
Observations	on	growing	a	software	design	umwelt				Page	-	1	

OBSERVATIONS	ON	GROWING	A	SOFTWARE	DESIGN	
UMWELT	
REBECCA	WIRFS-BROCK,	WIRFS-BROCK	ASSOCIATES	

Pattern	 authors	 ostensibly	 are	 experts	 on	 the	 topic	 their	 patterns	 address.	 Since	most	 software	 developers	 don’t	 share	 those	 experts’	
underlying	design	values,	practices,	and	principles—let	alone	their	design	context—there’s	a	disconnect	between	what	is	said	in	pattern	
descriptions	and	that	which	is	perceived	and	understood	by	pattern	readers.	As	pattern	readers,	we	will	be	better	equipped	to	grasp	the	
significance	 of	 these	 software	 patterns	 if	we	 also	 gain	 insights	 into	 the	 design	 principles	 and	 values	 that	 they	 are	 based	 on	 and	 some	
reasons	why	they	“work”	the	way	they	do.	But	it	is	through	experience,	practice,	and	reflection,	that	we	deepen	the	connections	between	
new-to-us	patterns	and	our	existing	knowledge,	and	expand	our	design	umwelt.	

Categories	 and	 Subject	 Descriptors:	 •	Software	 and	 its	 engineering~Software	 design	 engineering	•	Software	 and	 its	
engineering~Design	patterns	

ACM	Reference	Format:	
	 	 	 	 	 	 	 	 	 	 	 	 	 	

1. INTRODUCTION	

The	 body	 of	 software	 design	 and	 architecture	 patterns	 have	mostly	 been	written	 by	 experts.	While	 pattern	
authors	may	believe	they	are	describing	their	patterns	 in	sufficient	detail	such	that	other	software	designers	
can	 pick	 up	 and	 use	 them,	 I	 remain	 skeptical.	 Pattern	 descriptions	 by	 intent	 only	 illustrate	 or	 describe	 the	
essential	aspects	of	a	pattern;	they	do	not	provide	detailed	instructions	on	how	to	apply	them	or	explain	why	a	
pattern	“works”	to	solve	a	particular	design	problem.	And	since	most	software	developers	don’t	share	pattern	
authors’	underlying	experiences,	there’s	a	disconnect	between	what	is	said	in	pattern	descriptions	and	what	is	
perceived	and	understood	by	pattern	readers.	

Yet	 many	 experienced	 software	 designers	 quickly	 grok	 the	 essence	 of	 software	 design	 or	 architecture	
patterns.	 Subsequently,	 they	 are	 able	 to	 craft	 reasonable	 design	 solutions	 based	 on	 the	 (scant)	 information	
they	find	there.	

How	do	they	do	this?		
Experienced	 software	designers	 have	 accumulated	 a	wealth	 of	 tacit	 knowledge	 about	 how	 to	design	 and	

effectively	build	software.	They	nudge	their	designs	 in	directions	they	want	them	to	go,	using	patterns	along	
with	countless	(unnamed)	personal	heuristics.	When	reading	new-to-them	software	patterns,	they	view	those	
patterns	 through	 the	 unique	 lens	 of	 their	 experiences.	 They	 implicitly	 add	 and	 enrich	 sparse	 pattern	
descriptions	based	on	their	umwelt.	

Umwelt,	from	the	German,	means	"environment"	or	"surroundings:	
		

	“…for	 everything	 that	 a	 subject	 perceives	 belongs	 to	 his	 perceptual	 world	 [merkwelt]	 and	
everything	it	produces,	to	its	effect	world	[wirkwelt].	These	two	worlds,	of	perception	and	production	
of	effects,	form	one	closed	unit,	the	environment	[or	umwelt]”	[Ux].	

	
Our	umwelt	isn’t	static;	we	reshape	our	umwelt	as	we	interact	with	the	world,	gaining	skills	and	learning	to	

perceive	differently.	And	it	is	our	umwelt	that	both	drives	and	limits	our	potential	actions.	
It	is	the	experienced	designers’	umwelt	that	empowers	them	to	apply	patterns	holistically.	Deeply	ingrained	

personal	heuristics,	values,	design	principles,	and	practices	play	a	central	role	in	how	they	use	patterns	in	their	
designs.	 Experienced	 designers	 create	 patterned	 solutions	 that	 fit	 with	 their	 perceptions	 of	 their	 designed	
environment.	All	the	while	making	larger	or	smaller	design	adjustments	based	on	subtle	cues	and	gut	feelings.	
They	 don’t	mechanically	 implement	 patterns;	 instead,	 they	 carefully	weave	 them	 into	 their	 designs,	 adding	
what	is	needed	to	make	the	new	patterns	fit	with	their	designs	and	satisfy	their	design	aesthetics.	
	
__	
Permission	to	make	digital	or	hard	copies	of	all	or	part	of	 this	work	for	personal	or	classroom	use	 is	granted	without	 fee	provided	that	
copies	are	not	made	or	distributed	for	profit	or	commercial	advantage	and	that	copies	bear	this	notice	and	the	full	citation	on	the	first	page.	
To	copy	otherwise,	to	republish,	to	post	on	servers	or	to	redistribute	to	lists,	requires	prior	specific	permission.	A	preliminary	version	of	
this	paper	was	presented	in	a	writers'	workshop	at	the	29th	Conference	on	Pattern	Languages	of	Programs	(PLoP).	PLoP'22,	October	17-
24,	Virtual	Online.	Copyright	2022	is	held	by	the	author(s).	HILLSIDE	978-1-941652-18-3	

<)%/#59%*GMA 7H OP(C :*+/$%$+G$ *+ 4'(($%+ Q'+-1'-$# */ 4%*-%'22)+- R4Q*4SA 4Q*4 OTOOA !G(6f 5 OgA OTOOA 6T F'-$#H

Observations	on	growing	a	software	design	umwelt				Page	-	2	

In	 sharp	 contrast,	 inexperienced	 designers,	 while	 they	 might	 grasp	 the	 essence	 of	 a	 particular	 design	
pattern,	aren’t	likely	to	fully	understand	its	significance	or	design	impact.	It	is	difficult	for	them	to	spot	salient	
signals	that	could	help	them	shape	or	adapt	a	pattern	to	better	fit	their	current	design.	They	won’t	anticipate	
the	 constraints	 certain	 patterns	 place	 on	 future	 design	 choices.	 They	may	 struggle	 to	 relate	 that	 pattern	 to	
existing	 structures	 in	 their	 design	 (regardless	 of	whether	 those	 structures	 are	 named	 or	 known	 to	 them	 as	
patterns).	They	have	a	very	different	umwelt	than	experienced	designers	and	pattern	authors.	

As	 a	 consequence,	 simply	 learning	 many	 design	 patterns	 doesn’t	 guarantee	 that	 a	 less	 skilled	 designer	
becomes	a	better	designer,	let	alone	expert.	

