
More Patterns for Parallel Application Programs∗

Berna L. Massingill† Timothy G. Mattson‡

Beverly A. Sanders§

Abstract

We are involved in an effort to develop a pattern language for parallel appli-
cation programs. The pattern language consists of a set of patterns that guide
the programmer through the entire process of developing a parallel program, in-
cluding patterns that help find the concurrency in the problem, patterns that help
find the appropriate algorithm structure to exploit the concurrency in parallel ex-
ecution, and patterns describing lower-level implementation issues. The current
version of the pattern language can be seen at http://www.cise.ufl.edu/
research/ParallelPatterns.

In this paper, we present three patterns from our pattern language, selected
from the set of patterns that are used after the problem has been analyzed to iden-
tify the exploitable concurrency. ChooseStructure addresses the question of how to
select an appropriate pattern from the others in this set. DivideAndConquer is used
when the problem can be solved by recursively dividing it into subproblems, solv-
ing each subproblem independently, and then recombining the subsolutions into a
solution to the original problem. PipelineProcessing is used when the problem can
be decomposed into ordered groups of tasks connected by data dependencies.

1 Introduction

1.1 Overview

We are involved in an effort to design a pattern language for parallel application pro-
grams. The goal of the pattern language is to lower the barrier to parallel programming
by guiding the programmer through the entire process of developing a parallel pro-
gram. In our vision of parallel program development, the programmer brings into the
process a good understanding of the actual problem to be solved, then works through
∗Copyright c© 2001, Berna L. Massingill. Permission is granted to copy for the PLoP 2001 conference.

All other rights reserved.
†Department of Computer and Information Science and Engineering, University of Florida, Gainesville,

FL; blm@cise.ufl.edu (current address: Department of Computer Science, Trinity University, San
Antonio, TX; bmassing@trinity.edu).

‡Parallel Algorithms Laboratory, Intel Corporation; timothy.g.mattson@intel.com.
§Department of Computer and Information Science and Engineering, University of Florida, Gainesville,

FL; sanders@cise.ufl.edu.

1



Introduction 2

the pattern language, eventually obtaining a detailed design or even working code. The
pattern language is organized into four design spaces, which are visited in order.

• The FindingConcurrency design space includes high-level patterns that help find
the concurrency in a problem and decompose it into a collection of tasks. (The
patterns in this design space are presented in [7].)

• The AlgorithmStructure design space contains patterns that help find an appro-
priate algorithm structure to exploit the concurrency that has been identified.
(Three patterns from this design space are presented in [6].)

• The SupportingStructures design space includes patterns that describe useful ab-
stract data types and other supporting structures.

• The ImplementationMechanisms design space contains patterns that describe
lower-level implementation issues.

The latter two design spaces (slightly stretching the typical notion of a pattern) might
even include reusable code libraries or frameworks. We use a pattern format for all
four levels so that we can address a variety of issues in a unified way. The current, in-
complete, version of the pattern language can be seen at http://www.cise.ufl.
edu/research/ParallelPatterns. It consists of a collection of extensively
hyperlinked documents, such that the designer can begin at the top level and work
through the pattern language by following links.

In this paper, rather than describing the pattern language as a whole, we present
the complete text of three selected patterns from the AlgorithmStructure design space.
The chosen patterns are relatively mature, and significant enough to stand alone. The
patterns in the AlgorithmStructure design space help the designer find an appropriate
algorithm structure suitable for parallel implementation and are applicable after the
concurrency in a problem has been identified. Thus, before attempting to apply these
patterns the designer should have determined (i) how to decompose the problem into
tasks that can execute concurrently, (ii) which data is local to the tasks and which is
shared among tasks, and (iii) what ordering and data dependencies exist among tasks.

The concurrency in parallel programs introduces potentially nondeterministic be-
havior and the possibility of race conditions. Correctness concerns thus play a large
role in parallel programming and are addressed by describing constraints on the prob-
lem and implementation. The goal is to provide rules that, if followed, will preclude
concurrency errors. These constraints are typically described first in informal but pre-
cise language; in some cases this informal discussion is followed by a more formal and
detailed discussion including references to supporting theory.

1.2 Example

As mentioned above, before attempting to apply patterns from the AlgorithmStructure
design space, the designer should have analyzed the problem to identify potential con-
currency. As an example of this analysis, consider the following problem taken from
the field of medical imaging. (This example is presented in more detail in [7].) We can
decompose this problem in two ways — in terms of tasks and in terms of data.



Introduction 3

An important diagnostic tool is to give a patient a radioactive substance and then
watch how that substance propagates through the body by looking at the distribution
of emitted radiation. Unfortunately, the images are of low resolution, due in part to the
scattering of the radiation as it passes through the body. It is also difficult to reason from
the absolute radiation intensities, since different pathways through the body attenuate
the radiation differently.

