Peppery Patterns

How to turn Java applets into Habanero hablets

Ian Chai
Department of Computer Science
University of Illinois at Urbana-Champaign
1304 West Springfield Avenue
Urbana, IL 61801
Phone: (217)367-6140
Fax: (217)367-7765
chai@uiuc.edu

Introduction

We have seen many “timeless” designs and procedures described with patterns. Many people have built OO frameworks using those designs
since the Gang of Four book.

This pattern language is an exploration of a rather different use of patterns — instead of using them to design a framework, I am using them to
teach a new user how to use a framework. This pattern language is a kind of user documentation or tutorial. It reveals a few differences
between pattern-based representation and traditional documentation, and can serve as a model for other people to produce pattern-based
framework guides.

I call these kinds of patterns pedagogical framework patterns. “Pedagogy” is “the art, science, or profession of teaching” [Merriam-Webster’s
Collegiate Dictionary] so pedagogical framework patterns are patterns that teach you how to use a particular framework.

The patterns are also available as web pages at http://st-www.cs.uiuc.edu/~chai/writing/pepperypatterns/. In fact, the main use of the
patterns are as web pages.

Square brackets indicate page references; for example, “Read Me First [2]” means that “Read Me First” is found on page 2.

Why use Habanero?

You have a Java applet that you would like to make multiuser. Habanero will let a group of people run your applet at the same time and
changes made by one person be immediately visible to other people. These are patterns that you may follow to convert a Java applet into a
Habanero hablet.

Index
Read Me First 2

Basic Topics

Habanerizing a Java applet: 3
Subclass the Applet 4
Implement the Marshallable interface 5
Take care of event handling 6
Specify the default Window parameters 7
Install a new hablet 8

Advanced Topics

Advanced Event Handling: 9
Use Only the Argument Parameter 11
Encode Event Data as Strings 12
Message Objects 14
Private Events 16

Epilogue: Lessons Learned 17

Appendix

HabTextDemo.java: 18

TextDemoSub.java: 19

HabTextDemo2.java: 19

Labeled Text Example 20
HabLabeledText.java 20
LabeledText.java: 21

PrivateEventDemo.java: 22

Hchat Example 23
Message.java: 23
Hchat.java 24

SimpleChat.java 25

Read Me First

These web pages teach you how to get started writing Habanero applications.

I am assuming you already know the Java programming language. If you do not, please read the Java Tutoriall and get familiar with writing
applets first. If you have not yet installed Habanero on your machine, go download it2. Play around with it to get used to its GUI. (See the
user’s guide3.)

These pages are designed so that you can flip from one to another at will as you learn Habanero. However, most people will probably want to
start by Habanerizing a Java Applet[3].

Each pattern usually has these sections:
What’s this pattern for?
Tells you when you want to use this pattern
Background Information
What some of the things you should know before using this pattern are.
How do I use this?
This part tells you what to do.
What next?
Suggested places to go next. (This part is not always present)

1 http://java.sun.com/docs/books/tutorial/index.html
2 http://www.ncsa.uiuc.edu/SDG/Software/Habanero/Release/
3 http://www.ncsa.uiuc.edu/SDG/Software/Habanero/Docs/

n

Habanerizing a Java Applet

What’s this pattern for?

You have a Java applet, and you want to turn it into a hablet.

Background Information

Typically, Java applets are single-user applications in HTML pages on the Web. The most straightforward habanerization of an applet would
allow multiple users across the world-wide network to pretend they are in the same room, interacting with the same application.

For example, with the Whiteboard application, all the users can draw on the whiteboard and see what the other users have drawn as if they
were all standing around the same whiteboard4.

How do I use this?

Here is a straightforward way to habanerize an applet:
* Subclass it, and to put all the changes in the subclass [4]. That way, you do not have to mess up your original applet.
¢ Implement the W apped interface [5]
» Take care of event handling [6].
* Specify the default window parameters [7], so that Habanero will know how you want the window to look like when this hablet opens.
* Compile your hablet like any other Java class and install it into the Habanero environment [8].

What next?

After you are comfortable with this basic way of habanerizing an applet, you can explore some of the more advanced topics [bottom of 1].

4 Actually, the Whiteboard application was written from scratch as a hablet, but you can imagine that if we already had a whiteboard we could habanerize it for the same
purpose.

Habanerizing by Subclassing

What’s this pattern for?

One straightforward way to habanerize an applet [3] is to subclass it, and to put all the changes in the subclass. Here are some of the things
you need to do when you do this.

Background Information

Habanero needs to reroute the events and send them on to other sessions. Thus, you need to find the classes in your applet that handle events
and subclass them. In most applets, this is the class that is a subclass of Appl et .

How do I use this?

So that Habanero and Java can find the files without you needing to add it to the CLASSPATH, you need to pick a package name and indicate
it at the start of every . j ava file (including the original applet’s files.) Make a subdirectory of denos or t ool s with the same name as the
package name and put all your class files there.

