
Review-based Comparison of Design Pattern Detection Tools

RODRIGO MOREIRA, Federal University of Minas Gerais (UFMG), Brazil
EDUARDO FERNANDES, Queen’s University, Canada
EDUARDO FIGUEIREDO, Federal University of Minas Gerais (UFMG), Brazil

Context: Design patterns are reusable solutions for recurring problems of software design. Although useful for software
analysis, detecting design patterns is often challenging especially in large and complex software systems. In this context,
several tools have been proposed for automating this process. Objective: Past attempts to summarize existing detection tools
contain gaps in their scope, such as the lack of a comparison of the output provided by the tools in terms of precision and
agreement. We address some of these gaps through a literature review and a comparison of design pattern detection tools.
Our goal is to assist practitioners and researchers not only looking for useful tools, but also exploring opportunities for
their improvements. Method: We present a systematic literature review of design pattern detection tools based on strict
guidelines. We compare the performance of four tools in detecting six design patterns based on precision, recall, F-measure,
and agreement. Results: From the 42 tools found, only ten are available for download. Altogether, the tools detect all 23
design patterns summarized by the Gang of Four’s book. The comparison results suggest that some tools are more suitable
for specific design patterns, e.g., the FINDER tool for Composite, Decorator and Visitor. We also observed a low agreement
among tools. Conclusions: Despite the high number of tools published, design pattern detection tools are mostly ineffective
and unavailable for use. Particularly, practitioners might struggle to find a tool that matches their expectations. The available
tools provide inaccurate yet complementary detection results; thus, solutions for either improving or combining tools are
needed. Researchers are encouraged to propose novel tools capable of filling this literature gap.

CCS Concepts: • Software and its engineering→ Abstraction, modeling and modularity; Software maintenance
tools; Software design engineering; • General and reference→ General literature; Experimentation.

Additional Key Words and Phrases: software design, design pattern, automated development tool, systematic literature review,
comparative study

ACM Reference Format:
Rodrigo Moreira, Eduardo Fernandes, and Eduardo Figueiredo. 2022. Review-based Comparison of Design Pattern Detection
Tools. In SugarLoafPlop 2022: Latin American Conference on Pattern Languages of Programs, October 18, 2022, Online. ACM,
New York, NY, USA, 16 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Software design is the process of translating requirements into a detailed design representation of a software
system [68]. This process includes making decisions on how to organize the source code [68]. Since these decisions
may be difficult, design patterns have been proposed for driving them [33]. A design pattern is a reusable solution
for a recurring problem of software design [33]. Examples of design patterns are Composite and Visitor. Composite
helps to treat a group of objects as if they were a single object, while Visitor helps to dynamically introduce new
operations to an object without changing its structure [33].

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first
page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from
permissions@acm.org.
SugarLoafPlop 2022, October 18, 2022, Online
© 2022 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

SugarLoafPlop 2022, October 18, 2022, Online Rodrigo Moreira, Eduardo Fernandes, and Eduardo Figueiredo

Although useful, design patterns are not usually documented in the source code. In particular, analyzing
source code and performing changes may require a deep understanding on which and how design patterns occur.
In this context, design pattern detection (DPD) may facilitate the software analysis [39] and support design
decisions [4, 69]. However, the literature suggests that DPD is challenging due to several reasons, such as the size
and complexity of real-world systems [24, 64]. Thus, software engineers need automated assistance for making
DPD easier, faster, and more accurate. Several studies have proposed tools for automating DPD [18, 25, 31, 32, 64].
Unfortunately, past attempts to summarize these tools [48, 67] contain some gaps in their scope. For instance,
they lack a comparison of the output provided by the tools in terms of precision and agreement.
This paper fills these literature gaps by presenting a systematic literature review (SLR) and a comparison of

DPD tools. Our goal is to assist practitioners and researchers in choosing tools that meet their needs. We followed
strict guidelines for SLRs [40]. We then analyzed the data to understand both nature and scope of existing tools.
For instance, we identified the design patterns and programming languages supported by tools. We also compared
the performance of four tools – FINDER [17], GEML [10], MARPLE-DPD [69], and PTIDEJ [41] – in detecting
six design patterns: Chain of Responsibility (CoR), Composite, Decorator, Prototype, Singleton, and Visitor. We
computed precision, recall, F-measure, and agreement [34].
Our SLR revealed 42 tools although only ten are available online. Altogether, the tools claim to detect all 23

design patterns compiled by the Gang of Four’s book [33]. The frequency of published tools remained stable over
the years, thereby suggesting this research topic has not yet reached saturation. This assumption is plausible if we
consider the poor performance observed for the tools compared in our study. Our results suggest low precision,
low recall, and low agreement. They also lack essential features, such as data filtering and results export.
We summarize our study contributions as follows. First, we present an extensive catalog of 42 DPD tools

published in the last two decades, each characterized by the supported design patterns, programming languages,
etc. Second, we quantitatively compare four state-of-the-art tools based on precision, recall, F-measure, and
agreement. Third, we present a list of manually validated instances of six design patterns detected in two Java
systems. Fourth, we provide the study replication package containing information, such as the detected instances,
our manual classification of true or false positives, the list of papers from the SLR, etc.1

The results presented in this paper have multiple implications for both practitioners and researchers interested
in DPD. Dozens of DPD tools have been proposed in the last two decades and, still, existing tools provide
very limited support and considerably unreliable output. On one hand, practitioners must be aware of possible
limitations of the existing tools while picking tools that match their needs. On the other hand, we strongly
encourage researchers and tool builders to propose novel tools or improve existing ones.

2 LITERATURE REVIEW PROTOCOL

2.1 Goal and ResearchQuestions
We defined our study goal based on the Goal-Question-Metric template [11] as follows: We aim to analyze the
state of the art in DPD tools; for the purpose of summarizing the contributions made by previous studies; with
respect to multiple aspects of the primary studies that either proposed or compared tools, as well as the main
features of existing tools; from the point of view of researchers and practitioners interested in DPD; in the context
of primary studies published over the past two decades. We introduce below our research questions (RQs).
RQ1:What is the publication landscape of DPD tools over the past two decades?
RQ2:What DPD tools were published in the last two decades and what are their main features?
RQ2.1:What are the existing DPD tools?
RQ2.2:What are the main features of the existing DPD tools?
RQ2.3:What detection approaches have been used by the existing DPD tools?

1https://doi.org/10.5281/zenodo.5921504

2

Review-based Comparison of Design Pattern Detection Tools SugarLoafPlop 2022, October 18, 2022, Online

2.2 Search for Primary Studies
We chose four Web engines to search for primary studies: ACM Digital Library (dl.acm.org), IEEE Xplore
(ieeexplore.ieee.org), ScienceDirect (www.sciencedirect.com), and Springer (www.springer.com). All these engines
provide a vast amount of studies published in Software Engineering [27]. These engines have been used for
conducting SLRs in various Software Engineering topics [16, 51, 56, 58]. They have also been used in SLRs
related to DPD, e.g., software pattern application [48] and anti-pattern detection tools [30]. We run the following
search string on each engine: (“design pattern detection”) AND (tool OR “software solution”) AND (automated OR
automatic). This search string is a result of multiple pilot searches and followed by manual inspection of the
obtained output.

We found the following numbers of primary studies by engine: 44 studies from ACM Digital Library, 18 from
IEEE Xplore, 41 from ScienceDirect, and 76 from Springer. While running the search string on each engine, we set
the interval from January 2000 to December 2021 as the range of publication year. The total number of primary
studies, regardless of the existence of duplicates, equals 179. We automatically exported the metadata of all these
studies to a Comma-Separated Values (CSV) file. For this purpose, we relied on either the native export feature
provided by IEEE Xplore and Springer or the Data Miner2 extension for the Google Chrome browser.

