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1. INTRODUCTION

Practitioners and researchers study best practices to develop and maintain ML application systems and software
to address quality and constraint problems. Such practices are often formalized as software patterns. We call
these software-engineering patterns for machine-learning applications SEP4MLA to distinguish them from non-
software-engineering patterns for ML, such as patterns for designing ML models. Among various patterns related

Author’s address: H. Washizaki, 3-4-1 Okubo, Shinjuku-ku, Tokyo, Japan; email: washizaki@waseda.jp; F. Khomh, Polytechnique
Montréal, QC, Canada; email: foutse.khomh@polymtl.ca; Y.-G. Guéhéneuc, Concordia University, Montréal, QC, Canada; email: yann-
gael.gueheneuc@concordia.ca; H. Takeuchi, Muashi University, Tokyo, Japan; email: h.takeuchi@cc.musashi.ac.jp; S. Okuda, Japan Advanced
Institute of Science and Technology, Japan; email: okuda@jaist.ac.jp
N. Natori, Aisin Seiki, Japan; email:naotake.natori@aisin.co.jp
N. Shioura, Aisin Seiki, Japan; email:naohisa.shioura@aisin.co.jp

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided
that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the
first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission. A prelimi-
nary version of this paper was presented in a writers’ workshop at the 27th Conference on Pattern Languages of Programs (PLoP).
PLoP’20, OCTOBER, Virtual. Copyright 2020 is held by the author(s). HILLSIDE 978-1-941652-03-9



Table I. Identified ML Patterns
Category ID Pattern name Abstract

Topology

P1 Different Workloads in
Different Computing
Environments

Physically isolate different workloads to different machines; then, optimize the
machine configurations and the network usage [Wu et al. 2019].

P2 Distinguish Business
Logic from ML Models

Separate the business logic and the inference engine, loosely coupling busi-
ness logic and ML-specific dataflows [Yokoyama 2019; Washizaki et al. 2020].

P3 ML Gateway Routing Ar-
chitecture

Install a gateway before a set of applications, services, or deployments and
use routing requests to the appropriate instance [Yokoyama 2019].

P4 Microservice Architecture Define consistent input and output data and provide well-defined services to
use for ML frameworks [Everett 2018; Smith 2017; Washizaki et al. 2020].

P5 Lambda Architecture The batch layer produces views at every chosen batch interval; the speed
layer creates real-time/speed views; the serving layer orchestrates and uses
both layers [Menon 2017; Packt 2017; Basak 2017].

P6 Kappa Architecture Support both real-time data processing and continuous reprocessing with a
single stream processing engine [Tyagi 2017].

Programming

P7 Data Lake Store data, both structured to unstructured, as “raw” as possible into a data
storage [Gollapudi 2016; Menon 2017; Singh 2019; Washizaki et al. 2020].

P8 Separation of Concerns
and Modularization of ML
Components

Decouple computations at different levels of complexity from simplest to most
complex [Rahman et al. 2019].

P9 Encapsulate ML Models
Within Rule-base Safe-
guards

Encapsulate functionality provided by ML models and handle the inherent
uncertainty of their outcomes using of deterministic and verifiable rules [Kläs
and Vollmer 2018].

P10 Discard PoC Code Discard the code created for the Proof of Concept (PoC) and rebuild maintain-
able code based on the findings from the PoC [Sculley et al. 2015].

Model Operation

P11 Parameter–Server
Abstraction

Distribute both data and workloads over worker nodes; the server nodes
maintain globally-shared parameters, represented as vectors and matrices
[Sculley et al. 2015].

P12 Data Flows Up, Model
Flows Down

Enable mobile devices to collaboratively learn a shared prediction model in
the cloud while keeping all the training data on the devices [Google 2017].

P13 Secure Aggregation Encrypt data from each mobile device in collaborative learning and calculate
totals and averages without individual examination [Google 2017].

P14 Deployable Canary Model Run the explainable inference pipeline in parallel with the primary inference
pipeline to monitor prediction differences [Blog 2018].

P15 ML Versioning Record the ML model structure, training dataset, training system, and analyti-
cal code to ensure reproducible training and inference processes [Wu et al.
2019; Amershi et al. 2019; Sculley et al. 2015; Washizaki et al. 2020].

to machine-learning applications, such as ML requirements engineering patterns or ML security engineering
patterns, we discovered 15 software-engineering design patterns for machine-learning applications (hereafter, ML
patterns) by doing a thorough search of available literature on the subject.

We grouped these ML patterns into three categories, as shown in Table 1: ML system topology patterns that
define the entire system architecture, ML system programming patterns that define the design/implementation of
particular components, and ML system model-operation patterns that focus on the operations of ML models.

