

Leading a Software Architecture Revolution
Part 2b: Tactical Prioritization

Marden Neubert, MVLM Tecnologia Ltda,—Brazil
Joseph W. Yoder, The Refactory, Inc,—USA

As a software system grows in complexity, technology evolves, and organizations seek new
opportunities, software architecture can become unsuitable for the problems it should help
solve. This scenario calls for a software architecture revolution—an extensive and profound
transformation of a system’s core structures to align it with current and future requirements. This
process is challenging and demands significant organizational resources, commitment, and
effective guidance. While there is extensive research on the technical aspects of architectural
changes, leadership dynamics in such initiatives are only sparsely discussed. Leaders play a
pivotal role in this journey, advocating for the revolution, deciding priorities, negotiating resource
allocation, assessing progress, implementing corrective actions, and showcasing achievements.
Our previous work introduced a pattern language for leading software architecture revolutions.
This paper expands that language, presenting a set of tactical prioritization patterns drawn from
real-world experiences to enhance the effectiveness of architecture revolution initiatives.

Categories and Subject Descriptors
• Software and its engineering ~ Agile software development • Social and professional topics
 ~ Software architectures; Software evolution; Design patterns; Agile software development

General Terms
Architecture, Management, Sustainable Delivery, Leadership, System Modernization, Architecture Revolution

Additional Keywords and Phrases
Software Development, Maintaining software, Evolutionary Architecture, Patternd, Pattern Sequences & Scenarios

ACM Reference Format:
Neubert, M., Yoder, J.W., “Leading a Software Architecture Revolution - Part 2b: Tactical Prioritization”. HILLSIDE
Proc. of 30th Pattern Lang. of Prog. (October), 41 pages.

Author’s email address: marden.neubert@gmail.com, joe@refactory.com

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires
prior specific permission. A preliminary version of this paper was presented in a writers' workshop at the 30th Conference
on Pattern Languages of Programs (PLoP). PLoP'23, October 22-25, Allerton Park, Monticello, Illinois, USA. Copyright 2023
is held by the author(s). HILLSIDE 978-1-941652-19-0

1.​Introduction
The software architecture of a system can be defined as the set of structures needed to reason
about the system [Bass et al.]. These structures are composed of software elements, the
relations among them, and the properties of both. The architecture manifests the design
decisions related to the overall system structure and behavior.

Over time, however, as technology evolves, requirements change, and software complexity
increases, the original architecture may become inadequate and an obstacle to further growth
and development. This situation could be the result of forces such as the accumulation of
technical debt, the introduction of new requirements incompatible with the existing architecture,
changes in the organizational structure of the company maintaining the system, or the shift in
market dynamics and business models.

In such a context, a gradual, evolutionary approach to altering the architecture might not be
enough or even feasible. A more radical transformation, which we term a “software architecture
revolution,” is necessary. This endeavor requires a committed, organization-wide effort to
drastically reshape the software architecture.

An architectural revolution is a radical change initiative. It affects not only the IT department but
also ripples throughout the entire organization, impacting priorities, demanding considerable
investment in time and resources, and requiring adaptation to the new architectural landscape.
As such, clear communication and understanding of the revolution’s motivations are crucial
among all stakeholders involved in product development.

In previous works, we introduced patterns for helping leaders of architectural revolutions,
organized in groups focused on “Creating Awareness,” “Preparing and Measuring” [Neubert,
Yoder 2022], and “Strategic Prioritization” [Neubert, Yoder 2023]. This paper expands that
language by introducing patterns for “Tactical Prioritization,” focused on assisting leaders and
teams in prioritizing activities for the revolution initiative. It draws from practical experiences
from the authors—a CTO who led a significant transformation and a consultant advising many
companies in similar situations—to provide leaders of architectural revolutions with strategies for
prioritizing their teams' activities.

The paper gives some background information, followed by an overview of the patterns. This is
followed by some of the patterns for prioritizing activities when leading a revolution initiative.
Brief descriptions (patlets) of the patterns are provided in Appendix A, which includes a
summary of all patterns we have outlined in this language.

The patterns presented here are intended primarily for potential leaders of system
modernization [Seacord et al.] initiatives, such as CTOs, CIOs, or Directors of Engineering.
They may also prove beneficial to others involved with software architecture, including
architects, developers, technical leaders, and even non-IT personnel.

In presenting these patterns, we adopt a modified Alexander style [Alexander et al.], wherein the
context of the pattern precedes the first bold problem statement. This problem statement is
followed by a discussion of the forces at play, the core of the solution, and then further details.
Each pattern concludes with a discussion of consequences and related patterns (in bold).

Leading a Software Architecture Revolution - Part 2b: Tactical Prioritization – Page 2

2.​Background
We use the term software architecture revolution to indicate that architectural work will be
performed and managed as a dedicated initiative, instead of just organically, with tasks living
side-by-side with new features in the teams’ backlogs. We intend to contrast the name with
“evolution” to highlight that the transformation process is perceptible to the company. As the
dictionary definition clarifies, a revolution can be sudden, but it can also happen progressively.

When you need to make radical changes to a system’s architecture, it is important to start by
Creating Awareness of the issues so that you will have buy-in and support throughout the
organization. Once you get the commitment, you should begin Preparing and Measuring to
see whether you are moving in the right direction. Figure 1 shows the patterns in these two
groups, previously described in [Neubert, Yoder 2022].

Figure 1: Creating Awareness and Preparing and Measuring Patterns​

Before an architectural revolution can happen, the organization must become aware of the
problems with its software and acknowledge it needs to be fixed. This begins with some form of
Awakening1. Many things can lead to an Awakening. It usually begins when an individual or a
group (possibly teams) becomes aware that there are some issues or problems with the current
system. This does not happen overnight and can start with a feeling that something is wrong.
This can lead to some teams working to do a more extensive revision in order to “straighten
things out.” Although they make some progress, the more they do, the more problems they see,

1 Awakening has not yet been written as a pattern, but could be. It is one of the first things that must happen before
any architectural revolution takes place.

Leading a Software Architecture Revolution - Part 2b: Tactical Prioritization – Page 3

https://app.diagrams.net/?page-id=_9Bi5qXjpOgrMsEsXq5d&scale=auto#G1CcpnqMMRoUJYBFBC4mmjA2GWLcqxP803

until ultimately it becomes clear that the only way they will be able to fix the architecture is with a
radical change. After an Awakening, the organization will understand the situation much more
easily if the departments involved in product development are All in The Same Boat.
Continuous Awareness Building can help IT teams and related areas sustain development
and continue to promote the need for the new architecture. You should have A Plan up Your
Sleeve to offer some hope to the teams and pitch it to get approval for the revolution initiative.
When you have the opportunity to talk to upper management about the initiative, be emphatic
and Scare the S*** Out of Them with the risks presented by the current architecture.

Once you have started, it is good to Pave the Road by creating the infrastructure and educating
the organization about the new architecture. As you start the revolution initiative, it is helpful to
collect Metrics for Baselining and Comparing the architecture before and after each step.
These metrics can serve as a basis for defining Organization-Wide Architectural Targets,
which is a strong message to the organization that the revolution is a priority. As the initiative
evolves, keep in mind that it is not easy to have a clear feeling of the progress in a journey of
changing software architecture. Make Progress Tangible so that teams and business leaders
will be motivated by the advances. As a best practice to have insight and control over the
initiative, we recommend that you manage Architectural Revolution as an Agile Portfolio.

The next step is to ensure that teams are working on the most important activities in the
revolution, which is done by Prioritizing Activities. This is essential because you want to
deliver value as soon as possible. While value here does not mean a new feature, customers
will benefit from a more stable service, fewer defects, and more frequent releases. Internal
stakeholders will also gain from internal characteristics, such as more flexibility, better testing,
more straightforward deployment, and better tooling.

There are strategic decisions that need to be made when you start Prioritizing Activities,
which lead to a broader impact in the shape of the revolution initiative [Neubert, Yoder 2023].
For example, these decisions include how the new architecture will be rolled out and whether
new feature development will be halted during the revolution, as shown in Figure 2.

Figure 2: Strategic Prioritization Patterns

Early on your revolution journey, you need to decide on strategic priorities and guidelines. These
decisions will have a broader impact in the initiative because they will define long-term goals

Leading a Software Architecture Revolution - Part 2b: Tactical Prioritization – Page 4

https://app.diagrams.net/?page-id=SygnerR6H57Xg-ugoaU-&scale=auto#G1CcpnqMMRoUJYBFBC4mmjA2GWLcqxP803

and overarching approaches to the challenges you will face. These foundational decisions start
with an Architectural Vision that inspires teams to join the initiative and guides them toward
the desired goal. This vision can be used to create an Architectural Roadmap which is a rough
plan for when various architectural features should be addressed during the revolution. You
should make progress toward the new architecture by taking Baby Steps and creating just
enough infrastructure to support simple scenarios and validate the vision. As you start migrating
to the new architecture, look for Quick Wins so that teams can learn fast and be motivated by
delivering some results. A frequent discussion in prioritization is whether you should Freeze all
other initiatives and focus solely on the revolution to mitigate the risks sooner and reap the
benefits of the new architecture. The alternative is to Change the Tires of a Moving Car and
keep other initiatives going. These two options can coexist: you may choose to freeze some
parts of the system to migrate them while other development initiatives are allowed to move on.

This paper will focus on the prioritization decisions after the strategic definitions, which we call
tactical prioritization. The patterns discussed here are equally important because they offer
practical guidance to help leaders and teams prioritize architectural tasks during the revolution
initiative. The patterns presented in this paper are shown in the tactical section of Figure 3.

Figure 3: Tactical Prioritization Patterns​

A key prioritization tactic is to ensure that teams do not create more backlog for themselves by
making New Features Go Into the New Architecture, even if it is necessary to migrate a larger
subsystem to add a small feature. It is valuable to have Teams Decide What to Migrate
because they know best what affects their work. Prioritize the improvement of critical and risky
parts of the architecture by having teams Migrate Critical Subsystems. Sometimes the legacy
application code is so poor that it pays off to Refactor then Migrate a subsystem. When a
certain subsystem is too complex and risky to be migrated without disruption, or using the new
version would require some action from external parties (for instance, customers or partners),
Mirror Feature in the New Architecture and keep both versions working in parallel. Finally,
create gatekeepers to Restrict Changes to the Legacy Application and allow only top priority
initiatives to be implemented in the old architecture and Reluctantly Improve the Legacy
Application to avoid increasing risks.

