
Software Engineering Patterns for Machine Learning
Applications (SEP4MLA) - Part 4 - ML Gateway Routing
Architecture
HIRONORI WASHIZAKI, Waseda University / National Institute of Informatics / System Information / eXmotion
FOUTSE KHOMH, Polytechnique Montréal

YANN-GAËL GUÉHÉNEUC, Concordia University

Machine learning (ML) researchers study the best practices to develop and support ML-based applications to ensure quality and determine
the constraints applied to their application pipelines. Such practices are often formalized as software patterns. We discovered software-
engineering design patterns for machine-learning applications by thoroughly searching the available literature on the subject. Among the ML
patterns found, we describe in this paper one ML topology pattern, “ML Gateway Routing Architecture”, in the standard pattern format so that
practitioners can (re)use it in their contexts and benefits. The pattern addresses the problem of tight coupling among ML-implemented and
non-ML business logic as well as the front-end client by installing a gateway that routes requests.

Categories and Subject Descriptors: I.2.6 [Artificial Intelligence]: Learning—Machine learning; D.2.11 [Software Engineering]: Software
Architectures—Patterns

Additional Key Words and Phrases: Machine learning patterns

ACM Reference Format:

Washizaki, H. Khomh, F. and Guéhéneuc, Y.-G. 2022. Software Engineering Patterns for Machine Learning Applications (SEP4MLA) - Part 4.
HILLSIDE Proc. of Conf. on Pattern Lang. of Prog. 0 (October 2022), 8 pages.

1. INTRODUCTION

Machine learning (ML) researchers study best practices to develop and maintain ML-based applications to ensure
quality and determine the constraints on their application pipelines. Such practices are often formalized as software
patterns. We call these software-engineering design patterns for machine-learning applications, SEP4MLA, to
distinguish them from patterns for ML, which are unrelated to software engineering, such as patterns for designing
ML models [Lakshmanan et al. 2020]. Among various patterns related to machine-learning applications, such as
ML requirements engineering patterns or ML security engineering patterns, we discovered 15 SEP4MLA by doing
a thorough search of literature available on the subject. Details of our methodology are available in our previous
work [Washizaki et al. 2020; Washizaki et al. 2022].

Figure 1 shows an abstract structural overview of ML applications consisting of models, data, and infrastructures.
Based on the overview, we grouped these SEP4MLA into three categories, shown in Table 1: ML applications

Author’s address: H. Washizaki, 3-4-1 Okubo, Shinjuku-ku, Tokyo, Japan; email: washizaki@waseda.jp; F. Khomh, Polytechnique Mon-
tréal, QC, Canada; email: foutse.khomh@polymtl.ca; Y.-G. Guéhéneuc, Concordia University, Montréal, QC, Canada; email: yann-
gael.gueheneuc@concordia.ca;
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided
that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the
first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission. A prelimi-
nary version of this paper was presented in a writers’ workshop at the 29th Conference on Pattern Languages of Programs (PLoP).
PLoP’22, OCTOBER, Virtual. Copyright 2022 is held by the author(s). HILLSIDE 978-1-941652-03-9



Training data

Trained model Prediction

Training 

Infrastructure

Input data

Programming patterns

Serving 

Infrastructure

Model operation patterns

Topology patterns

P7. Data Lake for ML

P8. Separation of Concerns and Modularization of 

ML Components

P9. Encapsulate ML Models within Rule-base Safeguards

P10. Discard PoC Code

P1. Different Workloads in Different Computing Environments

P2. Distinguish Business Logic from ML Models

P3. ML Gateway Routing Architecture

P11. Parameter-Server Abstraction

P12. Data Flows Up, Model Flows Down

P13. Secure Aggregation

P14. Deployable Canary Model 

P15. ML Versioning

P4. Microservice Architecture for ML 

P5. Lambda Architecture for ML

P6. Kappa Architecture for ML

Fig. 1. Machine learning system overview and categories of software engineering design patterns for ML

topology patterns that define the applications architectures, ML applications programming patterns that define
the design/implementation of particular components of the applications, and ML applications model-operation
patterns that focus on the operations of ML models.