2.3 Filtering of Primary Studies
We relied on strict guidelines [40] for filtering the primary studies. First, we removed all duplicates found in the ini-
tial set of 179 primary studies. Second, we applied the following inclusion criteria: 1) the study is written in English,
complete, and available online for download; 2) the study is either a conference/journal/symposium/workshop
paper; and 3) the study either proposes or compares DPD tools. With respect to the third criteria, some papers
presented results of scripts or algorithms without an explicit mention of a tool implementation. Since the aim of
this study is to evaluate ready-for-use tools, we discarded these studies and those that do not match either of the
inclusion criteria. As a result, 25 valid primary studies remained for analysis.
We expanded our set of primary studies by performing backward snowballing [65] on the 25 valid primary

studies. First, we took notes of any DPD tools mentioned in the body of these studies and, then, collected the
studies used as reference for these tools. Second, we applied the inclusion criteria mentioned above on the newly
retrieved studies. We identified 17 additional studies, thereby resulting in a final set of 42 valid primary studies
for analysis. It is important to highlight that this process was done in pairs.

2.4 Data Extraction from Primary Studies
The first two authors of this paper collaborated in the full-text read of all 42 selected primary studies, with
the purpose of extracting and tabulating data. First, we extracted and tabulated the following metadata from
each study: paper title, list of authors, release year, publication venue, and type of venue (conference, journal,
etc.). Second, we extracted and tabulated the name of all DPD tools either mentioned in or proposed by each
study. Third, we extracted and tabulated the following technical data of each DPD tool: tool name, tool type
(plug-in or stand-alone), programming languages used to implement the tool, programming languages supported
in DPD, availability to use for free, scope of the detectable design patterns, download availability, documentation
availability, Graphical User Interface (GUI), detection techniques, and the way used to evaluate the DPD tools.
Whenever technical data were not explicit in a study, we searched for data in the tool’s website or the study’s
repository if applicable. Regarding the tool availability for download, we restricted our search to the content of
the paper and the available links.

2https://dataminer.io

3

SugarLoafPlop 2022, October 18, 2022, Online Rodrigo Moreira, Eduardo Fernandes, and Eduardo Figueiredo

3 LITERATURE REVIEW RESULTS

3.1 Publication Landscape (RQ1)
Figure 1 presents the number of DPD tools published in the literature by year since 2000. The publication year
refers to the year in which the primary study was published. We found out that new tools have been introduced
every year with the exception of 2004 and 2013. This result suggests that introducing novel DPD tools is still a live
research worldwide. Most studies appeared in conferences (55%), followed by journals (33%), symposiums (7%), and
workshops (5%). Examples of prestigious conferences include International Conference on Software Engineering
(ICSE) and International Conference on Automated Software Engineering (ASE). Examples of prestigious journals
include IEEE Transactions on Software Engineering (TSE) and ACM Transactions on Software Engineering and
Methodology (TOSEM).

Fig. 1. Number of Tools Published by Year

3.2 Existing Tools (RQ2.1)
Table 1 summarizes the 42 DPD tools revealed by our literature review. The first column lists the names of the
tools and the respective reference, i.e., the primary study in which the tool was introduced. The second column
informs whether the tool is either stand-alone or plug-in. Most tools (71%) are stand-alone, which suggests they
are quite flexible to use since they do not depend on a particular Integrated Development Environment (IDE)
to run. It is important to point out that some tools, such as DPRE [19], are not clearly defined as plug-in or
stand-alone tools in their respective papers. Since these tools were not available for download during the study
execution, we assumed that they were stand-alone tools.

The third and fourth columns report on what programming languages were used for developing each tool and
in which languages the tool can perform DPD. Java is a very popular language3, so that our results are expected:
most tools are written in Java (55%) and able to detect design patterns in Java (69%). Surprisingly, however, we
could not find DPD tools for other popular programming languages, such as JavaScript and Python. The fifth
column presents the scope of detectable design patterns. Section 3.3 discusses details on the data of this column.
The sixth column reports on documentation availability for each tools. Only eight tools (19%) have some type
of documentation (website, README, etc.) available online. As suggested in our tool comparison (Section 4.2),
documentation may be a key to adopting a tool. Thus, we strongly encourage researchers to provide a minimum
documentation to their tools. The seventh column informs whether the DPD tools provide any sort of Graphical
User Interface (GUI). This knowledge is important for practitioners looking for easy-to-use interfaces, since GUIs
aim at facilitating user interactions [38]. We detail the data summarized by this column in Section 3.3.

3.3 Main Features of the Tools (RQ2.2)
Supported Programming Languages: The TIOBE Index for October 2021 reports on Python, C, Java, C++, and
C# as the five most popular languages worldwide. We found a considerable number of DPD tools compatible

3TIOBE Index for October 2021: https://www.tiobe.com/tiobe-index/

4

Review-based Comparison of Design Pattern Detection Tools SugarLoafPlop 2022, October 18, 2022, Online

Table 1. Overview of the Tools

Name Type Language Scope of Detectable Design Patterns Docs GUIDevel. Suppor.
DesPaD [42] Stand -alone Java Java Abstract Factory, Adapter, Bridge, +20 No No
DPJF [14] Plug-in Java Java CoR, Composite, Decorator, +2 Yes Yes
FINDER [17] Stand -alone Java Java Abstract Factory, Adapter, Bridge, +17 Yes No
GEML [10] Stand -alone Java Java Abstract Factory, Adapter, Builder, +12 Yes Yes
MARPLE-DPD [69] Plug-in Java Java Adapter, Composite, Decorator, +19 Yes Yes
PatRoid [49] Stand -alone Python Java* Abstract Factory, Adapter, Bridge, +20 Yes No
PINOT [53] Stand -alone C++ Java Abstract Factory, Adapter, Bridge, +14 No No
PTIDEJ [41] Stand -alone Java Java Adapter, Builder, CoR, +14 Yes Yes
Reclipse [63] Plug-in Java Java CoR, Command, Composite, +2 Yes Yes
SSA/DPD [60] Stand -alone Java Java Adapter, Command, Composite, +9 No Yes
Alnusair et al. [3] Stand-alone N/A Java Composite, Observer, Singleton and 2 other No N/A
Antoniol et al. [5] Stand-alone Java C++ Adapter, Bridge, Composite and 2 other No Yes
APRT [50] Stand-alone Java Java Singleton, Strategy No N/A
CrocoPat [13] Stand-alone N/A Java Composite No N/A
D3 (D-cubed) [57] Stand-alone Java Java Abstract Factory, Builder, Factory Method, Sin-

gleton
No No

DEPAIC++ [29] Stand-alone Java C++ Abstract Factory, Composite, Iterator No Yes
DP-Miner [25] Stand-alone N/A Java Adapter, Composite, Decorator, State No Yes
DPDT [54] Stand-alone C++ Java Bridge, Composite, Flyweight and 4 other No N/A
DPF [12] Plug-in Java Java Adapter, Command, Composite and 8 other No Yes
DPRE [19] Stand-alone Java Java Adapter, Bridge, Command and 8 other No Yes
DPVK [64] Stand-alone N/A Eiffel Abstract Factory, Adapter, Bridge and 15 other No No
ePad [20] Plug-in N/A Java Abstract Factory, Builder, Command and 9 other No Yes
Hedgehog [15] Stand-alone N/A Java Bridge, Factory Method No N/A
Heuzeroth et al. [35] Stand-alone Java Java Chain of Responsibility, Mediator, Observer, Vis-

itor
No N/A

Heuzeroth et al. [36] Stand-alone N/A Java Composite, Decorator, Observer No N/A
JADEPT [7] Stand-alone Java Java Chain of Responsibility, Observer, Visitor No Yes
Maisa [43] Stand-alone Java UML Abstract Factory No N/A
nMarple [6] Plug-in N/A .NET Abstract, Builder, Chain of Responsibility and