2. HEURISTICS	AND	DISCERNMENT	

Billy	Vaughn	Koen,	in	Discussion	of	the	Method:	Conducting	the	Engineer’s	approach	to	problem	solving	[Koen],	
defines	a	heuristic	as,	“anything	that	provides	a	plausible	aid	or	direction	in	the	solution	of	a	problem	but	is	in	
the	final	analysis	unjustified,	 incapable	of	 justification,	and	potentially	fallible.”	Koen	identifies	three	kinds	of	
heuristics:		

1. Heuristics	that	lead	you	to	take	a	specific	action	(software	design	patterns	are	one	example	of	this	kind	
of	heuristic,	but	there	are	many	other	heuristics	both	larger	and	smaller	than	individual	patterns);	

2. Heuristics	that	shape	your	beliefs	and	values;	and		
3. Heuristics	that	guide	you	in	the	use	of	other	heuristics	(for	example,	pattern	languages	suggest	paths	

and	sequences	of	connected	actions).1	
	
Koen	points	out	 that	while	heuristics	often	contradict	each	other,	 they	are	still	useful.	Our	perception	of	our	
current	design	context,	as	well	as	personal	preferences	and	design	values,	lead	us	to	apply	particular	heuristics	
and	choose	a	course	of	action.		

For	several	years	 I’ve	explored	Billy	Vaughn	Koen’s	definition	of	heuristics	and	 their	relation	 to	software	
design	 practices,	 and	 software	 design	 and	 architecture	 patterns	 [Wirf17;	Wirf18;	WK;	Wirf20].	 I’ve	written	
blog	posts	and	essays,	given	talks,	and	conducted	workshops	on	the	nature	of	heuristics	and	how	to	collect	and	
share	them.	

My	goal	has	been	to	make	software	designers	more	aware	of	the	intrinsic	value	of	the	design	heuristics	that	
they’ve	acquired	through	direct	experience.	I	don’t	want	them	to	push	their	personal	heuristics	aside	in	favor	
of	 expert	 advice.	 They	 also	 shouldn’t	 take	 every	 bit	 of	 design	 advice	 they	 find	 as	 authoritative,	 but	 instead	
question	whether	certain	advice—including	a	specific	software	design	pattern—is	appropriate	to	their	design	
context.	

I	 typically	start	out	talks	on	heuristics	by	telling	the	story	of	cooking	my	very	first	Blue	Apron2	recipe	for	
Za’atar	Roasted	Broccoli	 Salad	 (for	details	 of	 this	 story	 see	 the	blog	post,	 	Nothing	Ever	Goes	Exactly	by	 the	
Book	[Wirf19b]).	I	jokingly	point	out	all	the	places	where	the	recipe	suggests	to	add	salt.	I	postulate	that	if	I	had	
followed	Blue	Apron	instructions	without	applying	any	judgment,	the	dish	would	be	too	salty	to	eat.	

I	 then	 share	 how	 I	 applied	 my	 own	 judgments	 in	 order	 to	 modify	 the	 instructions	 to	 fit	 with	 my	
understanding	of	what	makes	 for	 a	 tasty	 but	 not-too-salty	dish.	 Instead	of	mindlessly	 following	 their	 recipe	
(see	 Figure	 1),	 I	 ignored	 several	 places	 where	 the	 recipe	 suggested	 adding	 salt	 and	 also	 made	 personal	
interpretations	 of	 other	 imprecise	 instructions	 (such	 as	 determining	 the	 appropriate	 amount	 of	 liquid	 for	 a	
“drizzle”).	

One	 personal	 heuristic	 I	 used	 was,	 “ignore	 instructions	 for	 adding	 salt	 if	 it	seems	 (based	 on	 my	 gut	
feel)	excessive.”	Also,	“only	add	salt	to	taste	at	a	step	where	you	can	actually	taste	its	effect.”	Following	those	
personal	heuristics,	I	made	a	blander	dish	that,	while	looking	great,	lacked	flavor.	Why?	Because,	as	I	found	out	
later,	adding	salt	to	a	dish	at	the	end	only	salts	the	top	layer	of	food	(and	unevenly	at	that).	But…	achieving	a	
tasty	 dish	wasn’t	 the	 point	 of	my	 story!	 I	 wanted	 to	 get	 people	 fired	 up	 about	 applying	 knowledge	 they’ve	
gained	through	previous	software	design	experiences	to	new	situations.	Each	of	us	have	valuable	insights	and	
experiences	that	we	should	feel	confident	to	draw	upon.	

1	For	a	more	detailed	introduction	to	different	kinds	of	heuristics	see	Growing	Your	Personal	Design	Heuristics	Toolkit	[Wirf19a].	
2	Blue	Apron	is	a	service	that	sends	you	all	of	the	ingredients	and	instructions	to	cook	a	meal	at	home.	You	choose	from	their	meals	for	the	
week,	and	you	get	the	ingredients	needed	for	that	meal	delivered	in	a	box	on	your	doorstep.	

Observations	on	growing	a	software	design	umwelt				Page	-	3	

	 			 	
Figure 1. Blue Apron Recipe (front and back) with annotations where instructions were to add salt (underlined in blue),

seemed imprecise (underlined or circled red), or overly precise (circled in green).

With	my	story,	 I	was	 trying	 to	 illustrate	 the	appropriateness	of	 thinking	 for	yourself,	without	needing	 to	
deeply	 understand	 the	 umwelt	 of	 the	 situation	 (cooking	 a	 particular	 dish).	 Simply	 trusting	 and	 directly	
following	“recipes”	or	“patterns”	because	they	are	published	or	credentialed	might	well	lead	to	inedible	dishes	
or	to	poorly	designed	software.	

In	 hindsight,	 I	 misled	 my	 audience	 by	 painting	 an	 overly	 simplistic	 picture	 of	 software	 design,	 design	
expertise,	 exercising	 judgment	 and	 becoming	 more	 discerning.	 While	 we	 should	 value	 and	 treasure	 our	
experiences,	reflect	on	them,	and	draw	upon	our	personal	heuristics	with	more	confidence,	we	should	also	be	
cautious	 about	 our	 heuristics’	 relevance	 to	 new	 situations.	We	mislead	 ourselves	 if	we	 think	we	 know	best	
what	 to	 do	 in	 situations	 where	 we’re	 not	 grounded	 with	 sufficient	 knowledge	 and	 experience.	 While	 my	
finished	dish	looked	impressive,	it	tasted	bland	(see	Figure	2).	

	

	
Figure 2. The finished dish which, while looking great, lacked flavor.