Example from the example of habanerizing TextDemo java. [18]

package HabText Deno;

Along with the standard imports of
import java.io.*;
i nport java.aw.*;
i mport java.lang.*;
you need to also
i mport ncsa. habanero. *;
i nport ncsa. habanero. streamns. *;

Your subclass should extend the applet and implement W apped, which consists of:
e marshal | Sel f () and unmar shal | Sel f () [5]
e doEvent () [6]
estartlnFrame() [7]

Example from the example of habanerizing TextDemo java. [18]

public class HabText Denp ext ends HabText Denp. Text Denp i npl enents W apped

What next?

¢ Implement the Marshallable [5] interface.

* Take care of Event Handling [6].

* Specify the default Window parameters [7].

* Install your new hablet into your Habanero environment [8].

N

Implement the Marshallable Interface
1 ———————————————

What’s this pattern for?

Hablets must implement the W apped interface, which includes as part of it the Mar shal | abl e interface. This pattern tells you how to
implement the Mar shal | abl e interface.

Background Information

Since hablets can run simultaneously on many different machines, there must be some way to encapsulate all its internal state and send it over
the wire so that a new session starting up in a remote location can get up to speed.

This process is called marshalling, so the Mar shal | abl e interface sets out how it does this.

This pattern assumes you have already done the things from the Subclassing the Applet [4] pattern.

How do I use this?

The Mar shal | abl e interface has these methods:

public void marshall Sel f (Marshal | Qut put out) throws | CException
and

public void unmarshal | Sel f (Marshal | I nput in) throws | CException

mar shal | Sel f writes the state of the applet to the Mar shal | Qut put and unmar shal | Sel f reads the state of the applet from the
Mar shal | | nput .

Example from the example of habanerizing TextDemo.java. [18]

/1 Wites out current state for new user.
public void marshal | Sel f (Marshal | Qut put out) throws | OException
{ out.witeUTF(textArea.getText());

/1 Reads in current state for new user.
public void unmarshal | Sel f(Marshal | I nput in) throws | OException
{ textArea.setText(in.readUTF());

}

Mar shal | Qut put extends j ava. i 0. Dat aCut put, and Mar shal | | nput extends j ava. i 0. Dat al nput , so mar shal | Sel f ()
and unmar shal | Sel f () can use any of the methods of j ava. i 0. Dat aCut put 5 and methods of j ava. i 0. Dat al nput 6 to send data
to the other hablets. The example above uses W i t eUTF() and r eadUTF as the data item is a string. If the data item were an integer, it
woulduse wr i t el nt () and r eadl nt, for example.

In addition to these methods, Mar shal | Qut put canuse wri t eMar shal | abl e() and Mar shal | | nput can use
readMar shal | abl e on any class that implements the Mar shal | abl e interface we taught you in this pattern. For example, if t hi ngy is
aMarshal | abl e of class Thi ngType, then you can:

public void marshal | Sel f (Marshal | Qut put out) throws | OException
{ out.witeMarshall abl e(thingy);

ublic void unmarshal | Sel f (Marshal | I nput in) throws | OException
thingy = (ThingType) in.readMarshallable();

—— —

This means that objects that are marshallable can be easily marshalled in other objects which are marshallable.

What next?

 Take care of Event Handling [6].
 Specify the default Window parameters [7].
e Install your new hablet into your Habanero environment [8].

5 http://www.javasoft.com/products/jdk/1.1/docs/api/java.io.DataOutput.html
6 http://www javasoft.com/products/jdk/1.1/docs/api/java.io.Datalnput.html

(Simple) Event Handling

What’s this pattern for?

This pattern tells you about how to do simple event handling in Habanero.

Background Information

A collaborative program has to inform all members of a session when an event occurs. In Java, whenever an event occurs, it calls certain
methods in the applet to handle the event — for example, act i on() and nouseDown() . So, a hablet must redirect these events to
Habanero, so it can in turn redirect them to all the copies of the hablet in a session.

This patterns assumes that you are making a hablet by subclassing an applet [4]. Also, don’t forget to implement the W apped interface [5].

If you need to preserve event identity, or if you don’t want to share all the events, please refer to Advanced Event Handling [9]. If you have
several widgets of the same class, you might need to solve the problem of event identity.

How do I use this?

In a normal Java applet, methods like act i on() or mouseDr ag() handle the events. Since we need to redirect the events, we need to split
such methods into two pieces:
¢ Rewrite the methods like act i on() to forward the event to Habanero. (Unless you want to do Advanced Event Handling [9].)
» Habanero will forward the event to every hablet in the session and call each hablet’s doEvent () method, including the hablet that
originally generated the message, so that even the original hablet will carry out the event in doEvent () . Thus, doEvent () needs to do
the things that the original act i on() or other event-handling method did.

Example from the example of habanerizing TextDemo java. [18]

public bool ean action (Event e, bject arg)
{ return false; }

Now, write publ i ¢ bool ean doEvent (Event evt, Object arg) which receives the events from Habanero and processes
them, similar to what act i on() used to do.

If your actions depend upon the identity of the sender of the event, please refer to Advanced Event Handling [9]. If you don’t want to
share all your events, see Private Events [16].

Example from the example of habanerizing TextDemo.java. [18]

publi c bool ean doEvent (Event evt, Object arg)
{ textArea.appendText((String)(arg) + “\n");
textField.selectAll();
return true;

What next?