13 other
No Yes

PatternFinder [23] Stand-alone N/A .NET Abstract Factory, Adapter, Bridge and 20 other No Yes
Philippow et al. [44] N/A N/A C++ Abstract Factory, Adapter, Bridge and 20 other No N/A
PRAssistor [37] Stand-alone Java Java Composite, Singleton, Visitor No No
Rasool & Mader [45] Stand-alone C# C++, Java Abstract Factory, Adapter, Bridge and 20 other No Yes
Rasool & Mader [46] Plug-in .NET, C# C#, C++, Java Abstract Factory, Adapter, Bridge and 20 other No Yes
Sartipo & Hu [52] Plug-in Java Java Adapter, Bridge, Decorator and 4 other No Yes
SparT-ETA [66] Stand-alone Java Java Abstract Factory, Adapter, Bridge and 19 other No N/A

SPQR [55] Stand-alone N/A Language
Independent Decorator No N/A

Thongrak et al. [59] Stand-alone N/A UML Strategy No Yes
Van Doorn et al. [61] Stand-alone Java UML Abstract Factory, Adapter, Bridge and 13 other Yes No
Vokác [62] Stand-alone N/A C++ Decorator, Factory Method, Observer and 2

other
No N/A

VPML [28] Plug-in Java UML Abstract Factory, Adapter, Bridge and 8 other No Yes
Web of Patterns [22] Plug-in Java Java Abstract Factory, Adapter, Bridge and 7 other No Yes
Zhang & Li [70] N/A N/A C++ N/A No N/A
*Android apps written in Java.

5

SugarLoafPlop 2022, October 18, 2022, Online Rodrigo Moreira, Eduardo Fernandes, and Eduardo Figueiredo

with at least Java (29; 69%), C++ (7; 17%), and C# (1; 2%). We also found tools compatible with UML (4; 10%), .Net
platform (2; 5%), Eiffel (1; 2%), and Language Independent (1; 2%). This result suggests that practitioners could
benefit from using existing tools. Curiously, four tools perform DPD on UML models [28, 43, 59, 61] rather than
on source code. One tool is advertised as language independent [55]. This means that the tool runs on an abstract
syntax tree, which can be derived from programs in different programming languages, such as C and Java.
Scope of Detectable Design Patterns: Table 2 shows the number of tools that detect each of the 23 design

patterns cataloged by the Gang of Four (GoF) [33]. The table is divided into three sets of three columns according
to the pattern category: behavioral patterns, structural patterns, and creational patterns. Percentages are computed
with respect to all 42 DPD tools and each tool may detect multiple design patterns. All 23 design patterns
mentioned above are detectable by at least one tool. Nine out of 23 design patterns (35%) are detectable by at least
50% of the tools. We observed a balanced distribution of these nine design patterns across categories: four design
patterns are Behavioral Patterns (i.e., Observer, State, Strategy, and Visitor); two are Creational (i.e., Factory
Method and Singleton); and three are Structural (i.e., Adapter, Composite, and Decorator). We conclude that
researchers focused on supporting the detection of not only easily detectable design patterns (e.g., Singleton
because it involved very specific code elements), but also more complex ones, such as Composite and Visitor.

Table 2. Number of Tools that Detect Each Design Pattern

Behavioral Patterns Structural Patterns Creational Patterns
Pattern Total Percentage Pattern Total Percentage Pattern Total Percentage
Observer 27 64% Composite 28 67% Singleton 22 52%
Strategy 24 57% Decorator 25 60% Factory Method 22 52%
State 21 50% Adapter 21 50% Abstract Factory 19 45%
Visitor 21 50% Proxy 20 48% Prototype 14 33%

Template Method 20 48% Bridge 19 45% Builder 13 31%
Command 18 43% Flyweight 12 29%

Chain of Responsibility 16 38% Facade 8 19%
Iterator 14 33%
Mediator 13 31%
Memento 12 29%
Interpreter 11 26%

Free-to-Use Availability: This information may be particularly important for small-sized teams with scarce
resources available for developing software systems. We chose to report this information instead of the tool’s
license, since this information is usually not explicitly reported in papers. Out of the 42 DPD tools, we found that:
12 tools (29%) are explicitly reported by the authors as free to use; 1 tool (2%) is pay to use; and for the remaining
29 tools (69%) we could not find explicit reports on whether they are free or pay to use.

Download Availability:We assessed the download availability of DPD tools by searching for download links
within the studies. We used these links for downloading the tools whenever they were available. Otherwise, we
Google searched for the tool name. We found that ten out of the 42 DPD tools (24%) were downloadable during
our study. This result is reasonable if we consider our wide range of publication year, i.e., two decades of research.
Table 1 is organized in such a way the first ten tools are those available for download.

GUI Availability: Figure 2a presents the number of DPD tools by their Graphical User Interface (GUI). As we
know, DPD may be challenging in practice (Section 1). Thus, the more a tool facilitates its use – e.g., through GUI
– the better. Our results suggest that authors of the existing tools acknowledge the importance of GUI. Indeed, 10
tools (24%) provide their own native GUI; 9 tools (21%) are plug-ins for the Eclipse IDE4 and, therefore, use the
Eclipse GUI; 8 tools (19%) rely on command line; and 2 tools (5%) are embedded to software modeling tools and,
4https://www.eclipse.org/ide/

6

Review-based Comparison of Design Pattern Detection Tools SugarLoafPlop 2022, October 18, 2022, Online

thus, use the GUI provided by these modeling tools. We were unable to find out if there is a GUI provided by 13
out of the 42 tools (31%), due to poor documentation or unavailability online.

(a) By GUI Type (b) By Problem Modeling Approach

Fig. 2. Number of Tools by GUI Type and Problem Modeling Approach

3.4 Detection Approaches (RQ2.3)
Program Analysis Approaches: We found that 32 tools (76%) rely on static analysis for performing DPD. This
result is quite expected for the following reasons. Many design patterns – especially creational and structural
patterns – are characterized by patterns affecting the source code and its structure. Furthermore, static analysis
uses both code and its structure as information sources (Section 2.1). In other words, it makes sense that researchers
often rely on static analysis to perform DPD. In fact, only one tool [7](2%) relies on dynamic analysis, which
depends on tracking and understanding the execution of a software system (Section 2.1). This result is particularly
curious because certain design patterns, especially behavioral ones, depend on those information sources to be
characterized. Further exploring dynamic analysis could improve the accuracy of DPD tools for some patterns.
Finally, nine tools (22%) rely on hybrid analysis: five tools were published in the first ten years analyzed, i.e.,
from 2000 to 2009; the other four tools appeared after 2010. We hypothesize that, over the decades, researchers
realized that combining static and dynamic analyses could leverage the DPD accuracy. We also hypothesize that
the inherent difficulty of performing dynamic analysis discussed by recent studies [20, 21] may be preventing
researchers to advance in proposing tools based on either dynamic or hybrid analysis.
Problem Modeling Approaches: Figure 2b presents the number of DPD tools according to the approach

used for modeling the problem of detecting design patterns. We discussed that the majority of existing DPD tools
(76%) rely exclusively on static analysis to detect instances of design patterns. Thus, it is reasonable to expect that
most of the modeling approaches being used depend on analyzing the source code and its structure. In fact, most
tools (49%) rely exclusively on data collected from the internal program structure, e.g., from classes, methods,
and their relationships [17, 45, 61]. This is followed by 15% of the tools relying only on Abstract Syntax Tree
(AST), whose nodes represent variables, operations, and other program elements [35, 50, 53]. In addition, 10% of
the tools rely only on graphs in general, whose nodes represent methods, classes, etc., and graph isomorphism is
typically explored by the tools [23]. Another tool combines graph with template. Similar to graphs, templates
are used for representing code elements in an alternative way (not necessarily as a graph) with the purpose of
comparing a program with predefined templates for a given design pattern [25].
We also found tools relying on modeling approaches that are more suitable to either dynamic analysis or

hybrid analysis. One of these approaches is execution flow through which the program execution is observed in
terms of method calls, object instantiation, accessed or modified fields, and so forth [7, 37]. The other approach is
called semantic data, which computes information both statically and dynamically. For instance, static semantic
constraints refer to how the classes interrelate, while dynamic semantic constraints refer to how particular