Not all of the identified SEP4MLA are well-documented in standard pattern format, which includes clear context,
problem statement, and corresponding solution description. Thus, we describe these SEP4MLA in a standard
pattern format so that practitioners can (re)use them in their contexts.

In previous works, we already described most of the patterns in Table 1: “Distinguish Business Logic from ML
Models” (P2), “Microservice Architecture for ML” (P4) , “ML Versioning” (P5), and “Data Lake for ML” (P7) in Part 1
[Washizaki et al. 2020]; “Different Workloads in Different Computing Environments” (P1),“Encapsulate ML Models
Within Rule-base Safeguards” (P9), and “Data Flows Up, Model Flows Down” (P12) in Part 2 [Washizaki et al.
2021]; and, “Lambda Architecture for ML” (P5) and “Kappa Architecture for ML” (P6) in Part 3 [Runpakprakun et al.
2021].

To describe each ML pattern uniformly, we partially adopted the well-known Pattern Oriented Software Architecture
format (POSA)[Buschmann et al. 1996]. It is a well-structured format and practitioners with little knowledge of
patterns can easily understand its content.

In the following, we describe the ML pattern “ML Gateway Routing Architecture” (P3).

2. ML GATEWAY ROUTING ARCHITECTURE (P3)

2.1 Source

[Yokoyama 2019]

2.2 Intent

Avoid tight coupling among ML-implemented and non-ML business logic as well as the front-end client by installing
a gateway that routes requests to the appropriate services.

Software Engineering Patterns for Machine Learning Applications (SEP4MLA) - Part 4 - ML Gateway Routing Architecture — Page 2



Table I. Identified ML Patterns
Category ID Pattern Name Summary

Topology

P1 Different Workloads in Dif-
ferent Computing Environ-
ments

Physically isolate different workloads to separate machines. Then optimize
the machine configurations and the network usage.

P2 Distinguish Business
Logic from ML Models

Separate the business logic and the inference engine, loosely coupling the
business logic and ML-specific dataflows.

P3 ML Gateway Routing Ar-
chitecture

Install a gateway before a set of applications, services, or deployments,
some of which are implemented by ML with an inference engine. Use
application layer routing requests to the appropriate instance.

P4 Microservice Architecture
for ML

Define consistent input and output data. Provide well-defined services to use
for ML frameworks.

P5 Lambda Architecture for
ML

The batch layer keeps producing views at every set batch interval while the
speed layer creates the relevant real-time/speed views. The serving layer
orchestrates the query by querying both the batch and speed layer, and then
merges them.

P6 Kappa Architecture for ML Support both real-time data processing and continuous reprocessing with a
single stream processing engine.

Programming

P7 Data Lake for ML Store data, which range from structured to unstructured, as “raw” as possible
into a data storage.

P8 Separation of Concerns
and Modularization of ML
Components

Decouple at different levels of complexity from the simplest to the most com-
plex.

P9 Encapsulate ML Models
Within Rule-base Safe-
guards

Encapsulate functionality provided by ML models and appropriately deal with
the inherent uncertainty of their outcomes in the containing system using
deterministic and verifiable rules.

P10 Discard PoC Code Discard the code created for the PoC and rebuild maintainable code based on
the findings from the PoC.

Model Operation

P11 Parameter–Server
Abstraction

Distribute both data and workloads over worker nodes, while the server nodes
maintain globally shared parameters, which are represented as vectors and
matrices.

P12 Data Flows Up, Model
Flows Down (Federated
Learning)

Enable mobile devices to collaboratively learn a shared prediction model in the
cloud while keeping all the training data on the device as federated learning.

P13 Secure Aggregation Encrypt data from each mobile device in collaborative learning and calculate
totals and averages without individual examination.

P14 Deployable Canary Model Run the explainable inference pipeline in parallel with the primary inference
pipeline to monitor prediction differences.

P15 ML Versioning Record the ML model structure, training dataset, training system and analytical
code to ensure a reproducible training process and an inference process.

2.3 Example

Figure 2 presents an example of the architecture of a Slack-based Chatbot system with a calendar service (as a
non-ML business logic service) and a Chatbot service (as an ML-implemented service supported by an inference
engine). Since the Chatbot UI as a client has to know details of these ML/non-ML services to utilize them, these
components are tightly coupled, resulting in low flexibility, scalability, and manageability.