* Specity the default Window parameters [7].
* Install your new hablet into your Habanero environment [8].

If you need to preserve event identity, or if you don’t want to share all the events, please refer to Advanced Event Handling [9].

(o)}

Specifying the Default Window Parameters

What’s this pattern for?

This pattern tells you how to specify how the window should look like when you open the hablet in Habanero.

Background Information

Regular applets usually run in HTML pages, and the APPLET tag in HTML specifies how big the space for the applet should be.

In Habanero, there is no HTML page. Instead, the hablet runs in its own window. Thus it needs to have a method that tells it what these
details are.

How do I use this?

The name of the method that does this is St ar t | nFr ane and it has one parameter, a M r r or Fr anme. The body of st art | nFr ame
should set the title, size of the frame, add the hablet to it, and also call M r r or Fr ame’s show() method at the end, to display the window.

Example from the example of habanerizing TextDemo java. [18]

public void startlnFrame(MrrorFrame f)
{ init();
start();

f.setTitle(*“TextDenp Hablet”);
f.add(“Center”, this);
f.resize(300, 200);
f.show();

}

What next?

Install your new hablet into your Habanero environment [8].

Installing a New Hablet
1 ——————————

What’s this pattern for?

You have written, or were given, a new Hablet and you would like to install it into your Habanero environment.

Background Information

At this point, the Hablet should have been compiled with a Java compiler into a class. You may also have an icon, in the form of a GIF, to
display in the Tools Palette.

How do I use this?

* Copy the GIF into ri stra/rsc/ env/ co_i mages, if you have one. The GIF should have a size of 32x32 pixels.

e Create a directory under eitherri stra/t ool s orri stra/ denos with the same name as the package name you selected when you
subclassed the applet [3].

* Place all the . ¢l ass files for your applet there (as well as all the . j ava files, if you so desire.)

e Create a new file in habaner o. rsc/ t ool sDi r that tells Habanero what the name, picture, classname, version, and, optionally, the
help URL of the new tool.

Example from the example of habanerizing TextDemo.java [18].

Place Text Box! con. gi f intori stra/rsc/env/co_i mages and create the file habaner o. rsc/ t ool sDi r/ HabText Deno
which contains:

t ool . nane=Text Deno

t ool . pi ct ur e=Text BoxIl con. gi f

t ool . cl assnane=HabText Denp. HabText Deno
t ool . versi on=v0. 1

o
m If your hablet marshalls large chunks of data, you might want it to use its own socket to do the events, instead of using Habanero’s
main socket. This is so that the main socket won’t be tied up when your application is transmitting its large chunk of data, for

example, if you were to transfer a GIF in the whiteboard.

To do this, add:
t ool . useOMSt r eanrt rue

If you have a web page documenting your hablet, you can add to the tool file:

tool . hel p="http://url.for.the. hel p. pages”

You can now run Habanero and your new tool should be available.

What next?

Try out the advanced topics [bottom of 1].

oo

Advanced Event Handling

A —————
What’s this pattern for?

Simple Event Handling [6] is not always sufficient.

Sometimes you need your hablet to react differently to widgets of the same type. Sometimes you need to pass on some events to other
collaborating Hablets, while handling others locally.

Background Information

The Problem of Event Identity

In normal Java, when you do something with a widget, for example, type something in a text box or press a button, it generates an event.
This event keeps a pointer to the widget that generated it, so that in the act i on method can use == to check to see which widget generated it.

In Habanero, however, that widget may be on a different machine. The pointer in the event received via Habanero actually points to a copy of
the widget, and not the widget itself. Because of this, == will not work.

Thus, we need to have some alternative way of identifying the sender of an event.

The Problem of Private Events

Sometimes you don’t want every event to be broadcast to collaborating hablets. Some events may be too fine-grained. For example, when

drawing points in the Whiteboard i , they did not want to send every point over the network, but rather, they waited until all the points
for a scribble have been collected, then sent them over the network in one package.

The Different Functions of action() and doEvent () in a Hablet
In a normal applet, most events are handled by act i on() . In a hablet, however, act i on() is called only on the hablet which is local to the
event. If act i on() returns f al se, it passes the event on to Habanero. Habanero then sends it to the doEvent () functions on all the

collaborating sessions.

For example:

Tom, Sue, and Zhang are collaborating.
* Tom does something to his hablet.
¢ His hablet’s act i on() gets the event.
 His hablet’s act i on() passes the event on to Habanero.
» Habanero hands the event to doEvent () on each of Tom, Sue and Zhang’s hablets.

Zhang’s hablet Sue s hablet Tom s hablet
actiond actiond actiond »2
doEwventl) : doEwvent() e JoEventl)

Habanero

Because the local act i on() gets the event, you can place code there to do things before Habanero sees it. In fact, if you have act i on()
return t r ue instead of the normal f al se, Habanero will not even see and propagate that event.

How do I use this?