7

SugarLoafPlop 2022, October 18, 2022, Online Rodrigo Moreira, Eduardo Fernandes, and Eduardo Figueiredo

methods operate [15]. Finally, only ten tools (17%) combine modeling approaches for supporting DPD, mostly to
support hybrid analysis since only three of these ten combine two types of static modeling approaches.

4 TOOL COMPARISON PROTOCOL

4.1 Goal and ResearchQuestions
We define the goal of the second part of our study as follows. This study aims to analyze the accuracy and
applicability of existing DPD tools; for the purpose of comparing their strengths and weaknesses; with respect to
precision, recall, F-measure, agreement, and certain tool features that regular users may find essential in practice;
from the point of view of researchers and practitioners interested in design patterns; in the context of published
papers in the past 20 years and tools available for download. We introduce below our research questions (RQs).
RQ3: How accurate are the existing DPD tools?
RQ4: To what extent the existing tools agree regarding the detection of design pattern instances?

4.2 Selection of Tools
Although our literature review revealed 42 DPD tools (Section 3), 32 of them are not available for download.
Regarding the remaining ten tools, we attempted, to our best effort, to install and use them with the help of
the documentation available at their respective websites and the tool’s configuration files (e.g., README). We
excluded the tool PatRoid [49] since it was designed to identify design patterns only in Android applications.
This limitation would not allow us to compare its results with the other tools. Out of the nine remaining DPD
tools, we managed to successfully install and use only four tools: FINDER [17], GEML [10], MARPLE-DPD [69],
and PTIDEJ [41]. As this was an already small enough subset of tools, we used the four tools for the comparative
study. We discarded DesPaD [42] due to configuration issue (stuck on second step, probably due to a issue with
Subdue); DPJF [14] due to use error when attempting to generate the factbase; PINOT [53] due to installation
error when attempting to compile with the make command; Reclipse [63] due to installation issue (dependencies
could not be installed, i.e., Palladio and SoMoX); and SSA [60] because we were unable to use it in one of our
chosen systems (JRefactory). We highlight that, in these cases, we lacked sufficient documentation to assist us in
setting up and using the tools.

4.3 Selection of Design Patterns and Systems
While reading the papers from our systematic literature review, we listed the systems that were used to evaluate
the proposed tools and systems with manually validated design pattern instances. We initially chose JUnit 3.7 and
JHotDraw 5.1, as both systems are written in Java and have some validated instances of design patterns. However,
due to Java version requirements, we were not able to use JUnit with all four DPD tools. Thus, we decided to use
JRefactory 2.6.24 instead. These systems have been used in previous studies on DPD [14, 19, 60].
To choose which patterns to evaluate in this study, we defined three criteria: the design pattern must have

less than 100 instances collectively for both systems; at least two tools must return design pattern instances
for either of the systems; no more than two design patterns per design pattern category (behavioral, creational
and structural). Due to this, we first executed the tools to measure the number of instances they detect of each
design pattern and then applied our inclusion criteria. The first and third criterion were destined to make a
manual validation feasible. The manual validation of design pattern instances is not a trivial task, since it requires
not only an understanding of the business logic of the system, but also knowledge about the design patterns
themselves, such as the components, their roles and general structure. Although this subset of design patterns
may not represent all capability of the tools detection prowess, each category comes with a different difficulty
level for the detection process which may be an indicative of the tool’s capability of coping with these difficulties.

8

Review-based Comparison of Design Pattern Detection Tools SugarLoafPlop 2022, October 18, 2022, Online

The second criteria was created in order to make the calculation of the agreement coefficient feasible, since we
need at least two raters in order to compute this metric. Creational design patterns help make a system more
flexible by making the process of instantiating classes abstract [33]. The chosen creational patterns were Prototype
and Singleton. Behavioral design patterns distribute behavior between classes by describing the communication
between them [33], the behavioral patterns chosen were Chain of Responsibility and Visitor. Structural design
patterns add flexibility to the system by composing objects into new ones with new functionality [33], the
structural patterns selected were Composite and Decorator.

4.4 Validation of Design Pattern Instances
Detection of Design Pattern Instances:We executed each selected tool on the chosen systems to obtain the
list of pattern instances detected by tool. To do so, we create a virtual machine based on the Linux Mint 20
operating system with 8 GB of RAM, eight processors, and 3.59 GHz of clock speed. Table 3 presents the number
of instances detected of each design pattern by each tools. Cells with a dash (“-”) indicate that the tool could not
detect the design pattern. For instance, GEML does not support Chain of Responsibility and Prototype detection,
and due to an execution error it could not detect the Decorator pattern for JRefactory. The design patterns names
in bold are the ones that were chosen for the comparative study. It is important to highlight that PTIDEJ output
indicates the confidence level of each returned instance. We opted to discard the instances with a confidence
value below 100% since we did not want to collect instances that the tool might classify as false positives.

Table 3. Number of Patterns Detected by Tool

Type JHotDraw JRefactory Type JHotDraw JRefactory

FI
N
D
ER

G
EM

L

M
A
R
PL

E

PT
ID

EJ

FI
N
D
ER

G
EM

L

M
A
R
PL

E

PT
ID

EJ

FI
N
D
ER

G
EM

L

M
A
R
PL

E

PT
ID

EJ

FI
N
D
ER

G
EM

L

M
A
R
PL

E

PT
ID

EJ

Bridge 21 - - - 0 - - - Memento 2 - 0 0 24 - 0 0
Builder 0 - 98 0 0 - 355 0 Observer 13 12 61 0 8 1 90 0
CoR 3 - 0 11 1 - 0 30 Prototype 0 - 5 1 3 - 4 0

Command 25 - 25 0 0 - 39 0 Proxy 0 0 0 51 0 13 0 104
Composite 4 3 5 0 2 2 2 0 Singleton 0 2 1 6 2 8 10 55
Decorator 2 2 14 0 0 - 12 0 State 2 - 187 18 15 - 420 27
Facade - - 499 23 - - 138 24 Strategy 7 - 95 - 24 - 197 -

Factory Method 15 4 62 0 6 1 158 0 Template Method 74 2 0 31 48 22 0 49
Flyweight 26 - - 0 15 - - 0 Visitor 0 6 9 1 4 4 19 1
Mediator 0 - 0 0 0 - 0 0

Validation of Design Pattern Instances: Most design pattern instances consist of a combination of classes.
For instance, a Composite design pattern instance contains one class playing the Component role, one or more
classes playing the Composite role, and one or more classes playing the Leaf role. Roles can be of two types:
anchor role, i.e., the Component role, and non-anchor role, i.e., the Leaf and Composite roles. Classes that play
anchor roles differentiate one design pattern instance from another. Among the results obtained for a specific
design pattern from a single DPD tool, there is no pair of instances with the same class playing the anchor role.
On the other hand, there may be multiple instances with a class in common playing a non-anchor role.