2.4 Context

The target ML system contains various business applications, services, and deployments. Some of which are
implemented by ML with an inference engine and data processing. These multiple applications and services
can be deployed on different internal servers in the same internal network or on different virtual endpoints of the
same server.

Software Engineering Patterns for Machine Learning Applications (SEP4MLA) - Part 4 - ML Gateway Routing Architecture — Page 3



User Interface

(Chatbot UI)

Web App

Front-end

Slack

API

Data Collection

(Dataset)

Datasets
Outside

Conversation 

Corpus

Non-ML Business Logic 

Service 

(Schedule Reference Service)

Google 

Calendar

Google Apps 

Script

ML-implemented Service with 

Inference Engine

(Chatbot Service)

Chatbot

Slack

TensorFlow 

(NN Model)

Users

Data 

Source

Input

Output

Datasets

Train Model

Request

Output Data

Deployed as ML System

Business Logic Data Flow

ML-supported Runtime Data Flow

ML Development Data Flow

Legend

Fig. 2. Example of Chatbot system architecture without pattern application

2.5 Problem

Tight coupling among the front-end client (i.e., the UI), non-ML business logic, business logic supported by ML,
and the inference engine leads to low flexibility and scalability. Moreover, when a client directly uses these multiple
applications and services independently, it can be difficult to set up and manage individual endpoints for each
service.

The following forces are associated with this problem:

—Flexibility and scalability: The components should be loosely coupling to ensure high flexibility and scalability.
—Manageability: Complex setting up and managing individual endpoints would lead to low manageability and

extensibility of services, the client, and the entire system.
—Performance and reliability: Little performance and reliability degradation by adopting a single proxy would be

acceptable while considering the above quality attributes.

2.6 Solution

To wrap each business logic with/without the support of the ML inference engine into a different service presenting
a unique business API, install a gateway before a set of services, and use application layer routing requests to
the appropriate instance. It avoids tight coupling among ML-implemented and non-ML services as well as the
front-end client. The client can use multiple non-ML and ML-implemented business services without difficult setup
and management of individual endpoints. Figure 3 shows the structure of the solution architecture.

A general inference engine might be provided as an independent service via the gateway; however, it can easily
expose the inference engine details leads to the client, resulting in unnecessary tight coupling between the client
and ML models.

This architecture can be easily extended to handle a variety of data ranging from structured to unstructured
by additionally adopting “Data Lake for ML” as shown in Fig. 4.

2.7 Example resolved

Figure 5 presents a possible implementation of the pattern and the Data Lake for ML in the same motivating
example (i.e., the Slack-based Chatbot system). Using the pattern, the necessary elements as well as their
relationships are easily specified while having clear separation between the calendar service (as the related
non-ML business logic service), the Chatbot service (as the ML-implemented service supported by the inference
engine), and the underlying ML components.

Software Engineering Patterns for Machine Learning Applications (SEP4MLA) - Part 4 - ML Gateway Routing Architecture — Page 4



User 

Interface

Non-ML 

Business Logic 

Service

Data 

Collection

ML-implemented 

Service with 

Inference

Engine

Gateway

R
ea

l 
W

o
rl

d

Fig. 3. Structure of the ML Gateway Routing Architecture

User 

Interface

Non-ML 

Business Logic 

Service

Data 

Collection

ML-implemented 

Service with 

Inference

Engine

Gateway

Data Lake

R
ea

l 
W

o
rl

d

Fig. 4. Structure of the ML Gateway Routing Architecture with the Data Lake for ML

User Interface

(Chatbot UI)

Web App

Front-end
Slack

Gateway (HTTP Request 

and Response)

Incoming and 

Outgoing 

Webhooks

Slack API

Data Collection

(Dataset)

Datasets
Outside

Conversation 

Corpus

Data Lake and Data 

Processing 
(Vectorized Corpus)

WordVector
TensorFlow

(Text)

Non-ML Business Logic 

Service 

(Schedule Reference Service)

Google 

Calendar

Google Apps 

Script

ML-implemented Service with 

Inference Engine

(Chatbot Service)

Chatbot

Slack

TensorFlow 

(NN Model)

Users

Data 

Source

Input

Output

Datasets

Input Data

Output Data

Datasets Train Model

Request

Output Data

Fig. 5. Example of Chatbot system architecture by applying “ML Gateway Routing Architecture”

2.8 Known Uses

Cloud platforms provide gateway services, including Amazon API Gateway1 and Azure Application Gateway2 that
support ML models and ML-implemented services.