The Problem of Event Identity

action() and doEvent () have the same two arguments: an event and an argument. In normal Java, the event’s t ar get has a pointer
to the widget that generated that event. Both those arguments are valid in act i on() , but since Habanero is distributed, such a pointer cannot
be valid, so you should ignore the event parameter in doEvent () .

Many widgets put all the information you need in the argument. For example, a button widgets and menu widgets put the name of the button
or menu item selected there, as a string.

Possible Solutions to the Problem of Event Identity
e Simply call acti on() in doEvent if your original applet’s act i on() only used the argument parameter [11].

* Encode all the data for the event you need as a string [12].
* Create and use message objects [14].

The Problem of Private Events

If you do not want some events broadcast to your collaborators, you can deal with them in act i on() before sending it on to Habanero.
Then doAct i on() only needs to deal with those events which are shared. Here’s how you do this 16].

What next?

Other advanced topics [bottom of 1].

Events: Only Using ‘“Argument”

What’s this pattern for?

This is a simple way to solve the Problem of Event Identity [9].

Background Information

By the time Habanero calls doEvent () , the event argument’s target is lost, because it could have been on a different machine. However, if
the argument argument is a string, Habanero is careful to transfer it intact.

How do I use this?

You can use this method if in your original applet’s act i on(Event &bsp; evt, &bsp; Cbj ect arg),
* ar g is astring
e It does not use evt at all.
¢ It does not get information from the widgets directly. (See the example below for an illustration of this.)

If your applet meets these conditions, or if you can modify your applet to meet these conditions, then you can simply put this code in your
Hablet to take care of the events:

public bool ean action(Event evt, (bject arg)
{ return fal se;

}

publ i c bool ean doEvent (Event evt, Cbject arg)
{ return super.action(evt, arg);

}
Example

You’ll recall that in running example from the Basic Topics [bottom of 1] section, we showed you an example of habanerizing Text Deno.
We could not use this method then because act i on() took information from the t ext Fi el d widget directly. So, if we were to simply call
action() from doEvent (), we would have gotten the local t ext Fi el d’s contents, instead of the one transmitted from the actual
generator of the event.

Why the above scenario produces the wrong result

* Fred types “Hello” in his hablet’s t ext Fi el d

e Fred’s acti on() doesn’t do anything, and it passes it on to Habanero.

» Habanero passes it on to both Fred’s and Wilma’s doEvent ()

e Fred’s doEvent () and Wilma’s doEvent calls their respective super . acti on()s.

e Fred’s super. acti on() gets the string “Hello” from its t ext Fi el d, but Wilma’s super . acti on() gets whatever was in
Wilma’s t ext Fi el d — hence it puts the wrong thing into Wilma’s t ext Ar ea.

An alternate scenario where this would work

The applet’s acti on(event, argunent) needs to get all its information from ar gunent like so:

Example

publi c bool ean action (Event evt, Cbject argument)
{ if (argunment instanceof String)
t ext Area. appendText ((String) (argunent) + “\n");
return true;

Given this one small change (which you can put in a subclass), then this method would work.
Here’s the code for this example:

* The one small change [19].
¢ The hablet code [19].

What next?

If your applet does not lend itself to this solution, try looking at Encoding Events as Strings [12] or Message Objects [14]

Events: Encoding as Strings

What’s this pattern for?

This is one way to solve the Problem of Event Identity [9].

Background Information

By the time Habanero calls doEvent () , the event argument’s target is lost because it may be on a different machine. However, if the
argument argument is a string, Habanero is careful to transfer it intact.

So, you can encode all the event’s data that you need as a string and put that in the argument. This is a good solution if you have a
reasonable and easily understood way of converting all the data you need to a string.

How do I use this?

We need to package up the event’s data before sending it on to Habanero, so we need to do this in act i on(evt, ar g) . To modify the ar g
that doEvent (evt, ar g) receives, we assign what we want to the evt . ar g in acti on(evt, arg).

For example, if you need to know the identity of the widget that generated the event, you could put that as a key in the first character of the
string, and put the rest of the data after that.

Example from the Labeled Text demo [20]

public bool ean action(Event evt, bject arg)
{ String text = (String) arg;

if (evt.target == f1)

f2.selectAll(); like do the selectAll on the

appropriate TextField.

{ evt.arg = “1" + text; /1l See how we use this part to
fl.selectAll(); /'l package all our information as
/1l a string in to arg before we send
else if (evt.target ==f2) // it on to Habanero? W also take this
{ evt.arg = “2" + text; /1 opportunity to do some |ocal things
Il
/1

return false;

}

Then, on the other side, in doEvent (evt, ar g) , you unpack the data into its various components again.

In the case of our example, we would take the first character as the key, and the rest of the string as the data. Then we reproduce the logic
using the key instead of the original widget’s identity.

Example from the Labeled Text demo [20]

public bool ean doEvent (Event evt, Cbject arg)

{ /] At this point, the arg’s first character tells us which
/] TextField generated the event. So now we need to extract that
/1 information and separate it fromthe rest of the string.

char key = ((String) arg).charAt(0);
String text = ((String) arg).substring(1);

/1 Now we can just follow the logic fromthe original action(),
/1 except we’'re using the key instead of the evt.target.

if (key == *1")
{ out Area. appendText(“Box 1: “ + text + “\n");
fl.selectAll();

}

else if (key == ‘2")

{ out Area. appendText(“Box 2: “ + text + “\n");
f2.selectAll();

else // Just in case anything goes wong
{ out Area. appendText(“Error: *”+key+”’ “+text+"\n");

return true;

What next?