Leading a Software Architecture Revolution - Part 2b: Tactical Prioritization – Page 5

https://app.diagrams.net/?page-id=JS1oI5CBUMiz2Wq8E7N9&scale=auto#G1CcpnqMMRoUJYBFBC4mmjA2GWLcqxP803

3.​New Features Go Into the New Architecture

Photo by Steve Lieman on Unsplash

Your organization relies on a system that has become increasingly difficult to work with. You had
an Awakening and realized that there is a mismatch between the current architecture and the
organization’s needs. You have concluded that you must take action to change this situation and
have started an architectural revolution.

You have been making progress toward a new architecture, deploying and testing an
Architectural Vision with Baby Steps. Some teams may have already created software in the
new architecture, achieving Quick Wins and making you more confident that the vision is
viable.

In the meantime, business leaders have continued to request new features and improvements
on existing ones, often stressing that these are urgent demands. Despite your efforts to Pave
the Road, some teams may not yet feel confident developing in the new architecture and
believe that it would be faster to work on the legacy system.

How do you create and evolve features in the context of an architectural revolution so
that the organization can avoid burdening the legacy system?

Once you have started an architectural revolution and demonstrated the risks of the legacy
system via Continuous Awareness Building, you do not want the initiative’s backlog to grow
because teams keep creating new features in the old architecture. This situation would send a
wrong message to the organization, suggesting that using the new architecture is optional and
the revolution initiative should not be taken seriously. That said, ideally, all efforts toward
developing features and evolving existing ones should be directed to the new architecture.

However, in the early stages of the revolution initiative, teams might take longer to develop
features in the new architecture. One reason is that the legacy system already contains all the
logic currently making up their solutions. Making a small change to an existing feature may be
simple in the legacy system but would require a significant migration before it can be
implemented in the new architecture. Another explanation is that teams will usually produce
more conservative estimates when they do not fully understand the technical tasks that make up
an activity [Cohn]. Given that some teams may not yet be proficient in the new architecture soon
after its rollout, estimates could be higher at that point.

Leading a Software Architecture Revolution - Part 2b: Tactical Prioritization – Page 6

https://unsplash.com/@stevelieman?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/photos/8l8FKr-CbBw?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

Business peers may pressure teams to use the legacy system to get features delivered faster.
This phenomenon might happen even after you get All in the Same Boat and create
awareness about the issues with the old architecture. One possible explanation is our tendency
to prioritize urgent topics over less important ones, such as long-term strategic goals [Kerzner].
The push for implementing features in the legacy system comes from those working closer to
the teams, such as Product Managers and Product Owners, driven by individual goals.

Nonetheless, some change requests may indeed be critical and negatively impact the business
if not carried out as soon as possible. For instance, minor feature improvements, bug fixes, and
security patches would likely take much longer to implement in the new architecture because
they would require the migration of components or whole subsystems. The delay caused by
forcing teams to implement them in the new architecture could lead to a decline in user
satisfaction, loss of customers, and increased risks.

Therefore, mandate that teams develop and change features only in the new architecture.

Communicate clearly to the whole organization that development from now on should happen
exclusively in the new architecture. Refer to the information you share while applying
Continuous Awareness Building to explain the risks of continuing to use the legacy system,
especially when creating new features. Leverage All in the Same Boat to show that, although
switching to the new architecture can lead to some early delays, teams will eventually perform
better, and users will be better served. Use initial results from Metrics for Baselining and
Comparing to support your claims. Secure the support from top business leaders—they will be
vital in validating the message within their hierarchy. If necessary, Scare the S*** Out of Them.

Define a simple and transparent process for reviewing proposed changes to the legacy system.
Acknowledge that some requests—especially those tiny, incremental changes—will require
careful consideration when deciding whether to implement them in the old architecture. Show
some flexibility so that you are considered reasonable, but do not concede to decisions that will
harm the future of the revolution initiative. Select a group of people, combining representatives
from both IT and business and including both leaders and specialists, to decide which demands
should be implemented in the legacy system. For more details on such a process, refer to
Restrict Changes to the Legacy Application.

Provide continuous support to the teams developing features in or migrating to the new
architecture. Offer training, create documentation, and give them tools so they will be as
effective as possible. Remember to continually Pave the Road as you discover new ways to
help teams engage with the revolution initiative. Motivate teams by showing them Quick Wins
already achieved—this will also make them more confident that the new architecture is reliable.

Monitor the legacy system to ensure that changes are not creeping in. This situation could
happen because some teams may accidentally use the old architecture or intentionally
disrespect the mandate. Use Metrics for Baselining and Comparing to identify these
situations and consider establishing a policy to avoid them altogether, such as allowing only
reviewed changes into the legacy codebase.

✽ ✽ ✽

Leading a Software Architecture Revolution - Part 2b: Tactical Prioritization – Page 7

The main benefit of New Features Go Into the New Architecture is protecting the revolution
initiative by preventing its backlog from growing. It also switches the organization’s mindset to
start using the new architecture and shows that the revolution initiative is here to stay. When you
carefully consider which changes you will permit in the legacy system, you also reinforce the
feeling of being All in the Same Boat.

New Features Go Into the New Architecture helps you avoid unnecessary or untimely
changes during the architectural revolution. It helps redirect migration efforts toward parts of the
system that are being actively evolved and are more likely to be relevant to the business.
Consequently, no time or energy is invested in migrating features that do not change frequently,
which would be less beneficial to the organization.

However, having New Features Go Into the New Architecture is not enough to guide the
prioritization of the migration tasks in the revolution initiative. Migrating parts of the legacy
system in the order that the change requests are arriving may not be an ideal strategy for the
migration tasks. There can be another downside to relying solely on this pattern: not prioritizing
for migration those parts of the system that do not change frequently but are critical to the
organization. These parts can include core subsystems that are rarely modified but pose risks if
they remain in the legacy system.

Another consequence of New Features Go Into the New Architecture is that it leads to more
decoupled architectures. When teams have to use the new architecture for creating or changing
features, they either build a small decoupled component in the new architecture to support the
new feature or migrate minimal logic before implementing the change. This consequence is
positive when you come from a highly coupled architecture and suffer from its negative impacts.
Conversely, a solution that is too sparse can lead to other problems, such as high complexity,
expensive infrastructure, and poor performance.

One possible downside of this pattern is having delays in new or improved features because
they were estimated for development in the legacy system. If the teams responsible for those
features are less comfortable working with the new architecture, or if they have to migrate a
significant part of the legacy system before implementing the change, they will take longer to
deliver. This situation can lead to another negative effect: business people who work directly
with teams can feel incentivized to stress the urgency of their demands or inflate their benefits
to get them implemented faster in the legacy system. To mitigate that, it is vital to have the
buy-in from the leadership team and an effective review process via Restrict Changes to the
Legacy Application.

The review process for allowing changes to the legacy system can also be a source of issues
with New Features Go Into the New Architecture. If the criteria are too strict, it will lead to
significant delays in small feature requests and bug fixes, causing business leaders to be
discontent with the revolution initiative. If, on the other hand, the evaluation is permissive, it will
defeat the purpose of the pattern and increase the complexity of the legacy system.

Related Patterns
Getting business leaders and top executives All in The Same Boat is crucial to establishing the
mandate that New Features Go Into the New Architecture. You need their support when
plans for new features have to be adjusted to account for higher estimates.

Leading a Software Architecture Revolution - Part 2b: Tactical Prioritization – Page 8

Continuous Awareness Building helps the organization understand the rationale behind the
strategy to have New Features Go Into the New Architecture. By reinforcing the risks of the
legacy system and pointing to the benefits of the new architecture, those involved with product
development will agree that creating new features in the old architecture is not a good idea.

Having a clear Architectural Vision helps guide the development of features in the new
architecture and inspires teams to start using it, speeding up their learning curve. The vision not
only provides a high-level overview of the desired end state but also sets forth guiding principles
and philosophies that underpin the new architecture and simplifies decisions for teams starting
to work on it.

It is essential to Pave the Road properly to facilitate the teams’ journey into the new
architecture and ensure that essential infrastructure, tools, and conventions are in place to
support new developments. By having the road effectively paved, teams can confidently develop
and deploy new features into the emerging architecture without unnecessary impediments.
Training, guidelines, templates, and support will help them become more proficient quickly.

Restrict Changes to the Legacy Application should be used alongside New Features Go
Into the New Architecture to operate as a protective measure, ensuring that undesired
changes do not creep into the legacy system and increase the backlog of the revolution
initiative. That pattern provides more details on establishing a process for reviewing which
changes should be allowed to the legacy system.

Establishing that Teams Decide What to Migrate defines a strategy for taking more control
over the prioritization of migration activities yet lets teams steer the efforts according to their
point of view, which blends well with New Features Go Into the New Architecture

Migrate Critical Subsystems can be combined with New Features Go Into the New
Architecture to ensure that the revolution initiative addresses risks lurking in parts of the legacy
system that are not being actively changed.

Regarding team organization, establishing that New Features Go Into the New Architecture
goes hand-in-hand with Assign Architectural Migration to Feature Teams because the
assignment will be straightforward in that case.

The debate about establishing that New Features Go Into the New Architecture is especially
relevant when the architectural revolution is happening alongside business as usual (as you
Change the Tires of a Moving Car). However, as discussed in Freeze, you may opt to pause
the development of new features while migrating to the new architecture. In that case, it is clear
that any change request should be implemented in the migrated system after that process is
completed. In addition, you should define a review process for changes that can be allowed in
the legacy system during the migration. That process would be similar to the one mentioned
above and described in more detail in Restrict Changes to the Legacy Application.

Leading a Software Architecture Revolution - Part 2b: Tactical Prioritization – Page 9

4.​Teams Decide What to Migrate

Credit: Jon Candy On Flickr

The revolution initiative is in motion, with an Architectural Vision outlined and some of its
foundational components deployed with Baby Steps. Teams have been trained in the new
technology and are using the templates and elements created to Pave the Road. Some squads
are already responding to business demands by building new features in the new architecture.
Others are migrating components to implement change requests without relying on the legacy
system.

You know that it is not enough to rely solely on the arrival of business demands to guide the
activities of the revolution initiative. You have A Plan up Your Sleeve with milestones and
goals, you have chosen Metrics for Baselining and Comparing to show the revolution’s
progress from the customer perspective, and the company may have defined Company-Wide
Architectural Targets to incentivize the pursuit of those objectives. You also recognize that
teams understand in detail the complexity of the legacy system and how it affects their
effectiveness.

How do you prioritize migration activities to achieve the architectural revolution’s
objectives, optimize efficiency, and engage teams?