Observations	on	growing	a	software	design	umwelt				Page	-	4	

	

3. THE	BENEFITS	OF	KNOWING	WHY	THINGS	WORK	THE	WAY	THEY	DO	

Last	December	I	read	How	to	Taste	[Sel]	by	Becky	Selengut.	It’s	a	book	about	how	to	become	a	better	cook	by	
becoming	more	informed	about	taste	and	techniques	for	adjusting	it.	The	introductory	chapter	starts:	
		

“Telling you to ‘season to taste’ does nothing to teach you how to taste—and that is precisely the lofty goal of this
book. Once you know the most common culprits when your dish is out of whack, you’ll save tons of time spinning
your wheels grabbing for random solutions. You’ll start thinking like a chef. Some people are born knowing how
to do this—they are few and far between and most likely have more Michelin stars that you or I; the rest of us
need to be taught. I’ve got your back.”

That	grabbed	my	attention!	
Unless	 I	 am	superhuman,	 I	 can’t	 rely	on	 instincts	 alone	 to	 create	 tasty	dishes.	 If	 I	 follow	 recipes	without	

knowing	why	they	work,	I’ll	merely	become	good	at	following	recipes.	My	umwelt	will	be	limited	to	being	able	
to	 follow	 recipe	 instructions.	 I	 won’t	 have	 learned	ways	 to	 “tune”	 or	 “adapt”	 recipes	 according	 to	 personal	
tastes	or	to	use	the	ingredients	I	have	at	hand.	Furthermore,	I	won’t	know	what	actions	to	take	to	get	back	on	
track	when	things	don’t	go	as	expected.	

My	experiences	with	cooking	have	largely	been	unstructured—dare	I	say	random.	Until	recently,	I	had	no	
theory	or	science	behind	what	makes	a	good	dish	good	or	a	tasty	dish	tasty.	I	have	never	taken	a	class	on	how	
to	cook	or	bake.	I’m	a	cooking	autodidact.	

My	heuristics	for	salting	that	Blue	Apron	dish	came	from	who	knows	where.	Perhaps	I	observed	my	mother	
not	using	much	salt	in	her	hastily	cooked	meals.	We	always	had	salt	at	the	table	though.	Once	I	started	cooking	
on	my	own,	I	followed	recipes	unless	they	were	too	difficult	or,	in	my	naïve	estimation,	had	unnecessary	steps.	
I	rarely	learned	why	I	was	instructed	to	do	certain	things	or	why	steps	were	in	a	particular	order.	I	didn’t	think	
deeply	 about	 the	 recipe	or	how	 to	 improve	 it,	 let	 alone	why	 it	worked.	Pretty	much,	 I	 followed	 instructions	
while	trying	to	be	efficient.	If	two	steps	could	obviously	be	done	at	the	same	time,	I’d	do	so.	No	need	to	get	the	
water	boiling	before	measuring	out	the	noodles.	Over	time,	I	figured	out	more	shortcuts.	I	can	modify	recipes	in	
limited	ways	to	use	available	ingredients	or	lower	their	fat	content.	My	knowledge	on	how	to	do	so	and	why	
certain	 techniques	 work	 has	 largely	 been	 acquired	 through	 searching	 the	 internet.	 And	 while	 my	 cooking	
techniques	 have	 improved,	 I	 haven’t	 developed	 the	 ability	 to	 craft	 a	 dish	 with	 nuanced	 flavors,	 let	 alone	
improvise.	 I’m	 getting	 better	 at	 this,	 thanks	 to	 Becky	 Selengut’s	 advice	 and	 several	 other	 sources	 that	 are	
teaching	me	about	flavor.	

Selengut	suggests	to	read	her	book	“…start[ing]	at	the	beginning,	as	I	intend	to	build	upon	the	concepts	one	
puzzle	 piece	 at	 a	 time.”	 Each	 chapter	 presents	 fundamental	 facts,	 reinforced	 by	 a	 recipe	 that	 highlights	 the	
important	 points	 of	 the	 chapter	 and	 then	 suggests	 activities	 intended	 to	 develop	 our	 palate.	 After	we	 learn	
basic	principles	of	taste,	we	learn	about	salt,	acid,	sweet,	fat,	bitter,	umami,	aromatics,	bite,	and	texture	in	that	
order.	

Aha!	
One	way	to	learn	how	to	exercise	judgment	and	develop	discernment	is	to	perform	structured	experiments	

after	being	presented	with	a	bit	of	theory	about	why	things	work	the	way	they	do—in	this	case,	the	chemistry	
of	cooking.	

I	quickly	read	through	the	chapter	on	salt.	Salt	is	a	flavorant—bringing	out	the	flavor	of	other	ingredients.	
Salting	early	and	often	can	dramatically	improve	the	taste	of	a	dish.	Salting	onions	as	they	sauté	not	only	speeds	
up	 the	 cooking	process	by	 causing	 them	 to	 sweat	 out	water,	 they	 also	become	 sweeter.	When	you	only	 salt	
soup	at	the	end,	no	matter	how	much	you	add,	the	flavors	of	unsalted	ingredients	(for	example	potatoes),	will	
fall	flat.	You	can	end	up	over	salting	the	stock	and	still	have	tasteless,	bland	potatoes	in	your	soup.	Salt	needs	to	
be	added	at	 the	right	 time,	often	at	several	steps	 in	the	cooking	process,	 to	enhance	the	 flavors	of	 individual	
ingredients.	Ingredients	need	to	absorb	salt	to	enhance	their	flavor	at	the	right	time	during	cooking.	Also,	to	my	
delight,	I	learned	that	different	kinds	of	salt—iodized,	kosher,	flaky,	fine-grained	sea	salt,	each	have	their	own	
flavoring	 properties	 and	 ratios	 in	 recipes.	 Inspired	 by	 Selengut’s	 writing,	 I	 painstakingly	made	 her	 chicken	
soup	recipe	in	the	back	of	the	chapter,	taking	over	two	days	to	finish	the	soup.	It	was	stunningly	delicious!	

This	made	me	rethink	my	previous	Blue	Apron	cooking	experience.	

Observations	on	growing	a	software	design	umwelt				Page	-	5	

4. THE	PROBLEM	IN	A	NUTSHELL?	

Blue	Apron’s	pretty	pictures,	step-by-step	instructions,	and	online	videos	do	little	to	help	me	understand	how	
to	achieve	tasty	dishes	of	my	own	creation	or	why	certain	flavor	combinations	work.	Blue	Apron	doesn’t	have	
bad	recipes;	they	simply	aren’t	intended	to	teach	me	to	be	a	better	cook.	In	the	process	of	preparing	a	dish	from	
one	of	their	recipes	I	might	learn	of	some	ingredients	that	I	might	incorporate	in	other	dishes.	But	I	won’t	know	
how	to	do	that.	