Table 4 presents the roles of each design pattern evaluated in this study. For illustration, let us consider the Com-
posite design pattern. One of the true instances of the Composite pattern for the JHotDraw system is composed of:
the class CH.ifa.draw.framework.Figure playing the Component role (anchor), the class CH.ifa.draw.stan-
dard.CompositeFigure playing theComposite role (non-anchor) and the class CH.ifa.draw.figures.Ellipse-
Figure playing the Leaf role (non-anchor). Evaluating the results of the Finder tool, only one instance listed

9

SugarLoafPlop 2022, October 18, 2022, Online Rodrigo Moreira, Eduardo Fernandes, and Eduardo Figueiredo

the CH.ifa.draw.framework.Figure class as the Composite, while two instances listed the CH.ifa.draw.fig-
ures.EllipseFigure class as the Leaf.

Table 4. Patterns and Respective Roles

Pattern Anchor Roles Non-anchor Roles
Chain of Responsibility Handler Concrete Handler
Composite Component Composite, Leaf
Decorator Decorator, Component Concrete Component, Concrete Decorator
Prototype Prototype Concrete Prototype
Singleton Singleton N/A
Visitor Element, Visitor Concrete Element, Concrete Visitor

We validated the instances as true or false positive by manually inspecting all detected instances. For each
design pattern, the first two authors discussed its definition and mechanisms in order to build a common ground
on the pattern, its composing elements and roles. Thus, we were capable to understand what to look for while
inspecting the instances – especially in terms of characteristics that turn an instance into a false positive instance.
After that, those two authors inspected each instance of that particular design pattern individually. Each instance
was discussed in pairs so we could reach a consensus on the instance classification. Both authors are familiar
with the concept of design patterns and Java development. This validation process was conducted for all 234
instances detected by the four tools under comparison.
Computation of Equivalent Instances:When different tools detect a certain pattern, they may detect the

same class for the anchor role but different classes for non-anchor roles. This poses a challenge for obtaining
the true positive instances and the agreement between the tools. For example, when comparing two instances
from different tools but with the same class playing the anchor role, it is very likely that they will not have the
exact same classes playing the non-anchor roles. Thus, we defined two pattern instances as equivalent if they
have the same class (or pair of classes for the Decorator and Visitor patterns) for the anchor roles and at least
one common class for each of the non-anchor roles. With this definition, we aggregated the new true positive
instances to our oracle database for each system.
Obtaining the Ground Truth: Although documentation is extremely important and helpful, it is often

neglected [1]. In a similar manner, documentation of the design patterns implemented by a system is also not
a common practice. Thus, obtaining the ground truth for a system is a very demanding task. To alleviate this
issue, we created a proxy for the ground truth from the collective results of the P-MARt5, which is a repository
with previously identified and validated design pattern instances, and the instances that were manually validated
in this study. A ground truth is required to quantify the recall metric for each tool. Our ground truth proxy is
available in our replication package in the “Patterns Found” folder.

4.5 Computation of Accuracy Metrics
Regarding the accuracy of the tools, we chose three metrics to measure it: precision, recall and F-measure. The
precision evaluates the correctness of the results returned by the tool [9]. It is calculated from the ratio between
the number of true positive instances detected and the total number of instances returned. The recall measures
the ability to detect all known correct design pattern instances in a given system [9]. It is obtained by the ratio
of true positive instances detected and the total number of true positive instances in a system. In our case,
we rely on both the P-Mart repository and our manual validation as a proxy of the ground truth. Lastly, we
calculated the F-measure, which is the harmonic mean of the precision and recall, according to this equation: F =

5http://www.ptidej.net/tools/designpatterns/index_html#2

10

Review-based Comparison of Design Pattern Detection Tools SugarLoafPlop 2022, October 18, 2022, Online

2×𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑟𝑒𝑐𝑎𝑙𝑙
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙 . This metric weights precision and recall equally, giving an overall score for each tool’s accuracy.

We calculated all metrics for each pattern in each of the systems for each tool.
The agreement metric evaluated the redundancy of the results from the four different tools. A high agreement

indicates that the tools detect the same instances, both true positives and false positives, whereas a low agreement
means that the different pattern detection approaches obtain different instances. In order to calculate this metric,
we listed all unique instances collectively detected by the tools and created an agreement table for each design
pattern. After that, we used these tables as input for the calculation of Gwet’s AC1 coefficient [34], Overall
Agreement and Confidence Interval over 95% using Gwet’s R package, i.e., irrCAC6.

5 TOOL COMPARISON RESULTS

5.1 Precision, Recall, and F-measure (RQ3)
Table 5 presents the Precision, Recall and F-measure of the tools for JHotDraw and JRefactory. Precision and
recall cells with “N/A” mean the tool could not detect the pattern. F-measure cells with “N/A” mean there is
neither a value of precision nor recall to calculate their harmonic mean. We used bold font in values greater than
or equal to 50% to facilitate the discussions below. According to the results, FINDER managed to find instances of
Composite, Decorator, Singleton, and Visitor. For these four design patterns, the tool presented precision and
recall ≥ 50% for at least one of the two systems under analysis i.e., JHotDraw and JRefactory – except in the case
of Singleton. Overall, our results suggest that FINDER is applicable for detecting these design patterns. GEML
successfully detected only Singleton instances but, compared to the other tools, it displayed the highest precision
and recall for both systems. Although it did not detect a single instance of the other design patterns, practitioners
may use it to detect Singleton.

Additionally, MARPLE-DPD was able of detecting instances of all design patterns but Chain of Responsibility
on either system. Moreover, it was the only tool that managed to successfully detect instances of Prototype.
However, the tool presented precision and recall ≥ 50% simultaneously only in the cases of Singleton (for both
systems) and Composite (for JHotDraw). Therefore, we encourage developers to use MARPLE-DPD for detecting
instances of Singleton and Composite with an acceptable accuracy. Lastly, PTIDEJ managed to detect only Visitor
and Singleton patterns, and failed to detect the others. Moreover, the tool detected instances with precision and
recall ≥ 50% exclusively for Visitor, which may encourage developers in using PTIDEJ for this purpose.

5.2 Agreement of the Tools (RQ4)
The last three rows from Table 5 present the overall agreement of the tools, the Gwet’s AC1 agreement coefficient
and the confidence interval. The overall agreement relates the number of times the tools agree with the total
number of instances rated. This metric does not account for the random chance of agreement between raters
unlike the AC1 [34], yet it displays a moderate agreement between the tools. The overall agreement for all six
design patterns ranges from 33% to 49%. However, this metric does not take into account the fact that the tools
may agree by chance. The AC1 coefficient is ≤ 0.18 for all the design patterns, indicating a poor agreement
between the tools. This means that the output from the tools is not redundant, and different tools return different
instances. Although one could argue that combining the results of the four tools would be recommended due to
the increase of distinct instances detected, the results for precision, recall and F-measure indicate that most of the
results are false positives.