Autonomy is an influential factor in the motivation of agile teams [Melo et al.]. People feel more
committed to a long-term goal when they are free to choose how to achieve it. However, many
groups may work in parallel in a revolution initiative, and some may have dependencies
between their tasks. As the revolution leader, you want to ensure that everyone involved is
working effectively; thus, some coordination is necessary. You also want to provide visibility to
the organization. For that, you need information on what has been completed, what is currently
being done, and what is planned for execution.

Teams also have deep knowledge about problems with the services they develop and operate.
They have been dealing with issues in the legacy system for long enough and know how to
avoid these problems in the new architecture. Despite this profound understanding of specific
subsystems, teams usually do not have in mind the big picture of the revolution initiative. They
may also lack expertise in architectural transformation in general. As a result, teams need
guidance on how to measure their progress relative to the revolution’s goals, how to approach
their migration tasks, and how other teams’ activities may affect their outcomes—and
vice-versa.

Leading a Software Architecture Revolution - Part 2b: Tactical Prioritization – Page 10

https://www.flickr.com/photos/joncandy/

Therefore, let teams decide which components they should migrate and in which order.

Give teams the freedom to define their migration strategy. They should be able to decide the
order in which they will migrate components and how to adapt their backlogs to fit those
activities. The decision process should involve the whole team, including non-IT representatives
such as Product Managers or Product Owners. Teams should also discuss impacts on
roadmaps with business leaders so that everyone involved is aware.

Provide guidance on prioritizing component migration based on the goals of the architectural
revolution and how each activity will help achieve them. Teams know the major pain points of
their domain of responsibility but may not fully comprehend how these issues impact the whole
system or the end user. Ensure that teams collect metrics for their components to make more
informed decisions on prioritization and assess the results of migration activities. Gather advice
from teams that have already succeeded in migrating components and from those involved with
the new architecture’s infrastructure.

Consolidate all teams’ backlogs in a single roadmap to be able to monitor the overall progress
of the revolution. Realize that once teams are responsible for their migration strategy, they may
have to change and adapt it to their reality. Use portfolio management tactics to closely watch
the main milestones, especially those related to critical parts of the legacy system.

When progress on crucial architectural tasks goes sideways, identify what is causing the
problem. When you recognize a prioritization issue, resist the urge to interfere with the teams’
backlogs. Approach business leaders to reinforce the importance of the revolution and get the
teams back on track. If the difficulties persist, consider creating dedicated teams to streamline
the migration tasks and reduce their interference with business priorities. When teams struggle
to use the new architecture, reinforce training and try to identify improvement opportunities in
the new system. Also, consider pairing up a team with more experience in the new architecture
to show migration techniques in practice.

✽ ✽ ✽

When Teams Decide What to Migrate, they feel more committed and engaged in the
architectural revolution. They understand that the goal of transforming the architecture can only
be reached if each team does its part. Migrated components are created by those responsible
for maintaining and evolving them, dispensing the need for costly hand-offs and knowledge
transfers.

The migration process is better aligned with the needs and challenges faced by the teams if
they are able to define their priorities. An exclusively centralized decision process would be too
slow and costly for a larger group and would not capture the subtleties of each team’s reality. A
bottom-up prioritization is more effective, because it considers the risks and impacts faced by
each team with the legacy application.

Once existing teams are engaged with architectural revolution activities, there is less need for
dedicated migration teams, reducing the overall cost of the initiative. It also has the potential to

Leading a Software Architecture Revolution - Part 2b: Tactical Prioritization – Page 11

accelerate results, given that more is done in parallel, and it is not necessary to wait for new
engineers to be hired and trained to start working on migration tasks.

On the negative side, when Teams Decide What to Migrate, there is a potential lack of visibility
and consistency across the organization. When there are dependencies between tasks, this
situation can cause major issues. To mitigate that risk, the revolution’s leaders should have
frequent communication with teams and frame the Architectural Revolution as an Agile
Portfolio. This extra effort can be seen as an overhead when compared to a centralized
approach.

Estimates are usually less reliable when Teams Decide What to Migrate. Given that teams
must continually negotiate with business leaders to accommodate migration tasks in their
backlogs, progress may sometimes be erratic. While this can be acceptable in less risky
situations, some goals of the revolution need more accurate forecasts. Dedicated teams may be
necessary to tackle these cases, as well as to cover parts of the legacy system that are not
owned by existing teams.

Regular teams will work part-time on migration tasks and are not specialists in architectural
transformation. They need additional support and guidance to make informed decisions about
component migration priorities and techniques. They may require advice on how to implement
monitoring and define relevant metrics. Thus, letting Teams Decide What to Migrate does not
mean that they will be handling the architectural revolution solely on their own.

Related Patterns
Having All in the Same Boat makes it easier for teams to effectively prioritize architectural
migration tasks in their backlogs. That pattern underscores the importance of collective
understanding and collaboration across the organization, ensuring that all stakeholders
recognize that the revolution initiative is a strategic priority and are aligned in the transformation
journey.

Regularly reminding the organization about the importance of the architectural transformation
via Continuous Awareness Building can encourage teams to actively participate in
component migration decisions. If some squads cannot prioritize migration tasks in their
backlogs, you may have to reinforce the value of the revolution to those groups.

When teams understand the Architectural Vision, they are more effective in prioritizing
component migration. They can see which parts of their systems will most benefit from the new
style and adjust their migration plan accordingly.

It is crucial to have the Architectural Roadmap in sight when Teams Decide What to Migrate.
The roadmap points to a strategic sequence and priority for migrations designed to alleviate the
risks inherent in the legacy system. The ordering suggested in the roadmap can be adapted to
some extent depending on the availability of teams to work on their architectural tasks.
However, you should keep the most pressing risks in check and frequently assess how the
tactical decisions the teams make add up to the big picture of the revolution initiative.

Leading a Software Architecture Revolution - Part 2b: Tactical Prioritization – Page 12

When many teams are involved in migration activities, you have to approach the Architectural
Revolution as an Agile Portfolio so that you can keep track of relevant tasks and milestones
from different teams. You can also track dependencies between teams and resolve them before
they cause further delays.

When you Pave the Road the migration of components to the new architecture will be
smoother, and teams will have more freedom to choose what to migrate. With the proper
infrastructure, tools, and guidelines in place, teams will become more confident working in the
new architecture and will be more likely to prioritize migration tasks.

Establishing that New Features Go into the New Architecture can help Teams Decide What
to Migrate because it gets them started in working on creating and migrating existing
components. They will become more proficient in the new paradigms and will be able to make
better decisions on what to migrate. For instance, a good choice is to migrate subsystems that
change frequently to make it easier to add new features to those parts of the system.

Sometimes teams might need to Refactor then Migrate components they decide are a priority
to improve the internal design before engaging in a migration. The decision to refactor before
migration should also be a prerogative of the teams. When these patterns intersect, teams are
empowered not only to decide what parts of the system are ripe for migration but also to identify
where preliminary refinements can expedite and streamline the transition process.

When Teams Decide What to Migrate, the primary strategy for team organization in a
revolution initiative is to Assign Architectural Migration to Feature Teams. The latter pattern
proposes that migration tasks be designated to those teams that typically develop features,
believing their familiarity with the software’s functionality equips them aptly for the migration
process. This approach leads to increased knowledge of the resulting components in the new
architecture.

Besides that, it is possible to create Dedicated Migration Teams Within Product Groups so
that some teams can keep developing new features while others are dedicated to architectural
work. These migration teams work closely with their peers and can be composed of members
from other teams in the same product group. After the migration is complete, the dedicated
teams can be dissolved, and reinforce the feature teams, bringing back knowledge of the
migration and the new architecture.

Leading a Software Architecture Revolution - Part 2b: Tactical Prioritization – Page 13

5.​Migrate Critical Subsystems

Image by Sasin Tipchai from Pixabay

The architectural revolution is at full speed. It is clear to the organization that New Features Go
Into the New Architecture, so all major change requests are implemented in the new
environment. Teams Decide What to Migrate and choose what to prioritize in their revolution
backlogs in alignment with their business peers.

Meanwhile, the legacy system continues to cause problems for the company, with occasional
outages, defects that affect customers, and poor development velocity. The Architectural
Roadmap indicates which critical subsystems you should migrate that are either currently
causing pain or posing potential future risks. However, teams’ backlogs may not include some
items that should be a priority, suggesting blind spots in the revolution initiative.

How do you ensure that the revolution initiative properly addresses the risks identified in
the legacy system?

So far, in the revolution initiative, you have leveraged existing teams and their backlogs to carry
out the migration toward the new architecture. This approach can empower teams to decide
what and when to migrate, engage them with revolution’s goals, and make them responsible for
the components created in the new architecture. It also prioritizes the migration of functionality
being actively changed so that teams will benefit sooner from a faster development process,
shorter deployment cycles, improved monitoring, better availability, etc.

On the other hand, the legacy system may include functionality that was developed long ago
and has very stable requirements, so it rarely—if at all—changes. The code implementing these
features may be known by only some of the developers currently in the company and may not
be actively maintained by any team. Even if a group is assigned to that part of the system, they
may be avoiding the migration risk. If these features are critical to the business, moving them
away from the legacy system should be a priority of the architectural revolution.

When you consider which risks to mitigate, one option is to address those currently causing
disruption in the company’s services. This alternative is straightforward and aligns with one
important goal of the revolution initiative: to quickly add value by improving areas affected by the
legacy system. Focusing on currently unstable subsystems offers immediate relief from pain
points. By targeting these areas, teams can directly address the most frequent causes of
system downtime, bug reports, and operational inefficiencies. This approach sends a clear

Leading a Software Architecture Revolution - Part 2b: Tactical Prioritization – Page 14

https://pixabay.com/users/sasint-3639875/?utm_source=link-attribution&utm_medium=referral&utm_campaign=image&utm_content=1807541
https://pixabay.com//?utm_source=link-attribution&utm_medium=referral&utm_campaign=image&utm_content=1807541

message to stakeholders that the migration process is effectively tackling pressing concerns
and generating immediate value. Concentrating on these problematic areas, therefore, not only
improves system reliability but also builds trust in the revolution initiative.

However, you should also consider other issues in the legacy system that may become
existential threats to the company. For instance, a subsystem reaching a hard limit that will
cause it to stop working may severely affect the operation. These latent risks, if unaddressed,
can materialize in the future—may be unpredictably, causing potentially catastrophic
consequences. By proactively migrating subsystems that pose such threats, you can prevent
these events and demonstrate that the revolution initiative is concerned with the future of the
company.

Therefore, ensure that the teams’ backlogs prioritize the migration of subsystems that
present critical risks to the organization, balancing current disruptions and future
threats.