1https://aws.amazon.com/api-gateway/
2https://docs.microsoft.com/azure/application-gateway/

Software Engineering Patterns for Machine Learning Applications (SEP4MLA) - Part 4 - ML Gateway Routing Architecture — Page 5



Fig. 6. Overview of the Amazon API Gateway (adopted from https://aws.amazon.com/api-gateway/)

2.9 Consequences

The pattern presents the following advantages:

—Loose coupling and high flexibility and scalability: Clients can utilize multiple (ML-supported) applications and
services without knowing their details, resulting in loose coupling among ML-implemented and non-ML services
and the front-end clients.

—Ease of management: The client can use multiple non-ML and ML-implemented services without complex
setup and management of individual endpoints, resulting in improved manageability of services, the client, and
the entire system.

Possible liabilities include:

—Possibility of low performance: This architecture creates an extra overhead between the user interface and the
business logic, and the latency performance of the system might decrease.

—Possibility of low reliability: The gateway can become a single point of failure (SPOF), compromising the
system’s availability.

2.10 See also

—Gateway Routing Architecture [Narumoto 2017]: “ML Gateway Routing Architecture” is an extended case of the
“Gateway Routing Architecture” in the ML application domain.

—Data Lake for ML (P7) [Gollapudi 2016; Menon 2017; Singh 2019; Washizaki et al. 2020]: The storage associated
with the data collection workload is often implemented as a “Data Lake for ML”, which stores both structured and
unstructured data.

Software Engineering Patterns for Machine Learning Applications (SEP4MLA) - Part 4 - ML Gateway Routing Architecture — Page 6

https://aws.amazon.com/api-gateway/


—Encapsulate ML models within rule-base safeguards (P9) [Kläs and Vollmer 2018; Washizaki et al. 2021]: A
gateway can be installed in front of the business logic so that clients can use multiple ML-based services with
safeguards while avoiding the setup and management of individual endpoints.

—Distinguish Business Logic from ML Models (P2) [Yokoyama 2019; Washizaki et al. 2020]: “Distinguish Business
Logic from ML Models” can help achieving the objective of decoupling business logic and ML models with less
flexibility in terms of logic services.

3. CONCLUSION

In this paper, we described the ML pattern “ML Gateway Routing Architecture”, which we choose in a set of
SEP4MLA identified through a thorough search of the literature on patterns for machine-learning applications. We
hope that this pattern can guide practitioners (and researchers) to consider how ML applications fit within their
target contexts and design ML-based applications with the required quality.

In the future, we plan to write all SEP4MLA in a standard pattern format to help developers adopt good practices
in the development of ML applications. We also plan to identify more concrete occurrences of these patterns in
real applications. We will also create a map of the relationships among these SEPMLA and other patterns.

Acknowledgement

We are grateful to our shepherd, Eduardo B. Fernandez, for his careful and valuable reviews that significantly
improved this paper.Also, We would like to thank all participants of the writers’ workshop at PLoP 2022. This
work was supported by JSPS Bilateral Program JPJSBP120209936, JSPS KAKENHI 21KK0179, and JST-Mirai
Program Grant Number JPMJMI20B8.
Received July 2022; revised August 2022; accepted

REFERENCES

Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad, and Michael Stal. 1996. Pattern-Oriented Software Architecture, Volume
1: A System of Patterns. Wiley.