6https://cran.r-project.org/web/packages/irrCAC/index.html

11

SugarLoafPlop 2022, October 18, 2022, Online Rodrigo Moreira, Eduardo Fernandes, and Eduardo Figueiredo

Table 5. Accuracy Measures by Tool

System Metric Tool CoR Composite Decorator Prototype Singleton Visitor

JHotDraw

Precision

FINDER 0% 75% 50% 0% 0% 0%
GEML N/A 0% 0% N/A 100% 0%
MARPLE 0% 60% 14% 20% 100% 0%
PTIDEJ 0% 0% 0% 0% 0% 0%

Recall

FINDER 0% 75% 50% 0% 0% 0%
GEML N/A 0% 0% N/A 100% 0%
MARPLE 0% 75% 100% 50% 50% 0%
PTIDEJ 0% 0% 0% 0% 0% 0%

F-measure

FINDER 0% 75% 50% 0% N/A N/A
GEML N/A N/A N/A N/A 100% N/A
MARPLE N/A 67% 25% 29% 67% N/A
PTIDEJ N/A N/A N/A 0% N/A N/A

JRefactory

Precision

FINDER 0% 100% 0% 0% 100% 50%
GEML N/A 0% N/A N/A 88% 0%
MARPLE 0% 0% 0% 0% 50% 11%
PTIDEJ 0% 0% 0% 0% 13% 100%

Recall

FINDER 0% 100% 0% 0% 20% 100%
GEML N/A 0% N/A N/A 70% 0%
MARPLE 0% 0% 0% 0% 50% 100%
PTIDEJ 0% 0% 0% 0% 70% 50%

F-measure

FINDER N/A 100% N/A N/A 33% 67%
GEML N/A N/A N/A N/A 78% N/A
MARPLE N/A N/A N/A N/A 50% 19%
PTIDEJ N/A N/A N/A N/A 22% 67%

Agreement 33% 48% 49% 33% 49% 49%
AC1 coefficient -0.20 0.12 0.18 -0.22 0.11 0.14
Confidence Interval (≥ 95%) [-0.200,-0.200] [0.016,0.235] [0.138,0.221] [-0.316,-0.160] [0.038,0.175] [0.075,0.198]

6 STUDY IMPLICATIONS

6.1 Researchers and Tool Designers
Some simple issues prevent the DPD tools from having better precision.When conducting the manual
validation of the design pattern instances returned by the tools, we noticed some issues regarding the general
structure of the design patterns detected. These issues are relatively simple to describe, and by applying filters
to remove them, for example, they could increase the precision of the tools. We describe some examples below.
Regarding Composite, some instances claimed that a class was a Composite, which meant that they should contain
an attribute that is a collection of Components. However, when inspecting such class, it did not contain any sort
of collection that suffices the aforementioned requirements. Moreover, some instances listed Leaf and Composite
classes that were supposed to inherit from the Component class, but after checking the inheritance hierarchy
this requirement was not met. Regarding Singleton, we observed the lack of a verification of the visibility of
the constructor. Some instances classified classes with a public construct as a Singleton, which goes against the
concept of restricting the instantiation of a class to a single instance that the Singleton design pattern defines.
With respect to Visitor, similarly to Composite, this design pattern suffers from inconsistent inheritance trees. In
some of the instances, after checking the inheritance hierarchy of the concrete classes, we noted that they did
not implement their corresponding interfaces, but extended completely different classes. In addition, some of the
concrete classes were not actually concrete classes, but abstract ones, which ultimately invalidates the design
pattern instance since it is supposed to be instantiated.

12

Review-based Comparison of Design Pattern Detection Tools SugarLoafPlop 2022, October 18, 2022, Online

We need tools targeting different programming languages. As we discussed in Section 3.3, most of the
tools target Java systems and only a few target certain design patterns such as Facade, Mediator, Prototype, etc.
Java is one the most popular languages but not the only one that makes use of object oriented principles and
design patterns [2, 8]. Furthermore, there are other emerging languages and environments which also require
proposing, detecting and recommending design patterns.

6.2 Practical Use of the Tools
Certain tools are more suitable for specific design patterns. Different tools are able to detect the same
design patterns, such as Composite discussed in Section 4.4. However, we observed that they achieve a low
coefficient agreement. This low value indicates that they tend to detect different instances. Moreover, from the
data presented in Section 5.1, some tools have a higher precision than others when detecting the same pattern.
For example, GEML succeed when detecting the Singleton pattern. This information would help practitioners
choose the tool best suited for their needs.

7 THREATS TO VALIDITY

7.1 Regarding the Literature Review
Construct and Internal Validity:We carefully planned our literature review protocol throughmultiple meetings
and incremental refinements of the study artifacts. Thus, we expected to mitigate threats regarding the study
execution. We carefully built our search string based of multiple synonyms to key terms. We expected to collect as
many relevant studies as possible. Moreover, we performed snowballing to avoid overlooking important studies.
We relied on existing guidelines [40] to define our inclusion and exclusion criteria of primary studies, thereby
filtering out irrelevant studies. Finally, two authors of this paper collaborated in both reading the primary studies
for performing the data collection. They carefully discussed any divergences in order to reach a consensus on the
data we found for each study, as well as to discard out-of-scope studies. Thus, we expected to mitigate human
biases. With respect to the availability of the tools, it is possible that some tools may be available for download
since we did not conduct a thorough investigation with search engines. We assumed that the tool authors are
responsible for providing links within their respective papers.
Conclusion and External Validity:We performed descriptive analysis in order to interpret the literature

review data similarly to a previous work [30]. Thus, we expected to summarize our study results in an effective
way for communication purposes. Finally, we opted for four Web search engines to support the collection of
primary studies. We relied on well-known engines used in our previous work [30], some of them specific to the
Computing domain such as ACM Digital Library. Thus, we expected to support the generality of our findings.

7.2 Regarding the Comparative Study
Construct and Internal Validity: We carefully installed and configured the tools available online for the
comparative study (Section 4). We selected both design patterns and systems before executing the tool comparison,
thereby mitigating biases that could favor the accuracy results of a particular tool. We have no conflicts of interest
with the authors of the DPD tools under analysis. Still, we mitigate possible threats by counting on a second
author to inspect their execution and help with problem solving. In addition, we attempted to conduct a pilot
study with two volunteers for manually validating a number of DPD instances. Unfortunately, this task was very
complex and time consuming, even for experienced developers. We ended up discarding the pilot study results
and relying on the manual validation performed by two of the paper authors. By doing this is a pair, we expected
to mitigate biases in the validation process.
Conclusion and External Validity: We computed precision, recall, and agreement similar to a previous

work [30]. We opted for the Gwet’s AC1 agreement coefficient due to its applicability to multiple raters and

13

SugarLoafPlop 2022, October 18, 2022, Online Rodrigo Moreira, Eduardo Fernandes, and Eduardo Figueiredo

the fact that raters may agree by chance. Thus, we expected to avoid the misuse of statistics. We relied on our
manually-validated instances of design patterns, plus the instances validated by previous studies, to compute
recall. Thus, we expected to obtain as many true positive instances as possible by analyzed systems. Finally, we
applied the inclusion criteria to filter out DPD tools for the comparison. One could argue that we compared only
four out of the 42 existing tools and, therefore, our results may not represent the state-of-the-accuracy. Still, we
highlight that our criteria were meant to assure that all tools are usable and fairly comparable. Similar reasoning
applies to the analysis of six out of the 23 GoF design patterns [33]. We selected pattern of different categories,
i.e., Behavioral, Creational, and Structural, to support some variety in our findings.

8 RELATED WORK
Secondary studies [48, 67] summarized the existing literature on design patterns. For instance, Riaz et al. [48]
conducted a systematic mapping study to characterize existing empirical studies involving software patterns and
human participants. Their analysis was based on 30 primary empirical studies, being 24 original studies and 6
replications. They then classified the primary studies in terms of measures used for evaluation and considered
threats to validity. Unlike this study, we do not restrict our analysis on empirical studies involving human
participants. In fact, our paper focuses on automated approach to detect design patterns.