Not all of the identified ML patterns are well-documented in standard pattern formats, which includes clear
problem statements and corresponding solution descriptions. Thus, we describe these ML patterns in the standard
pattern format so that practitioners can (re)use them in their contexts1.

1We described four other ML patterns: “Data Lake” (P7), “Distinguish Business Logic from ML Models” (P2), “Microservice Architecture” (P4)
and “ML Versioning” (P5) in [Washizaki et al. 2020].
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To describe each ML pattern uniformly, we adopted the well-known Pattern-Oriented Software Architecture
form (POSA) [Buschmann et al. 1996], with a discussion section to address practical considerations. It is a
well-structured format and practitioners with little knowledge of patterns can easily understand their contents.

In the following, we describe three ML patterns selected from the three different categories: “Different Workloads
in Different Computing Environments” (P1), “Encapsulate ML Models Within Rule-base Safeguards” (P9), and
“Data Flows Up, Model Flows Down” (P12).

2. DIFFERENT WORKLOADS IN DIFFERENT COMPUTING ENVIRONMENTS (P1)

2.1 Source

[Hazelwood et al. 2018]

2.2 Intent

To satisfy different resource requirements and constraints of different workloads by deploying them in different
computing environments.

2.3 Context

The typical ML pipeline process [Amershi et al. 2019] consists of various stages including data collection, data
processing (such as data cleaning and data labelling), feature engineering, model training, model deployment,
and model execution (i.e., inference and prediction) and monitoring. When deploying ML on a large scale, there
are various considerations to take into account, because different workloads correspond to different stages and
impose different requirements on the necessary computing resources.

For many machine learning models, the availability of extensive, high-quality data is crucial for prediction. The
ability to rapidly process and feed these data to the training machines is important for ensuring fast and efficient
offline training. For some ML applications, the amount of data to ingest for each training task can be huge. Also,
complex preprocessing may be necessary to clean and normalize data and allow efficient transfer and easy
learning. These impose high demands on all resources: storage, network, CPU, and GPU.

Quality requirements and constraints on data and software systems also impose resource requirements, varying
with the workload. For example, the sensitivity and security requirements of data is often an issue. Data for training
a ML model must be protected within the training environment if it contains personally-identifiable information.
Data processed from user input in the inference environment might be exposed to the outside. Requirements on
quality attributes, such as flexibility and scalability, can also be different by workloads.

2.4 Problem

There are four types of ML workloads with different characteristics: data collection, data processing, model training,
and model execution. These workloads have different resource requirements and constraints. Thus, it is hard to
optimize machine configurations if these workloads are deployed on the same machines. Such co-existence also
limit some quality attributes, such as security, flexibility, and scalability.

2.5 Solution

To decouple the workloads for data collection, data processing, model training, and model execution, and isolate
them on different machines to satisfy different resource requirements and constraints, and optimize for each
workload. Figure 1 shows the structure of those workloads deployed on different computing environments, which
requires to structure communication among those workloads as follows:

—Collector: The data collection machine(s) collects the data from data sources and store it into storage.
—Reader: The data processing machine reads the data from the storage, process and condense them, and then

send to the trainer.
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—Trainer: The training machine solely focuses on executing the training options rapidly and efficiently. The trained
model is deployed into the predictor.

—Predictor: The prediction machine focuses on executing the deployed model to conduct inference and prediction
according to the given input.

Machine configurations can be highly optimized for each different workload. High flexibility and scalability
can be achieved by distribution over the network. The resource requirements for training ML models, especially
deep-learning models, are often much larger than the requirements for executing that model, the trainer (and the
reader) is often located in Cloud computing environments. In contrast, the predictor can be deployed closer to its
users in a more resource-limited environments, such as IoT edge and mobile devices.
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Fig. 1. Structure of the “Different Workloads in Different Computing Environments” pattern

2.6 Example

At Facebook, most of the ML training is run through the FBLearner platform [Hazelwood et al. 2018], which is a
set of three tools: FBLearner Feature Store as reader, FBLearner Flow as trainer, and FBLearner Predictor as
predictor. Each tool focuses on different parts of the ML pipeline, as shown in Figure 2. FBLearner has an internal
job scheduler to allocate resources and schedule jobs on a shared pool of GPUs and CPUs to meet the different
resource requirements of the reader, trainer, and predictor.