Evaluate the migration priorities in the Architectural Roadmap to decide which are the most
critical to tackle first. For each item, consider the disruption it is currently causing to the
company from the perspective of the revolution’s driving factors, such as service availability,
customer satisfaction, operational burden, development productivity, etc. Carefully examine the
items that point out threats that may materialize in the future and evaluate their impact.
Examples include hard limits that systems may reach, end-of-life of supporting technologies,
lack of a proper disaster recovery plan, and security vulnerabilities. These are often overlooked
because they may not visibly affect the operation. Still, they can lead to catastrophic events that
may be hard or impossible to foresee and may happen without notice.

Take this evaluation and develop a specific migration plan for each prioritized critical subsystem,
considering any dependencies, resource requirements, and potential impacts on other parts of
the system. You may already have anticipated most of these migrations in the Plan up Your
Sleeve. Still, in some cases, you may need to ask for some additional budget, especially if you
need to assemble a dedicated team.

Define which team will be responsible for migrating a given critical subsystem. You may be able
to negotiate with business leaders the reprioritization of an existing team’s backlog. Leveraging
current squads is usually the ideal solution when enlisting a team already responsible for a
domain related to the subsystem in question is possible. When that is not viable, assign a
Specialist Migration Team for the task and pair it with a team that works close to the
corresponding domain so that this domain team will take over the migrated component. Another
option is to create a Dedicated Migration Team Within the Product Group that is most related
to the subsystem domain.

Monitor the migration of each prioritized critical subsystem. Ensure the team responsible has the
technical support and the business knowledge necessary to perform the migration. Use Metrics
for Baselining and Comparing to assess the quality of the new component versus the old
version. Given the importance of the process, guarantee that the original functionality is
preserved in the new architecture. Unless there is a pressing need to migrate the subsystem as
soon as possible, do not rush to the switch to the new version. If necessary, run the updated

Leading a Software Architecture Revolution - Part 2b: Tactical Prioritization – Page 15

version in parallel with the old one for some time and compare their outputs to assert the results
are the same.

Continually assess whether the subsystems classified as critical in the Architectural Roadmap
are prioritized in the teams’ backlogs and have acceptable forecasts for when they will be
migrated. You may have to reach out to business leaders and reinforce the importance of
mitigating the risks of the legacy system. If you find that teams are not organically prioritizing the
most critical parts of the revolution, identify the root causes, which may include gaps of
ownership over some domains, insufficient confidence to tackle challenging migrations, and
difficulties in negotiating priorities with business peers.

Consider mitigating the impacts of offending processes when their migration is too complex or
cannot be prioritized by the teams in an acceptable time. In some cases, relatively simple
measures may pay off in improved stability, customer satisfaction, and better development
performance. These tactical actions can relieve the pressure over the revolution initiative and
give teams more room to work on a thoughtful migration to the new architecture.

Revisit the Architectural Roadmap periodically to check which critical subsystems are
prioritized in the revolution’s scope. Considering the roadmap is constantly reviewed and
updated, the list may change—new risks may appear while others may no longer be relevant.

✽ ✽ ✽

The main goal of Migrating Critical Subsystems is to ensure that the revolution initiative
addresses the most pressing concerns with the legacy application. Recurrently revisiting the
Architectural Roadmap and selecting the most critical risks to tackle, you effectively take
control of the architectural revolution and guarantee that it moves in the right direction.

As a result, you cover eventual blind spots of the architectural revolution that would be left back
if you only establish that New Features Go Into the New Architecture and let Teams Decide
What to Migrate. By systematically identifying processes that offer risk to the business and
tackling those that are not addressed in any of the teams’ backlogs, you improve the result of
the revolution initiative.

A positive side-effect of using this pattern is to increase the organization’s understanding of
those critical subsystems. Once a core process is identified, mapped, and migrated, not only the
risk posed by the legacy system is eliminated, but now a team has fresh knowledge of that
process.

On the other side, Migrating Critical Subsystems that would not be otherwise addressed in
the teams’ backlogs means that you have to recruit additional resources to the assignment.
Either a team will have to change its backlog to accommodate the effort, a Specialist Migration
Team will be relocated to perform the migration, or a new team will be created, possibly acting
as a Dedicated Migration Team Within a Product Group.

Some business leaders may not see value in Migrating Critical Subsystems and oppose
allocating effort to these tasks. It may be hard for those outside IT to realize the risks involved,
especially when the related processes are not causing visible problems. Because of that, it can

Leading a Software Architecture Revolution - Part 2b: Tactical Prioritization – Page 16

be more challenging to Make Progress Tangible when it comes to migrating those critical
subsystems. It may be necessary to reinforce Continuous Awareness Building and explain to
the other parts of the organization why some activities are crucial to the success of the
revolution and the future of the company.

One aspect that must be considered when Migrating Critical Subsystems is the inherent risk
of changing such vital processes. The revolution initiative would have to tackle this issue
anyway, given its goal to reduce the impact of the legacy system. Yet, a word of caution is
warranted when using this pattern.

As you move down the list of subsystems not present in any of the teams’ backlogs, you will find
fewer risky processes. Eventually, you may have left only functionality that is not critical but
would have to be migrated so that you can decommission the legacy application. At that
moment, toward the end of the revolution initiative, you may have to prioritize the migration of
those components or let the legacy system remain active once it no longer offers risk to the
organization.

Related Patterns
The Architectural Roadmap summarizes major milestones the revolution initiative needs to
achieve, along with a chronological guideline. It is the authoritative source from which you
should identify the critical subsystems enlisted as motivation for starting the revolution initiative.

Approaching the Architectural Revolution as an Agile Portfolio can help you have an
overview of the teams’ backlogs and identify which critical processes are being left out. Effective
portfolio management can also provide up-to-date information on prioritization difficulties, and
other obstacles teams face when trying to Migrate Critical Subsystems.

You may have to check the Plan up Your Sleeve to identify needs for more budget and teams.
Especially when you have to Migrate Critical Subsystems with no directly assigned squad,
you may have to review the plan and seek alternatives.

When teams Migrate Critical Subsystems that have not been actively maintained and are in
poor technical condition, they may have to Refactor Then Migrate. This approach can give
squads more confidence in the subsystem’s logic before they engage in the migration. It is
particularly advantageous if teams are unfamiliar with the requirements.

A Specialist Migration Team can play an essential role in Migrating Critical Subsystems.
Such a team can be responsible for migrating a core process to which no one is assigned. It can
also pair with other squads to help them with a critical subsystem, sharing its knowledge in
architectural migration.

You may have to reinforce Continuous Awareness Building to demonstrate why it is crucial to
Migrate Critical Subsystems. Highlight the recent events caused by the legacy system and
their impacts on the company. Mention the risks with core processes that may not be causing
issues but pose threats to the organization’s future.

Use Metrics for Baselining and Comparing to determine which risks are currently
unacceptable to the organization based on the agreed-upon goals of the revolution initiative.

Leading a Software Architecture Revolution - Part 2b: Tactical Prioritization – Page 17

With that in mind, it should be clearer which subsystems to focus on and more straightforward to
prioritize the migration.

You should take Baby Steps when Migrating Critical Subsystems. The best approach to
tackling the risk of migration is to do it incrementally. Also, wait until the organization has more
expertise in the new architecture and has achieved some Quick Wins before approaching
complex migrations.

Reluctantly Improve the Legacy Application to mitigate risks in the old architecture and buy
time for the revolution to Migrate Critical Subsystems. The tweaks in the legacy system can
help alleviate some of the impacts on the operation and prepare the ground for the migration of
core processes.

Mirroring Features in the New Architecture can make it easier to Migrate Critical
Subsystems. Teams can run the updated version in parallel with the original. This can be done
by using Canary Deployment [Yoder et al.] to deploy the new version, or just compare the
outputs from both versions. When they are confident with the release, they can promote the new
version to full production status.

Leading a Software Architecture Revolution - Part 2b: Tactical Prioritization – Page 18

6.​Refactor then Migrate

Photo by Alexander Simonsen on Unsplash

Your organization depends on outdated technology and has decided to move to a new
architectural style. You have taken Baby Steps toward the new architecture, including Paving
the Road, to make it easier to add new features. Some teams have implemented functionality in
the new architecture, achieving Quick Wins.

While Teams Decide What to Migrate, they may find functionality within the legacy system that
would be valuable to be reimplemented or moved to take advantage of the new architecture.
However, some pieces are tightly coupled with other slightly related features, making the move
troublesome. Although valuable to the organization, other components may be in poor technical
condition (with unclear code, high defect rates, low cohesion, minimal test coverage, etc.), and
moving them could harm the new architecture.

How do you migrate highly coupled or poorly designed pieces out from the legacy
application to the new architecture?

The legacy system may contain very intricate functionality, possibly developed many years ago.
These features may be vital to the organization, and migrating them is likely a priority for the
revolution initiative. Given this complexity, teams may be uncomfortable reimplementing this
functionality from scratch in the new architecture and would rather move them relatively
unchanged.

However, these features may be poorly implemented by the organization’s current standards,
especially considering the quality expected in the new architecture. The code may have low test
coverage, high defect rates, and high coupling with legacy infrastructure or other pieces of the
old architecture. The team responsible for the feature may only partially understand the logic
involved. Replicating this code in the new architecture can compromise quality and create a
“broken window” effect, leading other teams to develop substandard components.

Refactoring is an excellent tool not only for improving quality but also for understanding code
[Fowler]. Teams facing difficulties migrating complex functionality can use refactoring to make
their code more modular, portable, and decoupled from legacy infrastructure and other features.
The process has the benefit of creating unit tests, which can be moved to the new architecture
and help the teams become more confident with the migration. Moreover, refactoring parts of
the legacy application improves its quality, another benefit of the revolution initiative.

Leading a Software Architecture Revolution - Part 2b: Tactical Prioritization – Page 19

https://unsplash.com/@circlz?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/photos/44al1GlFVxo?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

On the other hand, teams expect to work primarily on the new architecture and may reject the
idea of improving components in the legacy application. Furthermore, some stakeholders may
oppose the idea, seeing it as a waste of time and resources, especially given the need to
continue developing new features during the revolution initiative.

Teams and business leaders want to conclude the migration as soon as possible to continue
creating new features without the burden of the old architecture. Refactoring the legacy system
consumes extra time and resources, which may delay the results of the architectural revolution.

Conversely, in some cases, teams may find it simpler to migrate only good-quality code so they
will not have to deal with issues in the new architecture. The developers may be familiar enough
with the legacy application that organizing some of its parts first can give them extra motivation
before migrating.

Therefore, reorganize the parts of the legacy application that relate to the functionality
that you want to migrate by refactoring it to a modular design that is easier to replicate in
the new architecture.