Sunila Gollapudi. 2016. Practical Machine Learning. Packt Publishing, Birmingham, UK. https://books.google.ca/books?id=
3ywhjwEACAAJ

Michael Kläs and Anna Maria Vollmer. 2018. Uncertainty in Machine Learning Applications: A Practice-Driven Classification of Uncertainty. In
Computer Safety, Reliability, and Security - SAFECOMP 2018 Workshops, ASSURE, DECSoS, SASSUR, STRIVE, and WAISE, Västerås,
Sweden, September 18, 2018, Proceedings. Springer, –, 431–438. DOI:http://dx.doi.org/10.1007/978-3-319-99229-7_36

Valliappa Lakshmanan, Sara Robinson, and Michael Munn. 2020. Machine Learning Design Patterns. O’Reilly Media, Inc., New York, NY,
USA. https://learning.oreilly.com/library/view/machine-learning-design/9781098115777/

Pradeep Menon. 2017. Demystifying Data Lake Architecture. https://www.datasciencecentral.com/profiles/blogs/
demystifying-data-lake-architecture. (August 2017).

M Narumoto. 2017. Gateway Routing pattern. https://docs.microsoft.com/en-us/azure/architecture/patterns/
gateway-routing. (June 2017).

Jomphon Runpakprakun, Sien Reeve Ordonez Peralta, Hironori Washizaki, Foutse Khomh, Yann-Gael Gueheneuc, Nobukazu Yoshioka,
and Yoshiaki Fukazawa. 2021. Software Engineering Patterns for Machine Learning Applications (SEP4MLA) – Part 3 – Data Processing
Architectures. In 28th Conference on Pattern Languages of Programs in 2021 (PLoP’21). Hillside, Inc., –, 1–11.

Ajit Singh. 2019. Architecture of Data Lake. https://datascience.foundation/sciencewhitepaper/architecture-of-data-lake.
(April 2019).

Hironori Washizaki, Foutse Khomh, Yann-Gaël Guéhéneuc, Hironori Takeuchi, Naotake Natori, Takuo Doi, and Satoshi Okuda. 2022. Software-
Engineering Design Patterns for Machine Learning Applications. Computer 55, 3 (2022), 30–39.

Hironori Washizaki, Foutse Khomh, Yann-Gael Gueheneuc, Hironori Takeuchi, Satoshi Okuda, Naotake Natori, and Naohisa Shioura. 2021.
Software Engineering Patterns for Machine Learning Applications (SEP4MLA) – Part 2. In 27th Conference on Pattern Languages of
Programs in 2020 (PLoP’20). Hillside, Inc., –, 1–10.

Hironori Washizaki, Foutse Khomh, and Yann-Gaël Guéhéneuc. 2020. Software Engineering Patterns for Machine Learning Applications
(SEP4MLA). In 9th Asian Conference on Pattern Languages of Programs (AsianPLoP 2020). Hillside, Inc., –, 1–10.

Software Engineering Patterns for Machine Learning Applications (SEP4MLA) - Part 4 - ML Gateway Routing Architecture — Page 7

https://books.google.ca/books?id=3ywhjwEACAAJ
https://books.google.ca/books?id=3ywhjwEACAAJ
http://dx.doi.org/10.1007/978-3-319-99229-7_36
https://learning.oreilly.com/library/view/machine-learning-design/9781098115777/
https://www.datasciencecentral.com/profiles/blogs/demystifying-data-lake-architecture
https://www.datasciencecentral.com/profiles/blogs/demystifying-data-lake-architecture
https://docs.microsoft.com/en-us/azure/architecture/patterns/gateway-routing
https://docs.microsoft.com/en-us/azure/architecture/patterns/gateway-routing
https://datascience.foundation/sciencewhitepaper/architecture-of-data-lake


Haruki Yokoyama. 2019. Machine Learning System Architectural Pattern for Improving Operational Stability. In
International Conference on Software Architecture Companion. IEEE CS Press, Hamburg, Germany, 267–274.
DOI:http://dx.doi.org/10.1109/ICSA-C.2019.00055

Software Engineering Patterns for Machine Learning Applications (SEP4MLA) - Part 4 - ML Gateway Routing Architecture — Page 8

http://dx.doi.org/10.1109/ICSA-C.2019.00055

	Introduction
	ML Gateway Routing Architecture (P3)
	Source
	Intent
	redExampleblack
	Context
	Problem
	Solution
	redExample resolvedblack
	Known Uses
	redConsequencesblack
	redSee alsoblack

	Conclusion