That’s	not	a	problem	if	all	I	want	to	do	is	cook	a	passable	meal	following	a	recipe	using	supplied	ingredients.	
It	becomes	a	problem	when	 I	want	 to	get	better	at	 cooking	 tasty	dishes	on	my	own.	While	 I	did	 learn	some	
generally	 useful	 skills—like	 how	 to	 roast	 vegetables	 or	mash	 potatoes,	 I	 didn’t	 gain	 deeper	 knowledge	 that	
allows	me	to	improvise	or	be	more	discerning.	Their	recipes	focus	on	how	to	make	a	dish	efficiently	following	a	
step-by-step	process—not	why	it	tastes	the	way	it	does	or	how	I	might	alter	it	to	suit	my	preferences	(that’s	
not	entirely	accurate,	they	do	caution	you	to	carefully	add	spicy	ingredients	in	small	doses	to	taste).	

I	 find	that	much	information	we	software	designers	absorb—whether	about	design	practices,	patterns,	or	
techniques—is	also	either	presented	as	step-by-step	lists	of	instructions	or	guidelines	without	accompanying	
explanations	of	why	it	makes	sense	to	do	so	or	without	pointers	to	relevant	background	information	that	might	
help	us	understand	the	topic	more	deeply.	And	when	we	join	an	existing	development	team	working	on	some	
new-to-us	 system,	we	 tend	 to	 go	with	 the	 flow	 (and	 approach	 existing	 software	 artifacts	without	 any	 deep	
understanding	of	 the	system	or	 the	values	and	beliefs	of	 its	 initial	designers).	Over	 time	we	may	 learn	 these	
things,	but	this	learning	is	mostly	ad	hoc	and	unstructured.	

This	is	also	the	case	when	we	pick	up	and	attempt	to	use	an	isolated	software	design	pattern.	The	pattern	
description	may	include	a	few	considerations	to	help	us	determine	whether	it	might	a	“reasonable”	fit.	It	may	
also	 briefly	 describe	 a	 few	 potential	 consequences	 of	 applying	 the	 pattern.	 But	 patterns	 never	 come	 with	
explicit	instructions	on	how	to	adapt	them	to	specific	design	contexts.	The	descriptions	are	written	by	authors	
who	 assume	 the	 reader	 has	 the	 necessary	 background	 to	 relate	 this	 information	 to	 their	 particular	 design	
situation.	Which	is	only	true	if	the	reader	shares	enough	of	a	design	umwelt	with	the	pattern	authors	to	read	
between	the	lines	and	enrich	pattern	descriptions	with	their	own	understanding.		

Furthermore,	 in	 design	 patterns,	 as	 with	 recipes,	 some	 steps	 or	 aspects	 of	 pattern	 solutions)	 are	 more	
rigorous	or	prescriptive	than	others.	For	example,	if	I	don’t	let	bread	dough	rise	long	enough,	I’ll	end	up	with	a	
hockey	puck	instead	of	a	well-formed	boule.	Similarly,	 if	 I	don’t	define	a	common	API	for	all	related	Strategy	
[Gamma]	objects,	I	won’t	get	the	benefit	of	interchangeable	behaviors.	Rarely	are	we	warned	of	consequences	
of	 not	 following	 a	 particular	 aspect	 of	 a	 pattern	 solution	 to	 the	 letter.	 Certain	 details	 might	 be	 important;	
others,	not	so	much.	It’s	only	through	direct	experience	that	we	learn	these	distinctions.		

Chris	Richardson	(author	of	a	book	on	Microservice	Patterns	[Rich]	and	organizer	of	an	online	community	
on	that	architecture	topic),	in	a	recent	email	thread	with	myself	and	Joseph	Yoder,	posed	this	question:	
	

“I had a random thought about the Microservice Architecture pattern. Perhaps, like other architectural patterns,
it's very high-level: architect the application as a set of loosely-coupled services. That's quite different from
"design patterns" where the participants [elements in the design] typically have clearly defined responsibilities.

Moreover, there's no guarantee that simply breaking your system up as a set of services achieves the benefits: i.e.
the resulting context is not guaranteed.

Has anyone written about the topic of 'vague patterns'?”

I	replied:	
	
“I think that topic (vague patterns) would be a good one to tackle. Patterns in isolation aren’t that interesting.
It is important to weave related patterns into a pattern language that guides you how to solve your problem.

What is the problem that a microservice architecture is trying to solve? Decoupling parts of a complex system,
allowing them to scale in performance independently, etc.

But what makes a microservice architecture a “good” design choice? Paying attention to localize dependencies,
provide coherent behaviors, and to have the ability to evolve microservices semi-autonomously...but still, this begs
the question of what makes a microservice architecture implementation a good one.

Observations	on	growing	a	software	design	umwelt				Page	-	6	

On the other hand, I think the patterns at the GOF level3 are like bricks. Nothing guarantees you can assemble a
bunch of bricks and make a good building. There’s more to it than that. A series of design choices around control,
coordination, the ability to evolve and extend the design, as well as necessary flexibility.”
	
My	 initial	 reaction	 to	 Chris’	 question	was	 that	 patterns—at	 least	 the	 software	 and	 software	 architecture	

patterns	I’m	aware	of—are	written	for	many	different	levels	in	a	design.	Some	are	about	larger	structuring	or	
overall	organization	of	a	complex	software	system	into	cohesive	parts	(for	example,	the	Microservice	pattern	is	
an	architecture	style;	as	is	the	Hexagonal	Architecture	pattern	[Co]).	These	patterns	are	necessarily	“vague”	in	
the	 sense	 that	 they	 don’t	 describe	 how	 to	 create	 such	 structures	 from	 scratch,	 nor	 how	 to	modify	 existing	
systems	to	effectively	incorporate	them.	Rather,	they	are	overall	structuring	patterns—they	aren’t	intended	to	
offer	 recipe-like	 solutions.4	 I’ve	 concluded	 that	 these	 patterns	 for	 larger	 structures	 need	 to	 be	 presented	
differently.	

Other	software	patterns	are	about	much	smaller	design	considerations	(or	rather	coding	considerations),	
for	example	how	to	hide	implementation	behind	a	Façade	or	how	to	define	plug-replaceable	behaviors	using	
the	Strategy	pattern	[Gamma].	When	you	use	these	lower-level	design	“bricks”	you	aren’t	attempting	to	design	
a	 sound	 structure	 (it	 takes	 much	 more	 than	 a	 single	 brick	 to	 build	 a	 wall	 and	 a	 single	 pattern	 to	 build	 a	
software	system),	but	instead	to	create	a	well-defined	small	design	element	that	will	fit	into	a	coherent	design	
(along	with	myriad	other	“bricks,”	whether	they	are	identified	patterns	or	not).	Usually,	descriptions	for	these	
low-level	patterns	include	sample	solution	sketches	that	appear	at	first	glance	to	be	templates	or	recipes	(e.g.,	
here’s	 a	 stylized	 depiction	 of	 what	 a	 good	 structure	 and	 behavior	 should	 look	 like…now	 you	 go	 about	
straightforwardly	implementing	it).	