To solve this problem, medical imaging specialists build models of how radiation
propagates through the body and use these models to correct the images. A common
approach is to build a Monte Carlo model. Randomly selected points within the body
are assumed to emit radiation (usually a gamma ray), and the trajectory of each ray
is followed. As a particle (ray) passes through the body, it is attenuated by the differ-
ent organs it traverses, continuing until the particle leaves the body and hits a camera
model, thereby defining a full trajectory. To create a statistically significant simulation,
thousands if not millions of trajectories are followed.

The problem can be parallelized in two ways. Since each trajectory is independent,
it would be possible to parallelize the application by associating each trajectory with a
task. Another approach would be to partition the body into sections and assign different
sections to different processing elements.

As in many ray-tracing codes, there are no dependencies between trajectories, mak-
ing the task-based decomposition the natural choice. By eliminating the need to man-
age dependencies, the task-based algorithm also gives the programmer plenty of flexi-
bility later in the design process, when how to schedule the work on different process-
ing elements becomes important.

The data decomposition, however, is much more effective at managing memory
utilization. This is frequently the case with a data decomposition as compared to a task
decomposition. Since memory is decomposed, data-decomposition algorithms also
tend to be more scalable. These issues are important and point to the need to at least
consider the types of platforms that will be supported by the final program. The need
for portability drives one to make decisions about target platforms as late as possible.
There are times, however, when delaying consideration of platform-dependent issues
can lead one to choose a poor algorithm.

1.3 In this paper

The remainder of this paper consists of the complete text of three patterns from the
AlgorithmStructure design space:

• ChooseStructure addresses the question of how to select an appropriate pattern
from the others in this set.

• DivideAndConquer is used when the problem can be solved by recursively di-
viding it into subproblems, solving each subproblem independently, and then
recombining the subsolutions into a solution to the original problem.

• PipelineProcessing is used when the problem can be decomposed into ordered
groups of tasks connected by data dependencies.



The ChooseStructure Pattern 4

Each numbered major section represents one document in the collection of hyperlinked
documents making up our pattern language; each document represents one pattern. To
make the paper self-contained, we replace hyperlinks with text formatted like this and
footnotes or citations. To make it easier to identify patterns and pattern sections, we
format pattern names as SomePattern and pattern section names as SomeSection.

2 The ChooseStructure Pattern

Problem

After you have analyzed your problem to identify exploitable concurrency, how do you
use the results to choose a structure for the parallel algorithm?

Context

The first phase of designing a parallel algorithm usually consists of analyzing the
problem to identify exploitable concurrency, usually by using the patterns of the
FindingConcurrency1 design space. After performing this analysis, you should have
(1) a way of decomposing the problem into a number of tasks, (2) an understanding
of how the problem’s data is decomposed onto and shared among the tasks, and (3) an
ordering of task groups to express temporal or other constraints among the tasks. To
refine the design further and move it closer to a program that can execute these tasks
concurrently, you need to map the concurrency onto the multiple units of execution
(UEs)2 that run on a parallel computer.

Of the countless ways to define an algorithm structure, most follow one of nine
basic design patterns. The key issue is to decide which pattern is most appropriate for
your problem.

Forces

There are competing forces to keep in mind in deciding which overall structure fits
your problem best:

• Different aspects of the analysis may pull the design in the direction of different
structures.

• A good algorithm design must strike a balance between (1) abstraction and porta-
bility and (2) suitability for a particular target architecture. The challenge faced
by the designer, especially at this early phase of the algorithm design, is to leave
the parallel algorithm design abstract enough to support portability while ensur-
ing that it can eventually be implemented effectively for the parallel systems on
which it will be executed.

This pattern describes a way of balancing these forces and choosing an overall structure
for the algorithm.

1A set of patterns in our pattern language; see [7].
2Generic term for a collection of concurrently-executing entities, usually either processes or threads.



The ChooseStructure Pattern 5

Solution

Overview

Our approach to using the results of the preliminary analysis to choose an overall struc-
ture for the algorithm has four major steps:

• Target platform: What constraints are placed on the parallel algorithm by the
target machine or programming environment?

• Major organizing principle: When you consider the concurrency in your prob-
lem, is there a particular way of looking at it that stands out and provides a
high-level mechanism for organizing this concurrency? Notice that in some situ-
ations, a good design may make use of multiple algorithm structures (combined
hierarchically, compositionally, or in sequence), and this is the point at which to
consider whether such a design makes sense for your problem.