If ar g is already a string containing all the information you need, you can just use the argument parameter [11].

If it is not reasonable to convert all the data to a string, use a Message Object [14] instead.

Events: Message Objects

What’s this pattern for?

This is one way to solve the Problem of Event Identity [9].

Background Information

By the time Habanero calls doEvent (), the event argument’s target is lost because it may be on a different machine.

If the argument argument is a string, Habanero is careful to transfer it intact. However, sometimes it does not make sense to always be
encoding everything as a string — as Java is an Object-Oriented language, we would often like to pass objects across Habanero directly.

How do I use this?

An object that wants to be passed to other hablets via Habanero must Implement the Marshallable Interface [5]. The one exception is strings —
Habanero takes care of strings as a special case [12]. Your main hablet then can use this marshallable object to package up event data to pass
on to the others.

Implementing the message object

The message object must implement mar shal | Sel f () and unmar shal | Sel f (), as described in the pattern on implementing the
Marshallable Interface [12].

Example from Hchat.Message [23]

/'l Wites out current state
public void marshal | Sel f (Marshal |l Qut put out) throws | OException
{ out.witeUTF(strMessage);

out.writelnt(nVal ue);

/! Reads in current state
public void unmarshal | Sel f (Marshal |l I nput in) throws | CException
{ strMessage = in.readUTF();

nValue = in.readlnt();

t also needs to have a constructor which the hablet uses to give it data.

Example from Hchat.Message [23]

public Message (String str, int n)
{ strMessage = str;
nVal ue = n;

Finally, it needs accessor methods so that the hablet on the other end can retrieve the information.

Example from Hchat.Message [23]

public int getField ()
{ return nVal ue;

}

public String getMessage ()
{ return strMessage;

}

Using the message object

The calling hablet’s act i on(event, ar gunment) needs to package the information up into the message object using the methods it
provides, and assign it to the event . ar g. Then when it (act i on()) returns f al se, Habanero takes over and sends the event on to all the
collaborating hablets.

Example from Hchat.Message [23]

public bool ean action (Event e, Object arg)
{ if (arg.getC ass().getNanme().equals (“java.lang.String”))

{ if (e.target == inl)
{ e.arg = new Message (inl.getText(), 1); }
else if (e.target == in2)

{ e.arg = new Message (in2.getText(), 2); }

return false;

What next?

Other advanced topics [bottom of 1].

Private Events
R — — — — —

What’s this pattern for?

This pattern tells you how to let the local hablet process some of the events locally and not broadcast them over Habanero.

Background Information

Sometimes you don’t want every event to be broadcast to collaborating hablets. Some events may be too fine-grained. For example, when

drawing points in the Whiteboard Cl. they did not want to send every point over the network, but rather, they waited until all the points
for a scribble have been collected, then sent them over the network in one package.

How do I use this?

If you do not want some events broadcast to your collaborators, you can deal with them in act i on() (or various other event-handling

routines like nouseDown() or nbuseDr ag()) before sending it on to Habanero. Then doAct i on() only needs to deal with the shared
events.

Example: PrivateEventDemo.java [22].

This applet lets the user type as much as they want in the Text Ar ea. Only when they press the Send button does it make a public event and
send the data therein to the collaborators.

Here is the crucial code: in act i on() it checks to see if the event came from a button — ie. a public event — and if so, it sends it on.
Otherwise, it keeps it to itself.

public bool ean action(Event evt, Object arg)

{ if (evt.target instanceof Button) e F"M"""
/1l If it is a button, it is a public event and we need to send '""‘
/1 the data on by putting it in the evt.arg and then returning
/1 fal se.
{ evt.arg = pad. get Text();
return fal se;
}
el se
/1 I'f we had needed to do any processing of private events, #
/1 we woul d have done it here before we returned true. - .

Hegri Hal
return true; & ' R
}

Then, in doEvent () it knows it was a public event, so it simply takes the data and puts it into the Text Ar ea pad.

publi c bool ean doEvent (Event evt, Object arg)
{ pad.setText((String) arg);

return true;
}

What next?

To learn about more sophisticated means of sending event data to other hablets, read Advanced Event Handling [9].

Other advanced topics [bottom of 1].

Epilogue: Lessons Learned

The biggest lesson is that you cannot write good framework documentation on the first try. This is not surprising to the Pattem
community since we are always submitting our patterns to writers’ workshops to get them reviewed.

However, when writing documentation for feaching frameworks, not only do you need to have experts in writers’ workshops read and
critique your patterns, you need to also test them out on your end-users — the very kind of people who will be learning how to use the
framework from your patterns. You need to watch them use your patterns and note what trips them up, then correct it.