FBLearner

Feature Store

FBLearner

Flow

FBLearner

Predictor

Trained

model

Deployed 

model
FeaturesData

FBLearner 
Feature Store

FBLearner
Flow

FBLearner
Predictor

Storage CPU CPU and GPU CPU

Fig. 2. Facebook’s Machine Learning Flow and Infrastructure
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2.7 Discussion

The data traffic generated by training can become significant. If not handled carefully, it can easily saturate
network devices, even disrupt other services. Thus, network optimization is also important, through compression,
scheduling, and data/computation placement.

2.8 Related Patterns

—Data Lake [Washizaki et al. 2020] (P7): The storage associated with the data collection workload is often
implemented as a “Data Lake”, which stores both structured to unstructured data.

—Data Flows Up, Model Flows Down (P12): The training workloads can be distributed over clouds and mobile
devices. In the pattern “Data Flows Up, Model Flows Down”, if the data collected from some mobile devices
is sensitive, the model is re-trained locally by using the data and the difference between the original and the
re-trained model is uploaded to the cloud.

3. ENCAPSULATE ML MODELS WITHIN RULE-BASE SAFEGUARDS (P9)

3.1 Source

[Kläs and Vollmer 2018]

3.2 Intent

To mitigate and absorb the low robustness of ML models by encapsulating ML models within rule-base safeguards.

3.3 Context

ML models are often part of highly-autonomous software systems, in which a high risk exists that humans,
businesses or the environment may be harmed in case of failure.

The Sheridan-Verplanck taxonomy defines ten automation levels, which the AI applications aim or achieve [Feldt
et al. 2018]. The higher the automation level, the more autonomous the AI application is in making decisions
and the higher the risk. At level seven or higher, computers take decisions without getting approval from humans:
“Computer makes and implements decision but must inform human after the fact” [Feldt et al. 2018].

3.4 Problem

Because of the complexity and empirical nature of ML models, no guarantee can be provided for their correctness.
Thus, it is dangerous to rely on ML models in highly-autonomous systems, especially for safety-critical systems or
highly-individualized or adaptive systems. Besides, ML models are unstable and vulnerable to adversarial attacks
and to noise in data and they may “drift” overtime.

3.5 Solution

To encapsulate functionality provided by ML models and deal with the inherent uncertainty of their outcomes,
inside the business logic, using deterministic and verifiable rules as safeguards. Figure 3 shows a structure in
which the business logic, the safeguard, and the model are responsible for the followings:

—The business logic API is a Façade that wraps the corresponding ML model.
—The safeguard encapsulating the ML model is responsible for adequate risk management, taking into account

the likelihood that the outcome of the model might be wrong, as well as the consequences of every decision. It
could decide to consider other information sources or adapt its behavior to handle uncertain outcomes.

—The encapsulated ML model must deliver its service together with information about outcome-related uncertainty
that can justifiably be trusted. It allows the system to conduct informed decisions via the business logic API.
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3.6 Example

In a scenario of autonomous intersection crossing using ML-based traffic sign recognition, the system could use
GPS localization as an additional information source or slow down the vehicle, thereby having more time to analyze
more images of the traffic situation [Kläs and Vollmer 2018].

Another scenario is a health recommender system that is individualized and adaptable to enable early detection
of individual health problems [Mellin 2017]. If the change in health is slow enough, then the system may adapt to
a situation that is risky and consider it to be normal. A rule-based safeguard that checks boundaries based on
general knowledge would prevent such risky recommendation based on individual adaptation.

3.7 Discussion

Considering sources of uncertainty such as model fit, data quality, and scope compliance would lead to more
systematic development and testing of models and systems.

Among “known-known,” “known-unknown,” “unknown-known,” and “unknown-unknown,” the rule-based safeguard
is particularly useful for “known-unknown”, of which people are aware but which they do not fully understand. In
“known-unknown”, there is a general problem for any kind of generalization due to the limited available data and
the risk of overfitting [Milkau and Bott 2018]. A combination of heuristics and machine learning can be a helpful
for active risk management [Milkau and Bott 2018], when deterministic and verifiable rules can be formulated. A
rule-based safeguard does not apply to “unknown-unknown.”

3.8 Related Patterns

—ML Gateway Routing Architecture (P3) [Yokoyama 2019]: A gateway can be installed in front of the business logic
so that clients can use multiple ML-based services with safeguards while avoiding the setting and management
of individual endpoints.

4. DATA FLOWS UP, MODEL FLOWS DOWN (P12)

4.1 Source

[Google 2017]

4.2 Intent

Decoupling the prediction and re-training from the storing in the cloud of the training data and trained ML models.