As	 Joe	Yoder	pointed	out	at	 the	end	of	our	email	 thread,	 there	are	no	guarantees	of	design	success	when	
applying	either	large-scale	structural	patterns	or	lower-level	design	patterns:		

	
“…you [Chris] make a very good point "there's no guarantee that simply breaking your system up as a set of
services achieves the benefits." That is why I like one of your early patterns where you consider monolith vs
microservices. A monolith is not an anti-pattern. Also, even if the environment is right for microservice[s], if you
don't pay attention and do good modelling, you will not get the benefits and can have a worse problem...I have
tried to outline some design principles for microservices. A lot of them come down to good domain modelling
principles.”
	
When	we	learn	individual	design	techniques	or	individual	patterns	without	learning	design	principles	and	

practices	 (and	 some	 rudimentary	 understanding	 of	 why	 these	 principles	 and	 practices	 are	 important),	 we	
won’t	be	equipped	 to	 fill	 in	 the	gaps	or	make	connections	between	 these	principles	and	how	 to	 successfully	
apply	these	patterns.	

Over	 time	 and	 through	 experience	we	may	build	up	 a	playbook	of	 various	procedures,	 individual	 design	
patterns	and	design	practices.	But	our	knowledge	won’t	be	deep,	or	rich,	or	adaptable	unless	salient	new	facts	
become	connected	to	our	existing	knowledge	and	integrated	into	our	umwelt.	Even	so,	we	may	still	struggle	to	
make	meaningful	design	adaptations	in	novel	situations.		

For	example,	I	may	learn	what	to	substitute	for	a	missing	ingredient	in	a	specific	recipe,	e.g.,	substituting	oil	
for	butter,	but	I	won’t	learn	about	the	effects	it	has	in	other	contexts.	I	won’t	know	how	different	fats	interact	
with	 other	 ingredients	 (or	 going	 even	 deeper,	 why	 they	 have	 these	 effects	 and	 how	 they	work	 at	 different	
temperatures).	

Likewise,	 in	software	design,	 if	I	am	a	JavaScript	programmer,	I	may	learn	about	the	latest	features	of	the	
various	React	libraries5	or	common	problems	and	how	to	overcome	them.6	But	I	won’t	really	learn	much	about	
the	mechanics	of	rendering	or	re-rendering	web	pages,	or	strategies	for	handling	long	lists	of	items.	

3 GOF is a reference to Design Patterns by Gamma et al. The four authors are sometime referred in the pattern community to as the “Gang of
Four,” GOF for short.
4	Recently,	Joseph	Yoder	and	Paulo	Merson	have	written	patterns	about	different	approaches	for	evolving	an	existing	system	architecture	
to	use	microservices	[YM].	These	patterns	are	promising	in	that	they	illustrate	alternate	system	design	paths	for	re-architecting	a	system	
or	adding	new	functionality.	Reading	these	patterns	won’t	make	you	expert	at	microservice	architecture	design,	but	they	do	a	credible	job	
at	distilling	these	experts’	wisdom	and	experiences	in	pattern	form.		
5 For example, see https://brainhub.eu/library/top-react-libraries
6 See https://brainhub.eu/library/react-js-problems

Observations	on	growing	a	software	design	umwelt				Page	-	7	

Since	 pattern	 descriptions	 themselves	 aren’t	 complete	 enough	 for	 us	 to	 pick	 them	 up	 and	 use	 without	
sufficient	know-how,	where	 can	we	acquire	 that	knowledge	 if	 our	 experience	doesn’t	provide	 the	necessary	
background?	

To	 truly	 gain	 proficiency	 at	 software	 design	 or	 programming,	 experience	 alongside	 instruction	 and	
information	that	emphasizes	the	why	along	with	the	how	is	what	I	need.	

The	very	 first	 software	patterns	book,	Design	Patterns	 [Gamma],	devoted	 the	 first	 chapter	 to	 introducing	
and	 justifying	patterns.	 It	also	explained	object-oriented	design	concepts,	principles	and	practices,	as	well	as	
the	authors’	design	values.	It	introduced	us	to	some	critical	“whys”	behind	the	patterns	and	effective	ways	to	
design	 using	 object	 technology:	 the	 importance	 of	 programming	 to	 an	 interface;	 some	 advantages	 and	
disadvantages	of	object	inheritance	and	composition;	the	effects	of	delegation	on	a	design;	and	the	notion	that	
while	using	certain	patterns	 increase	a	design’s	 flexibility,	at	 the	same	time	they	also	add	design	complexity.	
Design	always	involves	making	tradeoffs.	

This	chapter	was	followed	by	a	lengthy	case	study	that	illustrated	how	these	design	principles	and	several	
patterns	 were	 used	 in	 designing	 a	 document	 editor.	 This	 case	 study	 exposed	 us	 to	 important	 design	
considerations	as	well	as	insights	into	the	authors’	design	umwelt.	Yet	how	many	of	us	bothered	to	read	and	
digest	 this	 material	 before	 jumping	 straight	 to	 reading	 the	 patterns?	 I	 remember	 eagerly	 reading	 this	
introductory	material	because	I	wanted	to	compare	their	design	values	and	experiences	with	my	own.	

Without	 such	 grounding	 and	 background,	 inexperienced	 designers	 are	more	 likely	 to	misinterpret	 these	
lower-level	software	design	patterns	as	instructions	to	be	followed	because	someone	(the	pattern	authors	or	
more	experienced	designers	or	an	instructor)	said	to	do	so.	They	won’t	connect	them	with	more	fundamental	
object	design	principles	that	they	are	based	on	nor	understand	that	these	patterns	are	intended	to	be	applied	
with	discernment.	

5. LEARNING	TO	ADAPT	

In	hindsight,	I	believe	that	the	Blue	Apron	salt	story	I	shared	in	my	presentations	wasn’t	misleading—it	just	fell	
short	in	equipping	my	audience	with	sufficient	tools	and	techniques	for	actively	learning	and	integrating	new	
heuristics	into	their	umwelts.		

Anthropologist	Gregory	Bateson,	 developed	 a	 theoretical	 framework	 for	 learning	 “levels”	 or	 “types”	 [Vis;	
Lutt].	 The	 most	 basic	 level	 of	 learning	 is	 reacting	 to	 something,	 but	 without	 learning	 anything	 “new.”	 For	
example,	 turn	off	 the	oven	after	 the	 timer	beeps.	The	next	 level,	which	he	calls	proto-learning,	 is	 learning	 to	
change	your	response	in	order	to	correct	an	error.	I	learn	to	take	the	bread	out	of	the	oven,	regardless	of	bake	
time,	if	I	see	the	top	getting	too	brown.	In	this	case	I’m	not	blindly	following	instructions,	but	through	learned	
observation	 and	 perceptions,	 I	 am	 altering	 my	 behavior	 to	 match	 the	 current	 context.	 The	 third	 level	 of	
learning,	called	deutero	learning	goes	a	little	meta:	learning	to	adapt	our	responses	based	on	recognizing	and	
reacting	to	changing	contexts.	For	example,	with	experience,	I	recognize	that	I	likely	need	to	adjust	timing	and	
temperature	when	using	an	unfamiliar	oven.	