People, unlike computers, are notoriously bad at following step-by-step instructions. People are more motivated when there is something they
themselves want to do driving them. So as you write your patterns, whenever possible, make them random-access. Provide an index with
suggestive titles so that they can pick which patterns to read based on what they want to do. Sometimes this is not possible, because of
preconditions. In those cases, make sure your patterns point them back to what they needed to do first.

Application programmers — the consumers of your framework patterns — are often not familiar with the concept of patterns. So you need to
introduce them to the idea. However, do not label your introduction “Introduction.” I tried that, and nobody read them. I changed the name to
“Read Me” and almost everybody read them!

Appendix

HabTextDemo.java
/1l This is the sinple denp of habanerizing the TextDeno fromthe Java
/1 Tutorial.

package HabText Denp;

i mport Text Denp;

i nport ncsa. habanero. *;

i nport ncsa. habanero. streans. *;
import java.io.*;

inport java.aw.*;

inport java.lang.*;

public class HabTextDenp extends HabText Denp. Text Deno i npl ements W apped
{

I/ COverride the super's action() so that the action is passed on

!/ to Habanero.

public bool ean action (Event e, Cbject arg)

{ return false;

}

/1 Sets up the window and calls super's init. Sets the size of the
/1 window |ike what the <applet> tag does in HTM.
public void startlnFrame(MrrorFrame f)

{ init();
start();
f.setTitle("Text Denp Hablet");
f.add("Center", this);
f.resize(300, 200);
f.show();

}

/Il Wites out current state for new user.

public void marshal | Sel f (Marshal | Qut put out) throws | OException
{ out.witeUTF(textArea.getText());

}

I/ Reads in current state for new user.

public void unmarshal | Sel f (Marshal | I nput in) throws | OException
{ textArea.setText(in.readUTF());

}

/1 Like a distributed action(), this receives events, which may
/1l be froma renpte app. Note how it parallels the action() in
1/ Text Denp.
public bool ean doEvent (Event evt, Cbject arg)
{ textArea.appendText ((String)(arg) + "\n");
textField.selectAl();
return true;

}

TextDemoSub.java
/1 This inplenents an alternate action() which uses the argument rather
/1 than directly accessing textField.

package HabText Denv;

inport java.aw.*;
inport java. appl et. Applet;

public class Text DembSub extends HabText Denp. Text Denp
{ public boolean action (Event evt, Cbject argunent)
{ textArea.appendText ((String)(argunment) + "\n");
return true;

b}

HabTextDemo2.java

/1 This is the sinple demp of habanerizing the TextDeno fromthe Java
/1l Tutorial, Version Il. This is the "Use only argunent parameter”

/1 version.

package HabText Denv;

i mport Text Deno;

i nport ncsa. habanero. *;

i nport ncsa. habanero. streans. *;
import java.io.*;

inport java.aw.*;

import java.lang.*;

public class HabTextDenp extends HabText Denp. Text DenpSub i npl ements W apped
{

/1 Override the super's action() so that the action is passed on

!/ to Habanero.

public bool ean action (Event e, Cbject arg)

{ return fal se;

}

/1 Sets up the window and calls super's init. Sets the size of the
/1 window |ike what the <applet> tag does in HTM.
public void startlnFrame(MrrorFrame f)

{ init();
start();
f.setTitle("Text Denp Hablet");
f.add("Center", this);
f.resize(300, 200);
f.show();

}

/1 Wites out current state for new user.

public void marshal | Sel f (Marshal | Qut put out) throws | OException
{ out.writeUTF(textArea.getText());

}

I/l Reads in current state for new user.

public void unmarshal | Sel f (Marshal | I nput in) throws | OException
{ textArea.setText(in.readUTF());

}

Il Like a distributed action(), this receives events, which may
/1 be froma renpte app. Note how it parallels the action() in
1/ Text Denp.

public bool ean doEvent (Event evt, Cbject arg)

{ return super.action(evt,arg);

}

Labeled Text Example

I

| <]

= [

HabLabeledText.java
/1 HablLabel edText
/| Denobnstrates "Encoding Event Data as Strings"

package Label edText Denv;

i nport Label edText Deno. *;

i nport ncsa. habanero. *;

i mport ncsa. habanero. streans. *;
inport java.io.*;

inport java.aw.*;

import java.applet.*;

public class HabLabel edText extends Label edText Denp. Label edText inplenents W apped
{

public bool ean action(Event evt, Cbject arg)
{ String text = (String) arg;

if (evt.target == f1)

{ evt.arg = "1" + text; // See how we use this part to
fl.selectAl(); /1 package all our information as

} I/ a string in to arg before we send

else if (evt.target == f2) // it on to Habanero? W also take this

{ evt.arg = "2" + text; // opportunity to do sone |ocal things
f2.selectAll(); /1 like do the selectAll on the

} Il appropriate TextField.

return fal se;

}

public bool ean doEvent (Event evt, Cbject arg)

{ // At this point, the arg's first character tells us which
/1 TextField generated the event. So now we need to extract that
/1 information and separate it fromthe rest of the string.

char key = ((String) arg).charAt(0);
String text = ((String) arg).substring(1);

/1 Now we can just followthe logic fromthe original action(),
/1 except we're using the key instead of the evt.target.