4.3 Context

Some ML applications are running on local devices, such as smart phones, cameras, and IoT devices. Such
applications predict various things, such as human behavior and environmental changes, and perform their
decision-making and activities in real time. The ML models are trained by data collected through the devices.
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4.4 Problem

The ML application on the local devices should return the its prediction results in real time. The ML model execution
should be performed on the edge and the model training in the cloud. The ML applications running on the local
devices may return customized prediction results. The ML model must be re-trained with data collected through
the device. Though the ML model on each device can be re-trained locally, the data collected could be stored into
the cloud for more efficient re-training. Yet, the user’s privacy and data confidentiality must be preserved.

4.5 Solution

To solve the problem described above, we introduce “Data Flows Up, Model Flows Down” pattern. Figure 4
illustrates the structure of this pattern. The ML model is trained in the cloud and deployed to each local device
(model flows down). Using the ML application, the data for re-training is collected in each device and this data or
the model re-trained locally are sent to the cloud (data flows up). Network connectivity is required between local
devices and the cloud when the ML model is deployed to local devices and the data/model is sent to the cloud.
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Fig. 4. Structure of the “Data Flows Up, Model Flows Down” pattern

Detailed steps of this pattern are as follows:

—The initial training is performed in the cloud; the trained ML model is deployed on the mobile devices (Step 1).
—In each mobile device, data is collected through the device (Step 2):

—If the collected data is not private, it flows up to the cloud.
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—If the collected data is private, the ML model is re-trained locally; the difference between the original ML model
and the re-trained model is sent to the cloud.

—In the cloud, using the uploaded data, the ML model is retrained (Step 3). Difference models provided by mobile
devices are averaged and updated into the ML model. Updating the ML model from difference models is a
special case of this pattern, Federated Learning. The updated ML model is re-deployed to each mobile device.

4.6 Example

“Data Flows Up, Model Flows Down” is implemented in the ML system using mobile/edge devices, such as mobile
phones, cameras, and IoT devices.

A major retail company in the USA introduced the ML system to identify traffic problems in their store parking
lots [IBM 2020]. They trained an ML model from the image data collected by the parking-lot security cameras and
deployed it at each store (model flows down). In the stores, the model is applied on real-time images from security
cameras and notifications sent to the staff when traffic jams occur. When a store encountered an adversarial
example, e.g., a false positive or false negative, the application sends the corresponding set of images to the cloud
for model re-training (data flows up).

Federated Learning is a special case of this pattern. It is implemented in the Google Keyboard on Android
called Gboard [Google 2017]. When users type texts, their phones store information about the current context and
whether users selected the suggestions provided by Gboard. Gboard uses a ML model locally and re-trains the
model using this stored data. Thus, Gboard reflects the users’ specific behavior and suggestions improve. The
difference between the original model and the re-trained models is uploaded to Google Cloud. At fixed intervals,
the base ML model in the cloud is updated using these uploaded difference models and re-deployed.

The Federated Learning approach is also implemented in medical imaging systems [Wen and Rieke 2020]. To
identify diseases from medical images using a ML system, huge amount of medical images are needed. Such
images may not be available in a single institution but may not be allowed to be shared to respect privacy and
confidentiality. Then, an initial ML model trained on a small dataset is deployed to each institution and the model
is re-trained locally using private patient data. Difference models from the institutions are collected and used to
update the ML model.

4.7 Discussion

When applying this pattern, we must assess the characteristics of the data collected locally. If the data contains
sensitive information, we must consider whether we can send such data to the cloud directly. If we cannot store
the data in the cloud, we must apply the Federated Learning approach. Before applying this Federated Learning,
we must assess whether the following conditions are satisfied. First, the local devices, such as mobile phones,
have enough computing resources to store the trained ML model and re-train the model. Second, the ML model
can be updated by averaging difference models. Third, there are no negative effects when updating the local ML
models with the re-trained, general model.

4.8 Related Patterns

—Different Workloads in Different Computing Environments (P1): “Data Flows Up, Model Flows Down” can be
seen as a special case of “Different Workloads in Different Computing Environments” from the viewpoint of
computing environments.

—Secure Aggregation (P13): “Secure Aggregation” is often necessary for Federated Learning on privacy-sensitive
user-held data.

5. CONCLUSION

We described three patterns: “Different Workloads in Different Computing Environresments”, “Encapsulate ML
models within rule-base safeguards”, and “Data Flows Up, Model Flows Down”. These patterns are from a set of
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ML patterns identified through a thorough search of the literature on patterns for machine-learning applications.
We hope that these patterns can guide practitioners (and researchers) to consider how ML fits within their target
contexts and design ML-based systems and software that address quality and constraint problems.

In the future, we plan to write all ML patterns in the standard pattern format to help developers adopt the good
practices described by these patterns. We also plan to identify more concrete cases of these patterns in real
applications. We will also create a map of the relationships among these ML patterns and other related patterns.
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