Yarahmadi and Hasheminejad [67] present a broad systematic literature reviews on design patterns, including
their detection methods. Their secondary study reviews research papers published between 2008 until 2019
and aims to answer 13 research questions. One of these question is related to what approaches exist to support
DPD and which approaches are the most frequently used. Unlike Yarahmadi and Hasheminejad’s work [67], we
focus on DPD tools. Moreover, we also present a comparative study of four detection tools with respect to their
precision, recall, F-measure and agreement.
Regarding comparative studies, Dong et al. [26] present a comparative study of pattern mining techniques

and tools about their pattern aspects checked, intermediate representations, exact or approximate matches,
visualization, automated or human interactive support. It is also discussed the instances obtained and why
different techniques and tools detect different instances of the same pattern for the same system. However, they
did not conduct an experiment to install and run the tools in order to compare their output and calculate precision
and recall metrics. Instead, they relied on the results reported by the authors.

Another comparative study was conducted by Rasool et al. [47]. In this study, the authors selected a subset of
6 DPD tools with a major focus on evaluating their precision and recall. Although their subset of tools is larger
than ours, there is only one DPD tool in common (PTIDEJ). They also present the overall precision and recall
of each tool instead of individual values for each design pattern. In addition, we calculate the F-measure and
agreement of the tools for each individual design pattern.

9 CONCLUSION AND FUTURE WORK
Detecting design patterns is an important yet challenging task. This paper presented a systematic literature
review followed by a comparative study of DPD tools. We found 42 DPD tools but only ten are available online.
Considering the 23 Gang of Four’s patterns, Composite and Observer are the most commonly detected design
patterns. By comparing four state-of-the-art tools, we found low accuracy results. Besides a considerable number
of false positives, we figured out that the tools have a weak detection agreement. As future work, we plan to
perform a user study aimed at investigating the developer’s perception of the existing DPD tools.

ACKNOWLEDGMENTS
This research was partially supported by Brazilian funding agencies: CNPq, CAPES, and FAPEMIG.

14

Review-based Comparison of Design Pattern Detection Tools SugarLoafPlop 2022, October 18, 2022, Online

REFERENCES
[1] E. Aghajani, C. Nagy, M. Linares-Vásquez, L. Moreno, G. Bavota, M. Lanza, and D. C. Shepherd. 2020. Software documentation: The

practitioners’ perspective. In 42nd ICSE. 590–601.
[2] J. Ali. 2016. Mastering PHP Design Patterns (1st ed.). Packt Publishing.
[3] A. Alnusair and T. Zhao. 2009. Towards a Model-driven Approach for Reverse Engineering Design Patterns.. In 2nd TWOMDE, co-located

with the 12nd MoDELS. 1–15.
[4] A. Ampatzoglou, G. Frantzeskou, and I. Stamelos. 2012. A methodology to assess the impact of design patterns on software quality. Inf.

Softw. Technol. 54, 4 (2012), 331–346.
[5] G. Antoniol, G. Casazza, M. Di Penta, and R. Fiutem. 2001. Object-oriented design patterns recovery. J. Syst. Softw. 59, 2 (2001), 181–196.
[6] F. Arcelli, D. Franzosi, and C. Raibulet. 2010. .NET reverse engineering with MARPLE. In 5th ICSEA. 227–231.
[7] F. Arcelli, F. Perin, C. Raibulet, and S. Ravani. 2009. JADEPT: Dynamic analysis for behavioral design pattern detection. In 4th ENASE.

95–106.
[8] K. Ayeva and S. Kasampalis. 2018. Mastering Python Design Patterns (2nd ed.). Packt Publishing.
[9] R. Baeza-Yates and B. Ribeiro-Neto. 1999. Modern Information Retrieval (1st ed.). ACM Press.
[10] R. Barbudo, A. Ramírez, F. Servant, and J. R. Romero. 2021. GEML: A grammar-based evolutionary machine learning approach for

design-pattern detection. J. Syst. Softw. 175 (2021), 110919.
[11] V. Basili and D. Rombach. 1988. The TAME project: Towards improvement-oriented software environments. IEEE Trans. Softw. Eng. 14,

6 (1988), 758–773.
[12] M. L. Bernardi, M. Cimitile, and G. Di Lucca. 2014. Design pattern detection using a DSL-driven graph matching approach. J. Softw.:

Evol. Process 26, 12 (2014), 1233–1266.
[13] D. Beyer, A. Noack, and C. Lewerentz. 2003. Simple and efficient relational querying of software structures. In 10th WCRE. 216–225.
[14] A. Binun and G. Kniesel. 2012. DPJF: Design pattern detection with high accuracy. In 16th CSMR. 245–254.
[15] A. Blewitt, A. Bundy, and I. Stark. 2001. Automatic verification of Java design patterns. In 16th ASE. 324–327.
[16] D. Cruz, E. Figueiredo, and J. Martinez. 2019. A literature review and comparison of three feature location techniques using ArgoUML-SPL.

In 13th VaMos. 1–10.
[17] H. Dabain, A. Manzer, and V. Tzerpos. 2015. Design pattern detection using FINDER. In 30th SAC. 1586–1593.
[18] A. De Lucia, V. Deufemia, C. Gravino, and M. Risi. 2010. An Eclipse plug-in for the detection of design pattern instances through static

and dynamic analysis. In 26th ICSM. 1–6.
[19] A. De Lucia, V. Deufemia, C. Gravino, and M. Risi. 2010. Improving behavioral design pattern detection through model checking. In

14th CSMR. 176–185.
[20] A. De Lucia, V. Deufemia, C. Gravino, and M. Risi. 2018. Detecting the behavior of design patterns through model checking and dynamic

analysis. ACM Trans. Softw. Eng. Methodol. 26, 4 (2018), 1–41.
[21] D. Devecsery, P. Chen, J. Flinn, and S. Narayanasamy. 2018. Optimistic hybrid analysis: Accelerating dynamic analysis through predicated

static analysis. In 23rd ASPLOS. 348–362.
[22] J. Dietrich and C. Elgar. 2007. Towards a web of patterns. J. Web Semant. 5, 2 (2007), 108–116.
[23] M. Dobiš and L. Majtás. 2008. Mining design patterns from existing projects using static and run-time analysis. In 3rd CEE-SET. 62–75.
[24] J. Dong, D. Lad, and Y. Zhao. 2007. DP-Miner: Design pattern discovery using matrix. In 14th ECBS. 371–380.
[25] J. Dong, Y. Sun, and Y. Zhao. 2008. Design pattern detection by template matching. In 23rd SAC. 765–769.
[26] J. Dong, Y. Zhao, and T. Peng. 2009. A review of design pattern mining techniques. Int. J. Softw. Eng. Knowl. Eng. 19, 6 (2009), 823–855.
[27] T. Dyba, T. Dingsoyr, and G. Hanssen. 2007. Applying systematic reviews to diverse study types: An experience report. In 1st ESEM.

225–234.
[28] M. Elaasar, L. Briand, and Y. Labiche. 2015. VPML: An approach to detect design patterns of MOF-based modeling languages. Softw.

Syst. Model. 14, 2 (2015), 735–764.
[29] F. A. Espinoza, G. Esquer, and J. Cansino. 2002. Automatic design patterns identification of C++ programs. In 1st EurAsia ICT. 816–823.
[30] E. Fernandes, J. Oliveira, G. Vale, T. Paiva, and E. Figueiredo. 2016. A review-based comparative study of bad smell detection tools. In

20th EASE. 18:1–18:12.
[31] F. Fontana, A. Caracciolo, and M. Zanoni. 2012. DPB: A benchmark for design pattern detection tools. In 16th CSMR. 235–244.
[32] L. Fulop, R. Ferenc, and T. Gyimóthy. 2008. Towards a benchmark for evaluating design pattern miner tools. In 12th CSMR. 143–152.
[33] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. 1995. Design Patterns (1st ed.). Addison-Wesley Professional.
[34] K. Gwet. 2014. Handbook of Inter-Rater Reliability (4th ed.). Advanced Analytics.
[35] D. Heuzeroth, T. Holl, G. Hogstrom, and W. Lowe. 2003. Automatic design pattern detection. In 11th IWPC. 94–103.
[36] D. Heuzeroth, S. Mandel, and W. Lowe. 2003. Generating design pattern detectors from pattern specifications. In 18th ASE. 245–248.
[37] H. Huang, S. Zhang, J. Cao, and Y. Duan. 2005. A practical pattern recovery approach based on both structural and behavioral analysis.