Bateson	 points	 out	 that	 learning	 happens	 at	 various	 levels,	 regardless	 of	 our	 intentions	 (or	 awareness).	
Design	habits	and	heuristics	and	values	seep	in	to	our	umwelt	through	our	experiences.	And	those	experiences	
shape	how	we	approach	new	 learning.	Deutero	 learning	 impacts	 the	way	we	see	 things,	what	we	anticipate,	
how	we	unconsciously	behave,	as	well	as	what	we	perceive	as	“normal”	responses	in	specific	contexts.	Bateson	
and	others	point	out	that	you	shouldn’t	think	of	one	learning	“level”	or	“type”	as	being	“better”	than	another,	
nor	that	you	only	are	engaged	in	one	type	of	learning	at	a	time.	We’re	more	adept	than	that.		

An	experienced	software	designer’s	umwelt	gives	them	enough	design	chops	to	know	to	how	use	a	pattern	
in	 their	design	context,	 even	 if	 they	may	not	be	able	 to	articulate	what	 they	are	doing	when	 they	apply	 that	
pattern.	I	know	that	my	stance	is	to	take	any	description	of	a	software	pattern	solution	as	a	sketch.	They	are	
starting	points.	Suggestions.	Heuristics	to	be	weighed	against	other	design	options.		

And	 if	 I	 choose	 to	 employ	 a	 particular	 pattern,	 I	 will	 always	 need	 to	 adapt	 it	 to	 fit	 it	 into	 my	 design.	
Invariably,	 my	 solution	 will	 be	 more	 complex	 and	 nuanced	 than	 the	 solution	 sketched	 out	 in	 the	 pattern	
description.	

But	how	did	I	come	to	know	this	about	software	patterns?	
Over	years	designing	and	writing	software,	I	came	to	recognize	that	any	sketch	made	on	a	whiteboard	or	in	

my	design	notebook	wasn’t	going	to	be	accurate.	Nor	detailed.	Invariably	I	would	uncover	additional	details	as	
I	implemented	my	designs	or	talked	about	design	ideas	with	others.	It	was	expected	as	young	engineers	for	us	
to	review	what	we	were	doing	and	why	with	our	peers	and	get	helpful	feedback.	We	all	did	this.	

Observations	on	growing	a	software	design	umwelt				Page	-	8	

Roughly	during	that	same	period,	I	also	learned	how	to	efficiently	move	between	looking	at	detail	in	code	
and	sketching	out	design	ideas	that	intentionally	omitted	many	details.	If	someone	didn’t	know	much	about	my	
code,	I	would	sketch	and	talk	about	my	design	before	we	turned	to	look	at	code.	Both	perspectives	were	useful.	
I	 came	 to	 appreciate	 the	 value	 in	 shifting	 between	 these	 perspectives.	 No	 perspective	 was	 better	 or	 more	
“accurate”;	it	was	just	more	or	less	appropriate	for	the	context	and	to	whom	I	was	talking	to.	Thinking	back,	I	
believe	 that	 I	 took	 this	 same	 attitude	 into	 learning	 about	 and	 using	 software	 design	 patterns.	 I	 expected	 to	
learn	 a	 little	 about	 a	 pattern	 by	 reading	 it	 or	 seeing	 examples	 of	 it	 used	 in	 various	 situations.	 But	 should	 I	
choose	to	use	that	pattern,	I	expected	to	learn	much	more	during	the	process	of	adapting	it	to	my	design.	

6. SOME	THOUGHTS	ON	GROWING	DESIGN	EXPERTISE	

While	I	want	people	to	be	confident	in	drawing	upon	on	their	experiences,	I	also	want	them	to	appreciate	that	
some	 of	 their	 ingrained	 design	 heuristics	may	 be	 based	 upon	 premises	 that	won’t	 hold	 up	 very	well	 under	
closer	 scrutiny.	 And	 that	 falling	 back	 on	 familiar	 design	 heuristics	 without	 considering	 their	 utility	 in	 new	
situations	 can	 result	 in	unpleasant	 surprises.	Worse	yet,	when	we	don’t	know	some	of	 the	whys	behind	our	
personal	heuristics,	we	may	not	know	what	appropriate	alternatives	to	consider	or	corrective	actions	to	take	to	
get	our	designs	back	on	track.	

There	 are	 many	 situations	 when	 it	 is	 perfectly	 fine	 to	 act	 on	 instinct	 (or	 rather,	 unconscious	 learned	
behaviors	and	 tacit	knowledge).	Being	deliberate	and	 intentional	all	 the	 time	 isn’t	possible	or	desirable.	And	
yet,	actively	acquiring	and	building	deeper	expertise	and	expanding	your	umwelt	requires	directed	attention.	

In	my	talks	I	speak	about	the	practice	of	keeping	a	design	journal	or	daily	log	of	your	thoughts	and	design	
actions.	This	harkens	back	to	early	in	my	engineering	career	when	I	recorded	design	notes	in	my	engineering	
notebook.	Tektronix	gave	engineers	such	notebooks	with	nominal	instructions:	write	about	daily	about	design	
ideas	 you	 thought	of,	 and	 to	be	 sure	 to	 sign	 and	date	 each	page.	This	was	 intended	 to	be	 evidence	used	 for	
patent	 applications.	But	 these	notes	 inadvertently	 served	another	purpose—to	help	me	 recall	 how	 thoughts	
and	design	ideas	progressed.	This	record	left	me	some	breadcrumbs	that	I	could	reflect	back	on.	

I	 also	 challenge	 audiences	 to	 extract	 and	 examine	 heuristics	 (and	 especially	 competing	 or	 alternative	
heuristics)	from	talks,	presentations,	and	others’	writings.	But	this	begs	the	question,	how	can	they	effectively	
incorporate	these	new	heuristics	into	their	own	design	umwelt?	

I	 now	 believe	 it	 is	 equally	 important	 to	 seek	 the	 why	 behind	 the	 what	 you	 are	 doing	 (especially	 when	
tackling	a	novel	design	problem).	Ask,	why	does	this	particular	heuristic	or	pattern	have	a	desired	effect,	and	
why	at	other	times	does	 it	 fail?	Ask	what	other	approaches	might	I	consider	and	what	do	others	think	of	my	
design	ideas?	

Software	design,	however,	 is	often	done	in	bits	and	spurts.	Under	pressure	to	crank	out	production-ready	
code	there	can	be	little	time	for	introspection	and	critique.	Instead,	your	design	efforts	narrow	to	only	making	
the	design	work	well	enough	so	that	it	can	be	put	to	immediate	use	without	breaking	existing	functionality.	