if (key =="'1")

{ outArea.appendText("Box 1: " + text + "\n");
fl.selectAl();

}

else if (key =="'2")

{ outArea.appendText("Box 2: " + text + "\n");
f2.selectAl();

}

el se /1 Just in case anything goes wong

{ outArea.appendText("Error: '"+key+"' "+text+"\n");
}

return true;

}

// Wites out current state for new user.

public void marshal | Sel f (Marshal | Qut put out) throws | OException
{ out.writeUTF(outArea.getText());

}

20

!/ Reads in current state for new user.

public void unmarshal | Sel f (Marshal | I nput in) throws | OException

{ outArea.setText (in.readUTF());
}

/1 Sets up the window and calls super's init. Sets the size

/1 window | i ke what the <applet> tag does in HTM.
public void startlnFrame(MrrorFrame f)

{init();
start();
f.setTitle("TextDenp Hablet");
f.add("Center", this);
f.resize(300, 400);
f.show();
}
}
LabeledText.java

/1 Label edText

I/ Label s what you type depending on the box you type it in.

package Label edText Deno;

inport java.aw.*;
i mport java.applet.*;

public class Label edText extends Appl et
{ TextField f1, f2;
Text Area out Area;

public void init()

{ f1 = new TextFi el d(20);
f2 = new Text Fi el d(20);
out Area = new Text Area(5, 20);
out Ar ea. set Edi t abl e(f al se);

// Add Conponents to the Applet.

GridBaglLayout gridBag = new Gri dBaglLayout ();

set Layout (gri dBag) ;

GridBagConstraints ¢ = new GridBagConstraints();
c.gridw dth = GidBagConstrai nts. REMAI NDER;

c.fill = GidBagConstraints. HORI ZONTAL;
gridBag. set Constraints(f1, c);

add(f1);

gridBag. set Constraints(f2, c);

add(f2);

c.fill = GridBagConstraints. BOTH,

c.weightx = 1.0;

c.weighty = 1.0;

gri dBag. set Constraints(outArea, c);
add(out Area) ;

val i date();

}

public bool ean action(Event evt, Cbject arg)
{ String text = (String) arg;

if (evt.target == f1)

{ outArea.appendText("Box 1: " + text + "\n");
fl.selectAl();

}

else if (evt.target == f2)

{ outArea.appendText("Box 2: " + text + "\n");
f2.selectAll();

}

el se /1 Just in case anything goes wong

{ outArea.appendText("Error: "+text+"\n"); };

return true;

of the

21

PrivateEventDemo

Il Private Event Derp

/1l This lets you type away, and not send the data until you press the
/1 send button.

package PrivateEvent Denp;

i mport ncsa. habanero. *;

i nport ncsa. habanero. streans. *;
inport java.io.*;

import java.aw.*;

inport java.applet. Applet;

public class PrivateEvent Denp extends Applet inplenents Wapped
{ TextArea pad;

Button sendButton;

I/ Here we check to see if the event is the "send"

button. If it

Il is, we pass it on, else, we handle the event locally (which
/1 is actually to do nothing since we're just letting the user

/1 continue to type in the Text Area pad.
public bool ean action(Event evt, Object arg)
{ if (evt.target instanceof Button)

/1 1f it is a button, it is a public event and we need to send
/1 the data on by putting it in the evt.arg and then returning

/1 false.
{ evt.arg = pad.get Text();
return fal se;

}

el se

/1 1f we had needed to do any processing of private events,

/1 we woul d have done it here before we returned true.

return true;

}

/1 Here we received the public event and have to handle it
Il (which in this sinple exanple is just sinply to put the

/1 data in the pad.)
publ i c bool ean doEvent (Event evt, Object arg)
{ pad.setText((String) arg);

return true;

}

public void init()

{ pad = new TextArea(5, 20);
sendButton = new Button();
sendBut t on. set Label (" Send") ;

// Add Conponents to the Applet.
Gri dBagLayout gridBag = new G i dBagLayout();
set Layout (gri dBag);

GridBagConstraints ¢ = new GidBagConstraints();

c.gridwi dth = GidBagConstraints. REMAI NDER;

c.fill = GidBagConstraints. HORI ZONTAL;
gri dBag. set Constrai nts(sendButton, c);
add(sendButton);

c.fill = GridBagConstraints. BOTH,
c.weightx = 1.0;

c.weighty = 1.0;

gri dBag. set Constrai nts(pad, c);
add(pad) ;

val i date();

22

public void startlnFrane(MrrorFrane f)

{ init();
start();
f.setTitle("Private Event Denp Hablet");
f.add("Center", this);
f.resize(300, 300);
f.show);

}

public void marshal | Sel f (Marshal | Qut put out)
throws | OException
{ out.writeUTF(pad. getText());

public void unmarshal | Sel f (Marshal | | nput in)
t hrows | CException
{ pad. setText (in.readUTF());

Hchat Example

This example consists of Message. j ava, Si npl eChat . j ava, and Hchat . j ava.