J. Syst. Softw. 75, 1-2 (2005), 69–87.

15

SugarLoafPlop 2022, October 18, 2022, Online Rodrigo Moreira, Eduardo Fernandes, and Eduardo Figueiredo

[38] B. Jansen. 1998. The graphical user interface. ACM SIGCHI Bulletin 30, 2 (1998), 22–26.
[39] J. Kim, D. Batory, D. Dig, and M. Azanza. 2016. Improving refactoring speed by 10x. In 38th ICSE. 1145–1156.
[40] B. Kitchenham and S. Charters. 2007. Guidelines for performing systematic literature reviews in software engineering. Technical

Report. Version 2.3. EBSE Technical Report. EBSE-2007-01.
[41] N. Moha and Y. G. Guéhéneuc. 2007. Ptidej and DECOR: Identification of design patterns and design defects. In 22nd OOPSLA. 868–869.
[42] M. Oruc, F. Akal, and H. Sever. 2016. Detecting design patterns in object-oriented design models by using a graph mining approach. In

4th CONISOFT. 115–121.
[43] J. Paakki, A. Karhinen, J. Gustafsson, L. Nenonen, and A. I. Verkamo. 2000. Software metrics by architectural pattern mining. In ICS,

co-located with the 16th WCC. 325–332.
[44] I. Philippow, D. Streitferdt, M. Riebisch, and S. Naumann. 2005. An approach for reverse engineering of design patterns. Softw. Syst.

Model. 4, 1 (2005), 55–70.
[45] G. Rasool and P. Mäder. 2011. Flexible design pattern detection based on feature types. In 26th ASE. 243–252.
[46] G. Rasool and P. Mäder. 2014. A customizable approach to design patterns recognition based on feature types. Arab. J. Sci. Eng. 39, 12

(2014), 8851–8873.
[47] G. Rasool, P. Maeder, and I. Philippow. 2011. Evaluation of design pattern recovery tools. Procedia Comput. Sci. 3 (2011), 813–819.
[48] M. Riaz, T. Breaux, and L. Williams. 2015. How have we evaluated software pattern application? A systematic mapping study of research

design practices. Inf. Softw. Technol. 65 (2015), 14–38.
[49] D. Rimawi and S. Zein. 2019. A model based approach for android design patterns detection. In 3rd ISMSIT. 1–10.
[50] A. Robinson and C. Bates. 2017. APRT: Another Pattern Recognition Tool. GSTF J. Comput. 5, 2 (2017), 46–52.
[51] A. L. dos Santos, M. R. A. Souza, M. Dayrell, and E. Figueiredo. 2018. A systematic mapping study on game elements and serious games

for learning programming. In 10th CSEDU. 328–356.
[52] K. Sartipi and L. Hu. 2008. Behavior-driven design pattern recovery. In 12th SEA. 179–185.
[53] N. Shi and R. Olsson. 2006. Reverse engineering of design patterns from Java source code. In 21st ASE. 123–134.
[54] J. Singh, S. Roy Chowdhuri, G. Bethany, and M. Gupta. 2021. Detecting design patterns: a hybrid approach based on graph matching and

static analysis. Inf. Technol. Manag. (2021), 1–12.
[55] J. Smith and D. Stotts. 2003. SPQR: Flexible automated design pattern extraction from source code. In 18th ASE. 215–224.
[56] M. R. A. Souza, L. Veado, R. T. Moreira, E. Figueiredo, and H. Costa. 2018. A systematic mapping study on game-related methods for

software engineering education. Inf. Softw. Technol. 95 (2018), 201–218.
[57] K. Stencel and P. Wegrzynowicz. 2008. Detection of diverse design pattern variants. In 15th APSEC. 25–32.
[58] C. S. Tavares, A. Santana, E. Figueiredo, and M. A. S. Bigonha. 2020. Revisiting the Bad Smell and Refactoring Relationship: A Systematic

Literature Review.. In CIbSE. 434–447.
[59] M. Thongrak and W. Vatanawood. 2014. Detection of design pattern in class diagram using ontology. In 18th ICSEC. 97–102.
[60] N. Tsantalis, A. Chatzigeorgiou, G. Stephanides, and S. Halkidis. 2006. Design pattern detection using similarity scoring. IEEE Trans.

Softw. Eng. 32, 11 (2006), 896–909.
[61] E. van Doorn, S. Stuurman, and M. van Eekelen. 2019. Static detection of design patterns in class diagrams. In 8th CSERC. 79–88.
[62] M. Vokác. 2006. An efficient tool for recovering design patterns from C++ code. J. Object Technol. 5, 1 (2006), 139–157.
[63] M. Von Detten, M. Meyer, and D. Travkin. 2010. Reverse engineering with the Reclipse tool suite. In 32nd ICSE. 299–300.
[64] W. Wang and V. Tzerpos. 2005. Design pattern detection in Eiffel systems. In 12th WCRE. 1–10.
[65] C. Wohlin. 2014. Guidelines for snowballing in systematic literature studies and a replication in software engineering. In 18th EASE.

1–10.
[66] R. Xiong, D. Lo, and B. Li. 2020. Distinguishing similar design pattern instances through temporal behavior analysis. In 27th SANER.

296–307.
[67] H. Yarahmadi and S. Hasheminejad. 2020. Design pattern detection approaches: A systematic review of the literature. Artif. Intell. Rev.

53, 8 (2020), 5789–5846.
[68] S. Yau and J. Tsai. 1986. A survey of software design techniques. IEEE Trans. Softw. Eng. SE-12, 6 (1986), 713–721.
[69] M. Zanoni, F. Fontana, and F. Stella. 2015. On applying machine learning techniques for design pattern detection. J. Syst. Softw. 103

(2015), 102–117.
[70] Z. Zhang and Q. Li. 2003. Automated detection of design patterns. In 2nd GCC. 694–697.

16

	Abstract
	1 Introduction
	2 Literature Review Protocol
	2.1 Goal and Research Questions
	2.2 Search for Primary Studies
	2.3 Filtering of Primary Studies
	2.4 Data Extraction from Primary Studies

	3 Literature Review Results
	3.1 Publication Landscape (RQ1)
	3.2 Existing Tools (RQ2.1)
	3.3 Main Features of the Tools (RQ2.2)
	3.4 Detection Approaches (RQ2.3)

	4 Tool Comparison Protocol
	4.1 Goal and Research Questions
	4.2 Selection of Tools
	4.3 Selection of Design Patterns and Systems
	4.4 Validation of Design Pattern Instances
	4.5 Computation of Accuracy Metrics

	5 Tool Comparison Results
	5.1 Precision, Recall, and F-measure (RQ3)
	5.2 Agreement of the Tools (RQ4)

	6 Study Implications
	6.1 Researchers and Tool Designers
	6.2 Practical Use of the Tools

	7 Threats to Validity
	7.1 Regarding the Literature Review
	7.2 Regarding the Comparative Study

	8 Related Work
	9 Conclusion and Future Work
	Acknowledgments
	References