Unless	 you	 work	 in	 an	 environment	 where	 regular	 slack	 time,	 design	 discussions,	 and	 experiments	 are	
integral	 to	 your	 work	 rhythms,	 learning	 (and	 widening	 and	 deepening	 of	 your	 umwelt)	 will	 be	 spotty.	
Exploration	of	design	options	play	a	big	part	in	growing	design	skills.	As	does	practice	and	reflection.	Woody	
Zuill,	writes	how	their	mob	programming	team7—a	small	team	of	individuals	all	working	together	on	the	same	
code	at	the	same	time—approach	learning	together	[Zui]:		

	
“…we also take time to “re-sharpen the saw” daily by spending the first hour of the day in a group study session.
Additionally, we have an extended study session most Fridays to do a more intense study for 2 or 3 hours. In our
daily study sessions, we select some aspect of programming that we feel is a weak spot for us, and spend an entire
hour studying it. We usually do our study as a workshop and run it as a Coding Dojo similar to our Mob
Programming style. We’ll use any technique that helps, such as working through a code kata, watching on-line
video training, studying a book, or tackling some interesting algorithm or some new technology.
 Since we work in very short iterations of a day or two it is easy for us to experiment with various ways to do
things. We keep an eye out for any aspect of our work that we can automate or simplify and try any approach that
we think might work. This includes both programming and process related ideas. For example, if we have several
ideas for solving a problem, but with no clear winner across the team, we’ll try a minimal version of each solution

7	Another	name	for	mob	programming	is	ensemble	programming.	This	practice	has	 its	roots	 in	agile	development,	where	fast	 iterations	
with	 a	 steady	 stream	 of	 incoming	 feature	 requests	 are	 the	 norm	 and	 developers	 mostly	 write	 and	 design	 code	 together	 rather	 than	
working	solo.	

Observations	on	growing	a	software	design	umwelt				Page	-	9	

and see which we like better. The cost for doing experiments is relatively low, and the payoff for us is often many
times the time invested.”

There	 are	 ways	 to	 incorporate	 active	 learning	 into	 daily	 rhythms:	 Deliberate	 practice.	 Trying	 out	 new	

patterns	 and	 heuristics.	 Noodling	 around	 with	 new	 design	 approaches	 to	 see	 how	 they	 might	 work.	
Experimenting,	 for	 the	 sake	 of	 gaining	 experience.	 Reflecting	 on	 what	 you’ve	 done.	 Writing	 down	 some	
heuristics	you’ve	applied.	Receiving	timely	critical	feedback	and	constructive	critique.		

These	all	help	you	improve	your	design	skills	and	broaden	your	umwelt.	
But,	rarely	do	we	take	the	time	for	design	playfulness	and	experimentation.	We	should	make	more	space	for	

these	kinds	of	activities.	But	even	these	efforts	might	not	go	far	enough.	

7. LETTING	GO	OF	CERTAINTY	

I	no	longer	believe	that	salt	should	be	added	only	when	I	can	immediately	taste	its	effect	(it’s	easier	if	I	can	do	
so,	but	not	necessary—if	I	trust	the	recipe	and	know	why	salt	needs	to	be	added,	how	much	to	add,	and	when	
to	do	so).	But	I	can	still	slip	up	and	make	mistakes.	Like	adding	too	much	salt.	The	recipe	might’ve	been	unclear,	
I	might’ve	misunderstood	some	advice,	or	perhaps	the	advice	was	misguided.	

Consequently,	 I	 am	 now	 learning	 ways	 to	 fix	 oversalted	 dishes.	 If	 fortunate,	 I	 simply	 can	 add	 more	
ingredients	to	cut	the	saltiness.	That’s	easiest,	but	not	always	practical.	I	might	add	something	acidic	like	lemon	
juice	or	vinegar,	or	something	sweet,	or	something	buttery	or	creamy	like	avocado.	It	all	depends	on	where	I	
want	to	take	the	flavor	profile8	of	my	dish—assuming	I	know	where	I	want	to	take	it.		

And	yet,	I’m	still	not	expert	at	this.	I’m	uncertain	that	any	new-to-me	salt	reducing	heuristic	will	have	the	
desired	effect	or	please	my	palate.	So,	while	I	approach	saltiness-reducing	efforts	armed	with	others’	advice,	I	
remain	curious	and	questioning.	Why	did	a	particular	tactic	seem	to	work?	How	much	of	a	saltiness-reducing	
ingredient	should	I	add?	

As	 I	 come	 to	understand	 the	utility	of	new	heuristics,	 I	 find	 that	 I	may	also	need	 to	 let	go	of	 some	of	my	
strongly	held	beliefs	or	perceptions	(or	perhaps,	recalibrate	their	applicability).		

As	I’ve	relaxed	my	strong	preference	for	solving	most	software	design	problems	using	objects,	I’ve	come	to	
appreciate	 non-object-oriented	 design	 approaches.	 I’m	 still	 most	 comfortable	 fashioning	 solutions	 using	
objects	 and	 well-known	 software	 patterns.	 But	 I	 recognize	 there	 are	 many	 contexts	 where	 other	 design	
paradigms	 and	 patterns	 shine.	 It’s	 not	 that	 I’ve	 abandoned	my	 cherished	 heuristics	 so	much	 as	 I’ve	 sorted	
through	and	rearranged	my	umwelt.	 I’ve	situated	new-to-me	and	useful	heuristics	and	approaches	alongside	
older,	cherished	ones.	Both	my	merkwelt	(perceptions)	and	wirkwelt	(actions)	have	been	enriched	by	stepping	
outside	my	comfort	zone	and	trying	out	new-to-me	ways	of	designing	software.		

In	doing	so,	I’ve	found	that	sometimes	I	can	directly	transfer	some	of	my	existing	knowledge	to	new	design	
paradigms.	For	example,	the	Strategy	pattern	can	be	just	as	easily	implemented	as	a	set	of	functions—as	long	
as	there	 is	a	single	behavior	associated	with	the	strategy	and	no	need	to	retain	any	state.	And	the	Decorator	
pattern	can	be	implemented	as	composable	functions.		

At	other	times,	I	can’t	see	how	to	integrate	new	heuristics	into	my	umwelt.	Before	these	heuristics	become	
useful,	I	need	to	sort	them	out	and	appropriately	arrange	them	into	my	umwelt.	When	I	don’t	see	an	easy	fit,	I	
lean	more	on	experts’	advice	on	how	best	to	make	use	of	them.	Since	I’m	not	skilled	at	using	new	heuristics,	
they	may	feel	awkward	or	unnatural.	I	may	need	more	practice.	Perhaps,	with	practice,	I’ll	find	that	they	aren’t	
a	good	fit.	If	so,	I	set	them	aside.	