Help teams identify when they should refactor a functionality before migrating it. This should
include an assessment of whether refactoring the functionality—rather than reimplementing it in
the new architecture—provides value to the organization. Teams should also assess their level
of confidence in the supporting code and its dependencies.

Suggest they evaluate quality attributes of the related subsystem in the legacy application,
including test coverage, level of coupling, dependencies between components, and adherence
to coding standards, among others [Page-Jones]. These indicators may have been collected in
Metrics for Baselining and Comparing.

Seams [Feathers] can assist with refactoring the legacy application. A seam is a place to get
tests into your legacy system and to help break your code dependencies; they help to alter
program behavior without changing the code. There are different seam types: object seams,
preprocessing seams, and link seams (or dynamic loading). A common approach is to search
for these design seams (Hairline Cracks2) within the legacy application to extract components
so they can be more easily migrated. In other words, look for opportunities to separate
functionality and better organize the current system, removing dependencies before you migrate
to the new architecture.

It can also be helpful to split the data before migrating the components. Consider whether any
data schema that supports the functionality is relatively isolated from other tables and entities in
the legacy system database. Find the best way to pull the data apart by finding the weakest
links—these indicate Hairline Cracks that will help you identify domain boundaries in the
refactoring.

After finding potential boundaries for the component, start refactoring. Your main goal should be
to isolate logic from the legacy infrastructure and other unrelated features. Create plenty of unit

2 Hairline Cracks has not yet been written as a pattern, but could be. It is a way to find design seams within your
architecture where you can inject tests and possibly split out behavior.

Leading a Software Architecture Revolution - Part 2b: Tactical Prioritization – Page 20

tests focused on validating the domain logic. Well-designed unit tests can be moved with the
code to the new architecture and will give the developers more confidence during the migration.
Ensure that unit tests are independent of the legacy infrastructure, such as persistence, logging,
networking, etc., so they can be ported as-is to the new architecture.

Do not worry about fixing performance issues or improving infrastructure during the refactoring.
These should be positive side effects of migrating to the new architecture. Investing in them
during the refactoring will lengthen the process and probably will not yield relevant results.
Focus on isolating logic from legacy infrastructure and other unrelated features, understanding
the domain logic, and creating many unit tests.

✽ ✽ ✽

The core benefit of Refactor then Migrate is to avoid the contamination of the new architecture
with bad practices from the legacy system. It helps teams get rid of highly coupled components,
poor abstractions, and confusing code before they start migrating subsystems with these
characteristics. When they actually begin the migration, teams will be less likely to replicate
those bad habits because the offending code is now refactored.

Another positive consequence is that teams can become more knowledgeable in potentially
complex parts of the legacy system before they start migrating them to the new architecture.
The acquired understanding can lead to improved quality of the new components, including
higher cohesion, less coupling, and better abstractions.

On the downside, Refactor then Migrate can extend the timeline of the migration process.
Refactoring, especially when done thoroughly, can be time-consuming, delaying the actual
migration and potentially prolonging the period in which teams have to work on the legacy
system. There is also the risk of over-investing resources into refining a subsystem that is
scheduled to be phased out.

Related Patterns
Any safe refactoring is done by taking Baby Steps rather than attempting an extensive
redesign. This approach consists of starting with a smaller scope of change, adding many tests
along the way, and carefully validating the results before moving on.

When you have appropriate Metrics for Baselining and Comparing, it becomes much easier
to identify which parts of the legacy application may need refactoring before migration. Teams
can use those metrics to decide on the best approach and to justify the need for refactoring.

When Teams Decide What to Migrate, they have the freedom to decide how to tackle the
migration. They may choose to Refactor then Migrate to get enough confidence to transition to
the new architecture safely.

Teams that are Migrating Critical Subsystems may encounter very complex or poorly
designed code that they are not familiar with or that no one has modified in a long time. They
may need to Refactor then Migrate to get those subsystems in a better shape before adding
them to the new architecture.

Leading a Software Architecture Revolution - Part 2b: Tactical Prioritization – Page 21

Given that New Features Go into the New Architecture, teams may have trouble migrating
the functionality to implement the new requirements. One tool they have is refactoring the
corresponding subsystem before migrating it and adding the new feature.

When you Refactor then Migrate, you improve modularity, test coverage, and other internal
quality attributes, which is a way to Reluctantly Improve the Legacy System. Although the
goal is to migrate the functionality as soon as the refactoring is done, the legacy system can still
benefit from the changes.

Refactor then Migrate provides opportunities for Quick Wins, especially if a simple refactoring
helps to get some functionality in better shape to migrate it to the new architecture more quickly.

Leading a Software Architecture Revolution - Part 2b: Tactical Prioritization – Page 22

7.​Mirror Feature in the New Architecture

Emrah Baysal on Pinterest

More teams have engaged with the architectural revolution, and different migration cases are
surfacing. It has been established that Teams Decide What to Migrate, and they have chosen
to port the features that are significant to the revolution initiative. Some teams chose to
Refactor Then Migrate, and have achieved positive results even when the original subsystem
is poorly implemented.

In some cases, however, a feature that needs to be migrated may have issues not only related
to internal properties—such as quality, coupling, cohesion, etc.—but also to external
aspects—for instance, a UI (User Interface) or an API (Application Programming Interface).
These interfaces directly affect customers and users in general. The team responsible for the
feature may want to change the flawed interfaces when migrating to the new architecture.

How do you migrate a feature and change its interface while minimizing the impact on
end users?

Decoupling internal migrations from changes affecting end users is generally a good practice.
Any technical or infrastructural upgrade is much more flexible if it does not produce any relevant
modification in user interfaces—it can be A/B tested, rolled out gradually, and even reverted fully
or partially. Ideally, all migrations in an architectural revolution should be decoupled from user
interface changes.

Some features in the legacy system may have outdated or poorly designed user interfaces.
Migrating those features and keeping their interfaces may cause various issues. For instance,
the new architecture may not support older technologies required by those interfaces, or it may
be cumbersome to adapt it to do so. There may be plans to update the user experience, and
migrating the feature as-is will result in extra effort. Moreover, teams may feel demotivated to
implement an inadequate user interface alongside modernized components in the new
architecture.

Therefore, create an improved feature in the new architecture and keep the original
available so that users can compare both versions and switch to the new feature when
convenient.

Leading a Software Architecture Revolution - Part 2b: Tactical Prioritization – Page 23

https://br.pinterest.com/emrahbaysal/

Help teams identify which features will benefit from the mirroring technique. The ideal scenario
for the approach is as follows. The feature has an interface (UI or API) you do not want to
preserve when migrating to the new architecture. That is the case when the interface is
incompatible with the new architecture’s technology or domain model, and it would demand
significant effort to adapt it. Besides, you do not want to force a new interface on the users
because it would require them to learn a different UI or integrate with an incompatible API. As a
result, the strategy is to replicate the feature in the new architecture, leave both versions
available for a while (the old interface in the legacy system and the new interface in the
replicated feature), and invite users to try the new one.

If the old interface is incompatible with the new architecture, but changing to the desired new
interface will not cause major issues to the users, the team can migrate the feature and change
its interface in the process. On the other hand, if adapting the old interface to the new
architecture is viable, it is recommended to migrate the functionality as-is and only consider
changing the interface later, when the feature is already stable in the new architecture.

Once it has been decided that a particular feature will be mirrored, develop it in the new
architecture. From the user's perspective, the new feature should be equivalent to the old one.
In other words, they should perform the same user goal, even if they are entirely different in
interface and implementation.

Make both versions compatible regarding their internal data so that users can switch back and
forth between them without losing any information. Their data models may be very different, but
with some form of replication between them, both versions can coexist. Before rolling out the
new version, develop a switching functionality enabling users to choose which one they prefer.

Deploy the mirrored feature and define which users can test it, rolling it out progressively in
Baby Steps. For the selected users, let them choose the new version and switch back to the
old one. Offer help to the potential users, such as a guided tour (for a UI) or documentation (for
an API). Include some form to get feedback and use the responses to adapt and improve the
new feature.

Plan to decommission the old feature. Consider leaving it active for the time necessary to get
feedback and improve the new version. Also, assess how long users need to adapt. For a UI,
this can be a few weeks to a few months, but more time may be necessary for an API.
Communicate periodically with users when the feature is close to being removed. Even with
frequent warnings, some users may lag behind and not switch to the new version. You may
have to consider turning the feature off, even with some active users, as a last resort.

✽ ✽ ✽

When teams Mirror a Feature in the New Architecture, they are free to create an improved
version that may be very different from the original one. The improvements may reflect updated
domain knowledge, better customer insights, and user interface upgrades. This freedom boosts
the team’s motivation because they are not forced to migrate or reimplement a flawed user
interface just for compatibility with the old version. Teams also have the opportunity to gather
valuable feedback from users to improve the new version of the feature.

Leading a Software Architecture Revolution - Part 2b: Tactical Prioritization – Page 24

Users also benefit from having a smoother transition to enhanced functionality. They can test
and compare both versions for some time, gradually adapting to the new version. This ability is
essential when the feature is accessible via an API—having both versions available for use in
parallel leads to better testing and a safer upgrade.

Drawbacks from Mirror Feature in the New Architecture include the additional resources and
effort required to maintain both old and new versions of the feature during the transition period.
Data compatibility can also be challenging, especially for functionalities that include creating,
reading, updating, and deleting (CRUD) data. Decommissioning the old version can take a long
time and be traumatic to some customers, particularly regarding APIs. This effect has the
potential to delay the overall architectural transformation process.

Related Patterns
The organization will make more informed decisions about whether or not to Mirror a Feature
in the New Architecture when Teams Decide What to Migrate. Empowering teams to decide
what and when to migrate can help identify features that no longer align with current
organizational goals or require mirroring in the new architecture.

A clear Architectural Vision helps teams understand what technologies and domain models
are compatible with the new architecture and have better decisions on when to Mirror a
Feature in the New Architecture.

After establishing that New Features Go Into the New Architecture, teams should not try to
evolve features in the old architecture and instead may decide to Mirror a Feature in the New
Architecture.

Mirroring Features in the New Architecture can help you Restrict Changes to the Legacy
Application by locking the feature in the legacy system. You should only allow changes to that
version when strictly necessary (bug fixes, security patches, etc.) and you should ensure that
the version in the new architecture remains compatible after the changes.

It is often helpful to Mirror Features in the New Architecture when you have to Migrate
Critical Subsystems. The parallel versions make it easier to test the migrated subsystem and
compare the results, giving you more confidence on switching to the new version.

You can use Canary Deployment [Yoder et al.] with the new version so that it is released
gradually to users that will be able to test it, and then choose it as their default option. If there
are no major issues and users consistently opt for the new version, it can be rolled out to the
remaining users.