Message.java
package Hchat;

inport java.lang.*;

import java.io.*;

i nport ncsa. habanero. Marshal | abl e;
i mport ncsa. habanero. streans. *;

public class Message inplenents Marshall able
{

private String strMessage;

private int nVal ue;

public Message (String str, int n)
{ strMessage = str;
nVal ue = n;

}

public Message ()
{ strMessage = null;
nVal ue = -1;

}

public int getField ()
{ return nVal ue;

}

public String get Message ()
{ return strMessage;

}

I/ Wites out current state
public void marshal | Sel f (Marshal | Qutput out) throws | OException
{ out.witeUTF(strMessage);

out.witelnt(nVal ue);

}

I/ Reads in current state
public void unmarshal | Sel f (Marshal | I nput in) throws | OException
{ strMessage = in.readUTF();
nValue = in.readlnt();
}
}

23

Hchat.java
package Hchat;

inport Hchat.*;

i nport ncsa. habanero. *;

i mport ncsa. habanero. streans. *;
inport java.io.*;

inmport java.awt.*;

inport java.lang.*;

public class Hchat extends SinpleChat inplenments Wapped

{
/1 Overrides the super's action so that Habanero can call it manually.
public bool ean action (Event e, Cbject arg)
{
if (arg.getd ass().getName().equals ("java.lang.String")) {
if (e.target == inl)
{
e.arg = new Message (inl.getText(), 1);
}
else if (e.target == in2)
{
e.arg = new Message (in2.getText(), 2);
}
}
return fal se;
}

/1 Sets up the window and calls super's init.
public void startlnFrame(MrrorFrame f)

{ init();
start();
f.setTitle("Chat Hablet");
f.add("Center”,this);
f.resize(500, 300);
f.show();

}

I/ Wites out current state for new user.
public void marshal | Sel f (Marshal | Qutput out) throws | OException
{ out.witeUTF(out1l.getText());
out.witeUTF(out2.getText());
}

/!l Reads in current state for new user.
public void unmarshal | Sel f (Marshal | I nput in) throws | COException
{

if (outl == null)

init();

out 1. set Text (i n.readUTF());

out 2. set Text (i n. readUTF());
}

/1 Like a distributed action().

/Il 1t receives events fromrenote app.

publ i c bool ean doEvent (Event evt, Object arg)
{ TextField tf;

if (arg instanceof Message)
{
switch (((Message)arg).getField())
{ case 1:
out 1. appendText (((Message) arg) . get Message() + “\n");
inl.setText("");
return true;
case 2:
out 2. appendText (((Message) ar g) . get Message() + "\n");
in2.setText("");
return true;
defaul t:
out 1. appendText ("Didn't get a cases but did get class\n");
out 2. appendText ("arg. get Cl ass().getName() is \"" +
arg.getd ass().getNanme() + "\"\n");
return true;
}
}
if (arg.getd ass().getNane().equal s("java.lang.String")) {
out 1. appendText ("l gnoring " + arg);

24

return true;

}

out 1. appendText (" Got an unrecogni zed event\n");

out 2. appendText ("evt.target.getd ass().getNane() is \""

evt.target.getd ass().getNane() + "\"\n");
out 2. appendText ("arg. get G ass().getName() is \"" +
arg.getCl ass().getNanme() + "\"\n");
return true; //false;
}
}

SimpleChat.java

package Hchat;

inmport java.awt.*;
inport java.appl et. Applet;

public class SinpleChat extends Appl et
{ TextField inl, in2;

Text Area outl, out?2;

Label 11, 12;

public void init()

{ /1 Prepare conponents
inl = new TextField(40); in2 = new TextFi el d(40);
outl = new Text Area(60, 40); outl.setEditable(false);
out2 = new Text Area(60, 40); out2.setEditable(false);
I'1 = new Label (); |1.setText("User 1 type here:");
12 = new Label (); |2.setText("User 2 type here:");

/1 Add conponents

Gri dBagLayout gb = new GridBagLayout ();
GridBagConstraints ¢ = new GridBagConstraints();
set Layout (gb) ;

c.fill = GidBagConstraints. BOTH,

c. wei ght x=1.0; gb.setConstraints(l1,c);
add(11);

c.gridw dt h=G'i dBagConst r ai nt s. REMAI NDER;
gb. set Constraints(l2,c); add(l2);

c.gridw dt h=G'i dBagConst r ai nt s. RELATI VE;
gb. set Constraints(inil,c); add(inl);

c.gridw dt h=Gri dBagConstrai nt s. REMAI NDER;
gh. set Constraints(in2,c); add(in2);

c.weighty = 2.0;
c.gridw dt h=Gi dBagConst r ai nt s. RELATI VE;
gb. set Constraints(outl,c); add(outl);

c.gridw dt h=G'i dBagConst r ai nt s. REMAI NDER,
gb. set Constraints(out2,c); add(out2);

val i date();

}

public bool ean action(Event e, Cbject arg)
{

if (e.target == inl)

{ out 1. appendText (inl.getText());
out 1. appendText ("\n");
inl.setText("");
return true;

}

if (e.target == in2)

{ out 2. appendText (i n2. get Text());
out 2. appendText ("\n");
in2.setText("");
return true;

}

return fal se;

I

25