It	is	only	when	I	temper	others’	advice	with	what	I	learn	through	direct	experience,	practice	and	reflection,	
does	this	knowledge	feel	like	it	is	truly	becoming	part	of	my	umwelt.	

Whether	 novice	 or	 expert,	 breaking	 out	 of	 design	 “habits”	 or	 growing	 new	 skills	 as	Woody	 Zuill’s	 story	
illustrates—and	 my	 experiences	 corroborate—need	 not	 be	 painful.	 As	 you	 actively	 expand	 and	 tune	 your	
design	umwelt	you	may	 feel	uncertain.	Some	new-to-you	heuristics	require	more	practice	and	consideration	
than	 others	 before	 they	make	 sense.	 Regardless,	most	 heuristics	will	 need	 to	 be	 adapted	 to	 fit	 your	 design	
context.	And	you	will	 be	better	 to	 equipped	 to	do	 this	kind	of	 tinkering	 if	 you	 learn	 some	 things	about	why	
these	heuristics	work	the	way	they	do	as	you	try	them	out.	

	

8	After	devouring	How	to	Taste,	I	purchased	The	Flavor	Matrix:	The	art	and	science	of	pairing	common	ingredients	to	create	extraordinary	
dishes	 by	 James	 Briscione.	 This	 book	 is	 beyond	 my	 current	 expertise.	 And	 yet	 I’m	 hopeful	 that	 when	 I	 dig	 into	 it	 with	 a	 little	 more	
experience,	a	sense	of	wonder,	and	an	experimental	attitude,	that	my	flavor-creation	skills	will	grow.	

Observations	on	growing	a	software	design	umwelt				Page	-	10	

8. ACKNOWLEDGEMENTS	

I’d	 like	 to	 thank	my	shepherd,	Philipp	Bachmann,	 for	 reading	early	drafts	of	 this	 essay,	making	 constructive	
suggestions	 and	 observations,	 and	 prompting	me	 to	 try	 harder	 to	 clarify	who	my	 intended	 audience	 is	 and	
what’s	in	it	for	them.	I’d	also	like	to	thank	my	virtual	writers’	workshop	colleagues	for	their	candid	reactions	
and	encouragement.	Also,	thanks	for	pointing	out	places	where	you	thought	I	needed	to	say	more.	Thanks	to	
Jordan	Wirfs-Brock	for	her	fresh	insights	and	HCI	design	perspective.	And	finally,	thanks	to	Allen	Wirfs-Brock	
and	Lise	Hvatum,	two	of	my	most	supportive	and	consistently	thoughtful	critics.	
REFERENCES	
[AISJFA]	Alexander,	C.,	Ishikawa,	S.,	Silverstein,	M.,	Jacobson,	M.,	Fiksdahl-King,	I.,	Angel,	S.	(1977).	A	Pattern	Language:	Towns,	Buildings,	
Construction.	Oxford	University	Press.	
[Co]	 Cockburn,	 A.	“Hexagonal	 Architecture,”	 (2005),	 blog	 post,	 retrieved	 September	 21,	 2022:	 https://alistair.cockburn.us/hexagonal-
architecture/	
[Gamma]	Gamma,	E.,	Helm,	R.,	Johnson,	R.,	Vlissides,	J.	Design	Patterns:	Elements	of	Reusable	Object-Oriented	Software.	Addison-Wesley,	
1995.	
[Koen]	Koen,	B.V.	Discussion	of	the	method:	Conducting	the	Engineer’s	approach	to	problem	solving,	Oxford	University	Press,	2003.	
[Lutt]	Lutterer,	W.	“Anthropology	of	Learning:	Gregory	Bateson,”	Encyclopedia	of	the	Sciences	of	Learning,	Heidelberg:	Springer,	2012,	p.	
412-415.	
[Rich]	Richardson,	C.	Microservices	Patterns:	With	examples	in	Java,	Manning,	2018.	
[Sel]	 Selengut,	 B.	How	 to	 Taste:	 The	 Curious	 Cooks	 Handbook	 to	 Seasoning	 and	 Balance,	 from	 Umami	 to	 Acid	 and	 Beyond	 with	 Recipes,	
Sasquatch	Books,	2018.	
[Vis]	Visser,	M.		“Gregory	Bateson	on	Deutero-learning	and	Double	Bind:	A	Brief	Conceptual	History”	in	Journal	of	History	of	the	Behavioral	
Sciences,	Vol.	39(3),	269	–	278	Summer	2003	Published	online	in	Wiley	InterScience	(www.interscience.wiley.com).		
DOI:	10.1002/jhbs.10112	
[Ux]	Uexküll,	J.	von.	(1934/2010).	A	Foray	into	the	Worlds	of	Animals	and	Humans	with	a	Theory	of	Meaning.	Minneapolis,	MN:	University	of	
Minnesota	Press.	
[Wirf17]	Wirfs-Brock,	R.	“Are	Software	Patterns	Simply	a	Handy	Way	to	Package	Design	Heuristics?”	(2017).	Proceedings	of	the	24th	
Conference	on	Pattern	Languages	of	Programs	(PLoP'17).	
[Wirf18]	Wirfs-Brock,	R.	“Traces,	tracks,	trails,	and	paths:	An	Exploration	into	How	We	Approach	Software	Design”	(2018).	Proceedings	of	
the	25th	Conference	on	Pattern	Languages	of	Programs	(PLoP'18).	
[Wirf19a]	Wirfs-Brock,	R.	“Growing	Your	Personal	Design	Heuristics	Toolkit,”	blog	post,	retrieved	September	21,	2022:	
https://wirfs-brock.com/blog/2019/03/20/growing-your-personal-design-heuristics/	
[Wirf19b]	Wirfs-Brock,	R.	“Nothing	Ever	Goes	Exactly	by	the	Book,”	blog	post,	retrieved	September	21,	2022:		
https://wirfs-brock.com/blog/2019/04/19/nothing-ever-goes-exactly-by-the-book/	
[WK]	Wirfs-Brock,	R	and	Kohls,	C.	“Elephants,	Patterns,	and	Heuristics.”	(2019).	Proceedings	of	the	26th	Conference	on	Pattern	Languages	
of	Programming	(PLoP	’19).	
[Wirf20]	Wirfs-Brock,	R.	“Should	we	stop	writing	design	patterns?”	(2020).	Proceedings	of	the	27th	Conference	on	Pattern	Languages	of	
Programs	(PLoP'20).	
[YM]	 Yoder,	 J.	 and	 Merson,	 P.	 “Strangler	 patterns.”	 (2020)	 Proceedings	 of	 the	 27th	 Conference	 on	 Pattern	 Languages	 of	 Programs	
(PLoP'20).	
[Zui]	Zuill,	W.	“Mob	Programming	–	A	Whole	Team	Approach.”		(2014)	Agile	2014,	retrieved	September	21,	2022:	
https://www.agilealliance.org/resources/experience-reports/mob-programming-agile2014/	
	