Leading a Software Architecture Revolution - Part 2b: Tactical Prioritization – Page 25

8.​Restrict Changes to the Legacy Application

Michael Ball, CC0, via Wikimedia Commons

The organization has decided to evolve to a new architecture. You have Paved the Road to
simplify its adoption, and teams have started taking some Baby Steps toward the new
architecture.

You have mandated that New Features Go Into the New Architecture to avoid creating more
complexity in the legacy application and to stop increasing the backlog of the revolution
initiative. You recognize that teams may have to implement urgent changes in the legacy
system, and you need a process to ensure that they only do so when authorized.

How do you prevent teams from adding new features in the old architecture, yet still have
a way to decide which critical changes should be implemented in the legacy application?

During the potentially long-running process of evolving to a new architectural style, it is natural
that developers and especially product managers feel inclined to add functionality to the current
system. Doing so is typically faster and less expensive than providing the same functionality in
the new architecture. Teams may be incentivized by business peers to take the shortest path
and finish their tasks sooner by implementing in the legacy application.

On the other hand, if teams are free to keep adding and changing features in the legacy system,
the revolution initiative may never reach its goals. If there are no design standards or policies
set forth to require new or modified functionality to be created in the new architectural style, the
current system may see occasional growth despite efforts to reduce its scope.

Many teams have been working on the current architecture for a long time. Some of them may
not fully engage in development for the new architecture, perhaps because they are too focused
on feature creation and are not acquainted with the new technologies and tools. These groups
are more prone to keep adding code to the legacy system and not reap the benefits of the new
architecture. Others may realize that the new architecture provides new technologies they could
benefit from, but are unsure about how to use it, especially because this might involve
integration with some parts of the legacy system.

In spite of that, some developers and product managers feel the urge to take advantage of the
new architecture. They see potential technical and business benefits and realize that, after
overcoming the challenges of understanding the new architecture and migrating to it, they will

Leading a Software Architecture Revolution - Part 2b: Tactical Prioritization – Page 26

https://commons.wikimedia.org/wiki/File:Transportation_Security_Administration_Checkpoint_at_John_Glenn_Columbus_International_Airport.jpg

become more productive, they will be able to use technologies not available in the current
system, and the quality of their service will improve.

You have a mandate stating that New Features Go Into the New Architecture, which directs
teams to stop using the legacy system for creating or changing functionality. This step is
necessary to ensure that the organization switches to the new architecture as the default place
to create value for its customers. Although this directive may cause delays to some planned
activities, you expect that most initiatives will be able to accommodate the impacts, especially
considering future benefits, such as the risks avoided in the legacy application.

However, you recognize that some small and urgent changes may have to be made directly in
the legacy system to avoid organizational risks or customer impact. Some examples are defects
that are affecting customers, security fixes, and simple features that may bring competitive
advantage. Implementing those changes in the new architecture may take a disproportionate
time and expose the company to more risks.

Therefore, establish a directive that proposed changes to the legacy system must be
approved before they are implemented.

Include a mechanism in this directive that exposes and highlights the changes proposed to the
legacy system with evidence on why each change should be made. Ensure this mechanism will
have a process for reviewing the proposed changes with the overall organization in mind,
allowing only the most critical (necessary) changes to be done in the old architecture. The
review process can use a governance committee. This committee includes representatives from
both IT and other areas of the organization, such as Products, Business, Sales, and Marketing.
They need to be aware of the risks of the legacy system and agree on the importance of the
architectural revolution. The committee’s goal is to review the proposed changes, discuss
impacts versus opportunities for the whole organization, and decide which can be done in the
old architecture.

This governance committee can be a Change Advisory Board (CAB), as described by the ITIL
Framework [Aguter]. Although CABs are usually associated with waterfall and highly staged
processes—and thus incompatible with agile methods and DevOps [Forsgren et al.]—they can
work in favor of the revolution initiative. By forcing a discussion about prioritizing changes to the
legacy system at a more strategic level, the CAB ensures that any proposed change is
scrutinized for its genuine urgency and value. This vetting process inherently challenges teams
to justify any proposed modification to the legacy system, compelling them to consider the
broader implications for the architectural revolution initiative. These discussions involve higher
ranks of the organization within the CAB, so they are evaluated more strategically, ensuring that
only the most critical changes are approved.

Figure 4 depicts the mechanics of implementing a new requirement when the organization uses
a CAB to Restrict Changes to the Legacy Application. The team responsible can always
implement a new feature using the new architecture. However, if they believe that the new
requirement needs to be implemented in the legacy system, they must submit a proposal to the
CAB. The CAB then decides whether to reject the change and demand that the team implement
it in the new architecture, approve the development in the old architecture, or postpone the
decision by requesting more details or alternatives from the change proponents.

Leading a Software Architecture Revolution - Part 2b: Tactical Prioritization – Page 27

Figure 4: Mechanism for Restricting Changes to the Legacy Application

Ensure that the members of the CAB are carefully selected to make it as effective as possible.
Consider the following roles: the architectural revolution leader, an IT executive (ideally the
CTO), and a lead business or product development executive, at least when there is an
important discussion related to their respective department. The people proposing each change
to the CAB should be those involved with the initiative requiring the modification. Ideally, there
should be one person from a business or product-oriented role and one with a technical
background presenting the change. The former can explain the motivation, while the latter
should clarify what modifications will be done to the legacy system. The CAB then evaluates the
importance and urgency of the change and contrasts it to the risk it involves and the complexity
it will add to the legacy system. After discussing the matter, the CAB should decide whether to
approve the change, reject it, or postpone the decision, asking for more details or alternatives. If
there is no consensus within the board, the discussion may have to scale up to the top level of
the organization (eventually to the CEO).

CAB meetings are usually rich opportunities for understanding what type or requirements
usually impact the legacy application. Sometimes, the change requests are simple, superficial,
not related to requirements, like a configuration, or related to a feature that many teams depend
on (one example from a case study is a menu in a backoffice screen that had to be updated for
every new feature developed in the organization). In that case, a relatively simple change in the

Leading a Software Architecture Revolution - Part 2b: Tactical Prioritization – Page 28

https://app.diagrams.net/?page-id=IY7unVt9o2NWFuTJidCX&scale=auto#G1x4w2t82fuaPEUKpwS3z76fNT6v_HesVf

legacy application could help teams to become more independent. In other situations, the
dependencies are related to core processes of the organization which may affect many teams.
Identifying those dependencies may help identify opportunities for prioritization in the
Architectural Roadmap.

One organization evolved their governance process over time, introducing more restrictive rules
for changes to the legacy application:

●​ First phase: At the outset, the organization established that teams should use only the new

architecture for implementing requirements but did not enforce that recommendation.
Therefore, any team could still create features in the legacy application and roll them out
without restrictions.

●​ Second phase: After some time, the organization created a CAB and mandated that teams
could only implement new features in the legacy application after approval by the CAB. Only
after the changes were approved could the requesting team develop and deploy the
modifications.

●​ Third phase: Later on, teams still had to submit all legacy system change proposals to the
CAB and could start implementing them after approval. However, after the development was
ready, the Team Owning the Legacy Application had to review and approve the changes
before the team responsible could roll them out to production.

●​ Fourth phase: In the last step, teams submitted legacy system changes to the CAB, and if
they were approved, then the Team Owning the Legacy Application would implement and
deploy the modifications.

Besides that, this organization defined some change requests that did not require approval by
the CAB (pre-approved requests): bug fixes, security patches, and changes aimed at migrating
features to the new architecture. The CAB would meet weekly, but it was also possible to submit
urgent requests anytime—this is where leaders evaluate the request as soon as possible so that
the requesting team does not have to wait until the next weekly meeting.

✽ ✽ ✽

The main benefit of Restricting Changes to the Legacy Application is to protect the
architectural revolution by ensuring that the situation will not become worse in the current
system. If new functionality were allowed freely in the legacy application, the revolution initiative
would have to chase a moving target because its backlog would be increasingly large.

An additional reward for the organization is an increased consciousness about the importance
of sound architecture and the confirmation of the revolution initiative’s strategic relevance. The
discussions held by the governance committee, which may involve top business leaders, help
bring the theme of systems architecture to the high ranks of the organization. This new
understanding may lead the company to a new approach to software development.

Another advantage when you Restrict Changes to the Legacy Application is that the
organization can expedite the migration to the new architecture, thus reaping the benefits
throughout the organization sooner.

Leading a Software Architecture Revolution - Part 2b: Tactical Prioritization – Page 29

However, one possible downside of Restricting Changes to the Legacy Application is that it
could delay initiatives estimated under the assumption that they would be implemented in the
legacy system. Initially, it could take longer to implement features in the new architecture
because you cannot quickly add behavior the same way you did in the old system by using
simple techniques like copy-and-paste. This situation may cause a backlash from business
leaders and product managers, who will either ask for their demands to be developed in the
legacy application or criticize the revolution initiative altogether.

Finally, there is time and effort in setting up a governance committee, which can slow down
development efforts that need to go through the new approval process. Developers and product
managers may criticize the approach as bureaucratic and anti-agile.

Related Patterns
When you decide to Freeze new feature development during an architectural revolution, you
should establish a way to Restrict Changes to the Legacy Application. Otherwise, it will be
difficult to guarantee that the Freeze is effective. Without restrictions, well-intended teams might
inadvertently introduce changes, believing them to be valid exceptions or urgent requirements.
This behavior can lead to inconsistencies, potential instabilities, and deviations from the main
objective of the revolution. Having both these patterns in place ensures that Freeze is not just a
mandate but is reinforced by practical and controlled processes.

Restricting Changes to the Legacy Application is also necessary when you Change the
Tires of a Moving Car and have new features developed alongside the architectural revolution.
In this dynamic environment, without proper guardrails, it is trivial for teams to cross the line and
implement new functionality in the old architecture, leading to more potential risks and
increasing the revolution’s backlog. By strictly delineating and governing the changes permitted
on the legacy system, you ensure that every change aligns with the revolution initiative’s
goals—while the car is still moving.

You can take Baby Steps while Restricting Changes to the Legacy Application. You can
start by adopting a lighter reviewing process and then evolve to stronger restrictions to the
legacy application.

While implementing a new requirement in the legacy application, teams will sometimes notice
opportunities where they can Refactor then Migrate the legacy system, thus allowing
functionality to be more easily migrated to the new architecture. These refactorings should be
considered changes that remove complexity from the legacy system, and would not have to go
through the governance committee for approval.

