbH)
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Fig. 5. Sketch of the Review Committee pattern

6. PATTERN 4: COMMON REQUIREMENTS

6.1 Context

Many projects are trying to use common code. There is a shared repository that all the projects access. This
pattern applies if there is a Strong Code Owner [pattern to be written] or if there is weak code ownership, or
no Benevolent Sponsor [pattern to be written]. Someone (or some project) wrote the code in the first place and
contributed it to the repository. The common code is a small percentage of the overall deliverable from any of the
projects. Each project has its own delivery schedule, set of deliverables and customers.

6.2 Problem

The common code in the shared repository isn’t meeting the needs of all the projects that want to use it.

6.3 Forces

The project that made the code available has one set of needs. Its needs are similar to what some of the receiving
organization wants, but not quite the same. Requirements on code should be derivable from real customer needs.

The needs of different customers are generally quite similar; however they might be expressed differently or
weighted differently between customers. An example might be how some customers want some result presented
in one way while others want it presented in the reverse order—it’s simple to do the translation between them, but
requires additional coding for one of the cases and the as a result the module that computes the result can’t be
reused by both customers.
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Many customers want the supplier to help them know what they need. The company has many Systems
Engineers writing requirements for the products. These requirements are supposed to be a distillation of customer
needs to guide development of the product. Reusing code is an important goal to save the company time and
money.

6.4 Solution

There are two aspects to solving this problem which should be done in parallel:

—Align the requirements of the projects so that the code that meets the requirements for one project also meets
the needs for the other projects.

—Refactor the code into smaller pieces for which the many using projects can agree upon requirements.

Additionally, take advantage of customers expecting the supplier to help elucidate requirements. Bring about the
alignment of requirements during the customer negotiations and influence the customers requirements rather than
changing the component.

In the example presented above, the supplier helps both customers realize that they want the same thing, and it
will save everyone effort (and money) if they agree to accept the result in the same format.

Fig. 6. Sketch of the Common Requirements pattern

6.5 Resulting Context

This might require negotiating requirements changes with the customer. The changes might also require involve-
ment by the sales teams and product managers to get alignment on the requirements. The customer might need
incentives, such as discounts, to agree to the changes.

A related pattern (to be written) is a circular story-writing exercise reported at one company employing Inner
Sourcing. The developers write a story to solve a problem in one way. The program managers rewrite the story to
better express their needs—keeping the essence the same. By the time it returns to developers though they don’t
recognize it as what they wanted to do in the first place and so balk at implementing it. The solution to this pattern
is to have more seats around the planning table so that story modifications are understood across the project not
just in the developer or program manager camps.

6.6 Author

Robert Hanmer (Nokia)

6.7 Status

Pattern reviewed on 22 August 2016 and again on 20 September 2016.
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7. PATTERN 5: IMPROVE FINDABILITY

7.1 Also Known As

Badly Named Piles, Poor Naming Conventions

7.2 Context

Reusable software component(s) are available internally but users can’t easily find them. This problem is more
likely to occur in large, federated companies where different organizational units operate as silos. Historically, the
company does not have a culture of sharing code across silos.

7.3 Problem

Reusable, internally-developed software component(s) are available, but users can’t easily find them.

7.4 Forces

—The volume of contributions to inner source is impacting the ability to find components.
—The internal search engine is not robust, or is not connected to git repositories. (It can be difficult to change this).
—The company has disparate data sources, not all of which are indexed. (It can be difficult to change this).
—Cryptic naming conventions for projects and lack of keywords contribute to reduced findability.
—People may lose confidence in the integrity of inner source and become discouraged from engaging when they

search and don’t find what they need.
—Duplicative development occurs when people don’t find the code that they’d like to reuse or leverage. This results

in wasted time and added complexity.

7.5 Solution

To help improve findability for inner source projects:

—Provide guidelines for applying clear, meaningful naming conventions to projects, and reinforce the importance
of avoiding cryptic code names.

—Include keywords in project descriptions.
—Apply tagging to repositories (validated).
—Use labels where possible.
—Provide incentives for folloing naming, tagging, and/or labeling conventions (consider gamifying).
—If possible, pull repository names, descriptions, and README.md files into the search engine (not the code

itself).
—Instate a concierge service (guide) to help product people find stuff. (This approach might not scale, but could

be helpful at the beginning of a program.)
—Consider instating a solution similar to Stack Overflow. (It will likely be difficult to make this happen.)

7.6 Known instances

None known as of yet—this is a pattern idea until it is proven.

7.7 Desired Resulting Context

—Internal components are visible and easily findable.
—Developers looking for code can search for it and find it quickly.
—Developers are now looking internally for software components.
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Fig. 7. Sketch of the Improve Findability pattern

—Increased reuse, faster time to market.
—Increased collaboration, because improved findability will lead to increased engagement in inner source

practices.
—Higher quality code, because improved findability will lead to increased engagement in inner source practices

that means more eyes finding and fixing bugs.
—Increased opportunities for innovation, because improved findability will lead to increased engagement in inner

source practices and bring people who have problems to be solved together with others who have ideas on how
to solve those problems.

7.8 Status

Brainstormed pattern idea reviewed 2017-03-11.

7.9 Authors

—Georg Grütter (Robert Bosch GmbH)
—Diogo Fregonese (Robert Bosch GmbH)
—Erin Bank (CA Technologies)
—Padma Sudarsan (Nokia)
—Tim Yao (Nokia)
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