While you are Restricting Changes to the Legacy Application, it is still important to
Reluctantly Improve the Legacy Application. It is a mistake to ignore the old architecture
especially because it will be around for a while and it still provides value to the organization. The
changes you make in the legacy application to improve it may not need approval, provided that
you ensure that they only focus on non-functional aspects and do not add any new capabilities
that will have to be reimplemented in the new architecture.

When you Restrict Changes to the Legacy Application, it becomes clear that only urgent
changes can be made to the old architecture, and teams should work primarily in the new

Leading a Software Architecture Revolution - Part 2b: Tactical Prioritization – Page 30

environment, which may lead them to decide to Mirror a Feature in the New Architecture.
This approach leads them to work more freely in the mirrored feature and keep the original one
static in the legacy system.

It is essential to let Teams Decide What to Migrate when you Restrict Changes to the
Legacy Application. When the door to the old system is no longer freely available, teams may
have to adapt and choose to migrate a frequently changing subsystem to keep evolving its
features.

Leading a Software Architecture Revolution - Part 2b: Tactical Prioritization – Page 31

9.​Reluctantly Improve the Legacy Application

Credit: Nationwide blog (https://blog.nationwide.com/hot-rod-maintenance/)

You have had some success taking Baby Steps toward a new architecture, realizing the
Architectural Vision. Teams have achieved Quick Wins, and some are readily accepting the
new architecture. There is growing development within the new architecture, especially by
having New Features Go Into the New Architecture and the mandate to Restrict Changes to
the Legacy Application.

However, the legacy system still provides value to the organization, and teams need the old
architecture to be in good shape to migrate functionality. Besides, the old architecture presents
risks that can cause severe impacts if not properly mitigated.

How do you keep the legacy system serving its purposes well enough so it does not
hinder the architectural revolution?

The organization has decided to migrate the functionality from the legacy application to the new
architecture. An architectural revolution is on course, and teams are focused on developing
features in the new model. Because teams and resources are limited, you may not feel that it
makes sense to invest in improving the legacy system.

However, neglecting the old architecture is a mistake, especially if core processes still depend
on it and migration will not be completed soon. Customers will still be susceptible to slow
response times, outages, and other known issues. Experienced engineers will be involved in
incident resolution and will not be able to work on the revolution while firefighting. The more
problems you have with the legacy system, the more pressure business leaders and executives
will put on you to hurry with the architectural revolution—or worse, they might get frustrated and
want to cancel the initiative.

Furthermore, the legacy application will be going through frequent changes during the revolution
because existing subsystems may have to be integrated with new components, features may
have to be refactored before migration, etc. So, if it is painful to modify the legacy system’s
code, test the changes, or deploy the results, this situation will impact the revolution initiative.

Therefore, mitigate the major pain points of the legacy application to reduce risk,
improve productivity and relieve pressure on the revolution initiative.

Leading a Software Architecture Revolution - Part 2b: Tactical Prioritization – Page 32

Identify the most critical issues in the legacy application based on their potential impact on the
business, end users, and teams. Prioritize those that can be mitigated with relatively low effort.
The goal is to have Quick Wins on this front and keep the old architecture under control until
the most critical features are migrated. Do not try to solve the root cause of the problems—this
is being addressed by the revolution initiative itself.

Establish a dedicated team to undertake the improvements on the legacy system. At a
minimum, allocate part of an existing team’s time to address the identified mitigations. Find
developers that understand the old architecture and are willing to dedicate their time to working
on it. Motivate these developers by highlighting the importance of their mission—it is not a
throwaway work but an essential activity to protect the revolution initiative.3

Focus on improving system capabilities such as monitoring, troubleshooting, modularity,
automated testing, and deployment. These will usually pay off more than focusing on specific
issues because they will influence the system as a whole and all teams working on it.

Communicate the importance of maintaining the legacy application to stakeholders and other
teams involved in the architectural revolution. It is usually hard to recognize the value of
preventive work, and you need to protect the dedicated team from being relocated to other
priorities.

✽ ✽ ✽

When you Reluctantly Improve the Legacy Application, you reduce the risk of critical issues
and disruptions during the architectural revolution. As a consequence, you have an improved
user experience and satisfaction for those still depending on features running on the old
architecture.

With fewer incidents, stakeholders may feel increased confidence in the architectural revolution
initiative. A sense of stability can provide extra motivation to everyone involved. Teams working
on migration can focus on their backlogs and worry less about firefighting production problems.
Although some of the improvements may be temporary or superficial, they help protect the
initiative from interruptions and potentially dangerous resource discussions.

On the other hand, relocating experienced developers to work on the legacy system competes
with the migration to the new architecture, which could slow down the revolution’s progress. This
situation can be questioned by business leaders, and you may have to justify the importance of
Reluctantly Improving the Legacy Application.

Moreover, if you expect your architectural revolution to be relatively fast, maybe there is no point
in worrying about improving the legacy system during that time. Assign all developers available
to migration tasks and get the legacy system decommissioned as soon as possible.

Related Patterns
By using Metrics for Baselining and Comparing to evaluate the performance and quality of
the legacy application, you can determine the areas where improvement is most needed and

3 This can have some dangerous implications. Look at the consequences for addressing this.

Leading a Software Architecture Revolution - Part 2b: Tactical Prioritization – Page 33

prioritize them accordingly. These metrics will provide information for reporting progress on the
improvements.

The goal of Reluctantly Improving the Legacy Application is to care for its non-functional
attributes, such as stability, availability, maintainability, and deployability. It is essential to
Restrict Changes to the Legacy Application and define clear rules and boundaries for
changes that can be made to the old architecture to avoid contradicting the goals of the
architectural revolution.

When teams Refactor Then Migrate, they also improve internal aspects of the old architecture,
such as maintainability and modularity, at least in specific subsystems. These teams are also
helping to improve the legacy application.

As you Reluctantly Improve the Legacy Application, look for some Quick Wins to address
some risks and pains as soon as possible. This will motivate the teams involved and help justify
the investment.

A Team Owning the Legacy Application is the ideal option to take responsibility for the
improvements. With a dedicated team, the legacy system will have constant attention and focus.
Even if incidents occur, the team can be the primary responder, shielding other teams working
on feature development and migration tasks.

You should Make Progress Tangible to highlight the improvements on the legacy system. It is
likely that most of the people in the organization will not intuitively understand the benefits of
supporting the old architecture. Showing the progress in clear and objective terms can help
justify the effort put into it.

Leading a Software Architecture Revolution - Part 2b: Tactical Prioritization – Page 34

10.​ Putting It All Together
Figure 5 depicts the relationships involving the patterns presented in this paper. The patterns in
this subgroup (“Tactical Prioritization”) are shown inside the dotted line. Patterns from the
related subgroup “Strategic Prioritization” are in black, outside the dotted line. Other patterns
from our language (described in other works) are shown in gray (patterns referenced multiple
times are marked with an asterisk). Patterns from related works are cited in gray and italics, with
the source referenced in square brackets and brief descriptions (patlets) provided in Appendix
A. The relationships between patterns in the language are explained by labels close to the lines
and should be read according to the direction of the arrow.

Figure 5: Patterns for prioritizing activities (tactical prioritization)

To effectively prioritize activities during an architectural revolution, first you must ensure that
New Features Go Into the New Architecture to prevent the legacy system from growing in
complexity during the revolution. Enforce that rule even if it forces you to migrate a large
subsystem to add a smaller feature—you can handle exceptions to the rule if necessary.

Leading a Software Architecture Revolution - Part 2b: Tactical Prioritization – Page 35

https://app.diagrams.net/?page-id=knrgHCMC8dzNVpvAOlNH&scale=auto#G1CcpnqMMRoUJYBFBC4mmjA2GWLcqxP803

Teams know best what affects their daily work, so it is valuable to have them drive the
prioritization of their architectural tasks by letting Teams Decide What to Migrate. When teams
are responsible for developing components in the new architecture they become more familiar
with the technology and get a sense of ownership over the new pieces of software.

On the other hand, you may have to deliberately prioritize the mitigation of risks in the old
architecture and Migrate Critical Subsystems. That may happen when some parts of the
legacy systems are not being actively changed and have not been selected by any team for
migration. If those pieces are causing issues or may pose future risks, you should find a way to
prioritize their migration to the new architecture—either assigning it to an existing team or
creating a new team to handle it.

Sometimes the legacy application code is so poor that it pays off to Refactor then Migrate a
subsystem. Although this approach is not always applicable, it may help teams that are not
familiar with the rules and logic of a particular subsystem. By refactoring they get to know better
that part of the application and take smaller steps, improving the design before migrating to the
new architecture. As a result, the code may be ported with less changes to the new system.

When migrating a certain feature will change its interface and potentially affect customers, it
may be necessary to Mirror Feature in the New Architecture and keep both versions working
in parallel for some time. Customers will be able to use both versions in parallel and decide
when to switch to the new version. You can also benefit from the ability to compare results and
to revert to the old version if there is anything wrong with the new one.

To ensure that the teams are not inadvertently creating or changing features in the old
architecture, Restrict Changes to the Legacy Application by creating gatekeepers to avoid
undesired modifications. Establish clear criteria around which changes should be allowed to the
legacy system and consider forming a committee to decide on corner cases.

Finally, Reluctantly Improve the Legacy Application to avoid increasing risks and keep
productivity reasonable when teams have to modify the legacy system. Focus on mitigating the
most critical risks without investing significant effort. Find ways to avoid incidents and other
interruptions that reduce the teams’ focus on the revolution.

Leading a Software Architecture Revolution - Part 2b: Tactical Prioritization – Page 36

11.​ Conclusion
In the evolving landscape of software development, a system architecture may gradually (or
abruptly) become inadequate given new market needs and organizational transformations.
When incremental adjustments prove insufficient to realign the software architecture with these
new realities, a committed and comprehensive restructuring is needed. This process, which we
term as an “architectural revolution” in software systems, calls for a deliberate and methodical
approach. This paper adds to a series of publications that set forth a pattern language designed
to elucidate and facilitate this intricate process of change.

We previously described patterns to help leaders deal with large changes to software
architecture. Our first paper described the topics of “Creating Awareness” and “Preparing and
Measuring” [Neubert, Yoder 2022]. Our second paper inspected strategic prioritization decisions
that should be taken when beginning the architectural revolution [Neubert, Yoder 2023]. The
patterns described in this article explore tactical alternatives to prioritization, focusing on
selecting activities from the revolution backlog, assigning them to teams, and keeping teams
focused on the most valuable tasks.

Future work will present in detail other patterns for organizing teams for more effectiveness in a
software architecture revolution (these are the last patterns in this language and are outlined as
patlets in Appendix A).

12.​ Acknowledgements
We would like to thank our shepherd Richard P. Gabriel for his valuable insights, comments, and
feedback during the PLoP 2023 shepherding process. Richard spent many hours helping us
with this paper and the previous related papers. His shepherding included many ideas to better
outline and describe the patterns in our paper. He also encouraged us to experiment with
various ideas to better outline and describe the patterns for our paper. This work was partially
done by one of the authors (Joe) while collaborating with USP-IME.

We would also like to thank our 2023 PLoP Writers Workshop Group: Indu Alagarsamy, Andrew
P. Black, Douglas C. Schmidt, Mary Shaw, and Kurihara Wataru for their valuable comments
and suggestions during the writers workshop of our paper.

Leading a Software Architecture Revolution - Part 2b: Tactical Prioritization – Page 37

13.​References

[Aguter] Agutter, C. (2020). ITIL Foundation Essentials ITIL 4 Edition-The Ultimate

Revision Guide. IT Governance Publishing Ltd.

[Alexander et al.] Alexander, C., Ishikawa, S., & Silverstein, M. (1977). A Pattern Language.
Oxford University Press.

[Bass et al.] Bass, L., Clements, P., & Kazman, R. (2021, August). Software architecture
in practice, fourth edition. Addison-Wesley Professional.

[Cohn] Cohn, M. (2005). Agile estimating and planning. Pearson Education.

[Feathers] Feathers, M (2005). Working Effectively with Legacy Code. Addison Wesley.

[Forsgren et al.] Forsgren, N., Humble, J., & Kim, G. (2018). Accelerate: The Science of
Lean Software and DevOps Building and Scaling High Performing
Technology Organizations.

[Fowler] Fowler, M. (2018). Refactoring. Addison-Wesley Professional.

[Kerzner] Kerzner, H. (2018). Project management best practices: Achieving global
excellence. John Wiley & Sons.

[Melo et al.] Melo, C. D. O., Santana, C., & Kon, F. (2012, September). Developers
Motivation in Agile Teams. In 2012 38th Euromicro Conference on Software
Engineering and Advanced Applications (pp. 376-383). IEEE.

[Neubert, Yoder 2022] Neubert, M., & Yoder, J.W. (2022, October). Leading a Software
Architecture Revolution - Part 1: Creating Awareness, Preparing and
Measuring. In HILLSIDE Proc. of 29th Pattern Languages. of Programs
Conference (PLoP 2022).

[Neubert, Yoder 2023] Neubert, M., & Yoder, J.W. (2023, July). Leading a Software Architecture
Revolution - Part 2a: Strategic Prioritization. In Proceedings of the 28th
European Conference on Pattern Languages of Programs (pp. 1-20).

[Page-Jones] Page-Jones, M. (1995). What every programmer should know about
object-oriented design. dimensions, 227(29), 252-343.

[Seacord et al.] Seacord, R. C., Plakosh, D., & Lewis, G. A. (2003). Modernizing legacy
systems: software technologies, engineering processes, and business
practices. Addison-Wesley Professional.

[Yoder et al.] Yoder, J. W ., Aguiar, A., Merson, P., Washizaki, H., “Deployment Patterns
for Confidence,” 8th Asian Conference on Pattern Language of Programs
(AsianPLoP), Tokyo, Japan, 2019.

Leading a Software Architecture Revolution - Part 2b: Tactical Prioritization – Page 38

Appendix A – Software Architecture Revolution Patlets
The following is a brief discussion of the entire collection of patterns using patlets in the tables
below. A patlet briefly outlines the gist of a pattern, usually in one or two sentences.

Creating Awareness
You cannot assume that everyone in the organization understands the issues with the current
architecture, so you must level that understanding by showing practical effects in the product
development cycle, the risks the organization is incurring, and what can be done to improve the
situation.

Patlet Name Description
Awakening Detect and become aware of the problems with the architecture and

acknowledge it needs to be transformed with a dedicated effort.
All in the Same Boat Bring stakeholders together to participate in the daily routine of IT teams so

that they understand technical challenges and share responsibility in
decisions. Also, have IT leaders participate in strategic discussions, learn
more about the company, and contribute with ideas.

Continuous
Awareness Building

Discuss the issues with the existing architecture frequently and at various
levels of the organization, highlighting the risks lurking ahead and pointing to
the proposed solution.

A Plan up Your
Sleeve

From early in the planning stage of the architectural revolution, have a plan
ready for pitching the initiative, including a vision of the new architecture and a
rough roadmap.

Scare the S*** ​
out of Them

When an opportunity arises to have the undivided attention of management to
talk about the issues of the current architecture, be as assertive as possible to
show them the risks it represents for the organization, both in the short and the
long term.

Preparing and Measuring
As you seek approval to start a revolution, start preparing the infrastructure for teams to work
on. It is also the time to define which measurements will track your improvements and create
processes to gather them. Ideally, some of these will become targets for the company. Manage
the initiative by treating it as an agile portfolio and reporting its results in a transparent way.

Patlet Name Description
Pave the Road Make it easier to develop features in the new architecture by training teams,

hiring dedicated people, and providing the fundamental environment for
building and deploying applications.

Metrics for Baselining
and Comparing

Choose a set of metrics for baselining the legacy application and comparing
the new architecture against it. Use those metrics to evaluate the progress
of the revolution initiative and report them to the organization.

Company-Wide
Architectural Targets

Create company-wide targets for the architectural revolution. Use these
targets to signal that the revolution initiative is an important strategic goal
and to help teams prioritize architectural work.

Make Progress
Tangible

Adopt an accessible style for communicating the progress of the revolution
initiative. Translate technical concepts to visual or physical representations
that anyone in the company can understand.

Architectural
Revolution as an Agile
Portfolio

Treat the architectural revolution as an agile portfolio. Assign a portfolio
manager to the initiative and give them access to all teams involved.

Leading a Software Architecture Revolution - Part 2b: Tactical Prioritization – Page 39

Prioritizing Activities
You want to deliver value as soon as teams start working on the revolution initiative. Prioritizing
which activities to engage first according to the reality of your organization is crucial for ensuring
that internal stakeholders will quickly see results from the new architecture. Prioritizing activities
can be broken down into “Strategic Prioritization” and “Tactical Prioritization” as outlined below.

Strategic Prioritization Patterns

Patlet Name Description
Architectural Vision Define the new architecture in a clear and inspiring way so that teams will

know what to expect and be motivated to migrate.
Architectural Roadmap Create a roadmap for the new architecture which includes when various

architectural features should be addressed. This roadmap prioritizes the
deployment of the architecture and when to migrate critical pieces.

Baby Steps Take small steps toward the new architecture. Provide just enough
infrastructure to support the simplest cases and validate the vision.

Quick Wins Migrate simpler, less risky, and less coupled subsystems before you
engage in more complex activities so teams can learn about the new
architecture and the migration process.

Freeze Stop developing features while teams migrate to the new architecture to
achieve faster results in the revolution.

Change the Tires of a
Moving Car

Reconcile architectural migration with feature development to keep the
business evolving during the course of the revolution.

Tactical Prioritization Patterns

Patlet Name Description
New Features Go Into
the New Architecture

Avoid increasing the backlog of the architectural revolution by establishing
that teams should only develop new features or change existing ones in
the new architecture.

Mirror Feature in the
New Architecture

Create an improved version of a feature in the new architecture while
keeping the original available so that users can compare both versions
and switch to the new feature when convenient.

Teams Decide What to
Migrate

Let the teams engaged in a particular subsystem decide which
components they should migrate and in which order.

Refactor then Migrate Refactor the legacy application to more easily migrate a subsystem to the
new architecture.

Migrate Critical
Subsystems

Migrate subsystems that are causing disruption or increasing risks for the
legacy application, even if they are not being actively changed.

Restrict Changes to the
Legacy Application

Allow some changes to the legacy application while defining objective
criteria that must be met to justify each request and assigning a review
board to discuss the candidates.

Reluctantly Improve the
Legacy Application

Mitigate the major pain points of the legacy application to reduce risk,
improve productivity and relieve pressure on the revolution initiative.

Leading a Software Architecture Revolution - Part 2b: Tactical Prioritization – Page 40

Organizing Teams
Team organization is a key aspect in the success of a revolution. An adequate structure helps to
keep engagement high and leverages Conway’s law to your favor.

Patlet Name Description
Organize Teams Around the
Product Domain

Design the teams’ communication paths to reflect the product domain
of the company, leveraging Conway’s Law to your advantage.

Product Teams Own
Architectural Migration

Empower and encourage product teams to take ownership of the
migration tasks for the parts of the system they are responsible for.

Dedicated Migration Teams Assign architectural tasks to dedicated teams working in collaboration
with product teams when migration is more complex.

Specialist Migration Team Create a team composed of architecture specialists to guide other
teams in their migration tasks.

Architectural Platform Team Create a dedicated team to build and evolve a unified platform that
standardizes development tools and processes in the new
architecture.

Architectural Reliability
Engineering Team

Assign a core team to define standards for infrastructure, monitoring,
security, and other operational aspects that should apply to all
components in the new architecture.

Team Owning the Legacy
Application

Have one or more dedicated teams own the legacy application and be
responsible for improving it, implementing approved changes, and
collaborating with migration teams.

Architectural
Retrospectives

Conduct regular retrospectives with the technical and business people
within the organization to discuss the new architecture and get insight
on the challenges teams are facing.

Other Related Patterns
This paper also mentioned a related pattern from another set of patterns outside these patterns.
The following patlet briefly outlines the gist of that pattern.

Patlet Name Reference Description
Canary Deployment [Yoder et al] Deploy the change to a limited number of users or servers to

test and validate the release.

Leading a Software Architecture Revolution - Part 2b: Tactical Prioritization – Page 41

	Leading a Software Architecture Revolution
	
	1.​Introduction
	2.​Background
	3.​New Features Go Into the New Architecture
	Related Patterns

	4.​Teams Decide What to Migrate
	Related Patterns

	5.​Migrate Critical Subsystems
	Related Patterns

	6.​Refactor then Migrate
	Related Patterns

	7.​Mirror Feature in the New Architecture
	Related Patterns

	8.​Restrict Changes to the Legacy Application
	Related Patterns

	9.​Reluctantly Improve the Legacy Application
	Related Patterns

	10.​Putting It All Together
	11.​Conclusion
	12.​Acknowledgements
	13.​References
	Appendix A – Software Architecture Revolution Patlets
	Creating Awareness
	
	Preparing and Measuring
	Prioritizing Activities
	Strategic Prioritization Patterns
	Tactical Prioritization Patterns

	
	Organizing Teams

	
	Other Related Patterns