• The AlgorithmStructure decision tree: For each subset of tasks, how do you
select an AlgorithmStructure design pattern that most effectively defines how to
map the tasks onto UEs?

• Re-evaluation: Is this chosen AlgorithmStructure pattern (or patterns) suitable
for your target platform?

Steps

• Consider the target platform. What constraints are placed on your design by
the target computer and its supporting programming environments? In an ideal
world, it would not be necessary to consider such questions at this stage of the
design, and doing so works against keeping the program portable (which is also
desirable). This is not an ideal world, however, and if you do not consider the
major features of your target platform, you risk coming up with a design that is
difficult to implement efficiently.

The primary issue is how many UEs (processes or threads) your system will
effectively support, since an algorithm that works well for ten UEs may not work
well at all for hundreds of UEs. You do not necessarily need to decide on a
specific number (in fact to do so would overly constrain the applicability of your
design), but you do need to decide on an order-of-magnitude number of UEs.

Another issue is how expensive it is to share information among UEs. If there is
hardware support for shared memory, information exchange takes place through
shared access to common memory, and frequent data sharing makes sense. If the
target is a collection of nodes connected by a slow network, however, sharing
information is very expensive, and your parallel algorithm must avoid commu-
nication wherever possible.

When thinking about both of these issues — the number of UEs and the cost of
sharing information — avoid the tendency to over-constrain your design. Soft-
ware usually outlives hardware, so over the course of a program’s life, you may



The ChooseStructure Pattern 6

need to support a tremendous range of target platforms. You want your algorithm
to meet the needs of your target platform, but at the same time, you want to keep
it flexible so it can adapt to different classes of hardware.

Also, remember that in addition to multiple UEs and some way to share infor-
mation among them, a parallel computer has one or more programming environ-
ments that can be used to implement parallel algorithms. Do you know which
parallel programming environment you will use for coding your algorithm? If
so, what does this imply about how tasks are created and how information is
shared among UEs?

• Identify the major organizing principle. Consider the concurrency you found
using the patterns of the FindingConcurrency design space. It consists of tasks
and groups of tasks, data (both shared and task-local), and ordering constraints
among task groups. Your next step is to find an algorithm structure that repre-
sents how this concurrency maps onto the UEs. The first step is to find the major
organizing principle implied by the concurrency. This usually falls into one of
three camps: organization by orderings, organization by tasks, or organization
by data. Algorithms in the first two groups are task-parallel, since the design
is guided by how the computation is decomposed into tasks. Algorithms in the
third group are data-parallel, because how the data is decomposed guides the
algorithm. We now consider each of these in more detail.

For some problems, the major feature of the concurrency is the presence of well-
defined interacting groups of tasks, and the key issue is how these groups are
ordered with respect to each other. For example, a GUI-driven program might
be parallelized by decomposing it into a task that accepts user input, a task that
displays output, and one or more background computational tasks, with the tasks
interacting via “events” (e.g., the user does something, or a part of the back-
ground computation completes). Here the major feature of the concurrency is
the way in which these distinct task groups interact.

For other problems, there is really only one group of tasks active at one time, and
the way the tasks within this group interact is the major feature of the concur-
rency. Examples include so-called “embarrassingly parallel” programs in which
the tasks are completely independent, as well as programs in which the tasks in
a single group cooperate to compute a result.

Finally, for some problems, the way data is decomposed and shared among tasks
stands out as the major way to organize the concurrency. For example, many
problems focus on the update of a few large data structures, and the most pro-
ductive way to think about the concurrency is in terms of how this structure is de-
composed and distributed among UEs. Programs to solve differential equations
or perform linear algebra often fall into this category, since they are frequently
based on updating large data structures.

As you think about your problem and search for the most productive way to
begin organizing your concurrency and mapping it onto UEs, remember that the
most effective parallel algorithm design may be hierarchical or compositional:
It often happens that the very top level of the design is a sequential composition



The ChooseStructure Pattern 7

of one or more AlgorithmStructure patterns (for example, a loop whose body is
an instance of an AlgorithmStructure pattern). Other designs may be organized
hierarchically, with one pattern used to organize the interaction of the major task
groups and other patterns used to organize tasks within the groups.

• Identify the pattern(s) to use. Having considered the questions raised in the
preceding sections, you are now ready to select an algorithm structure, guided by
an understanding of constraints imposed by your target platform, an appreciation
of the role of hierarchy and composition, and a major organizing principle for
your problem. You make the selection by working through the decision tree
presented in Figure 1 Starting at the top of the tree, consider your concurrency

PipelineProcessing AsynchronousComposition

Regular Irregular

OrganizeByOrdering OrganizeByTasks

Recursive

Partitioning DivideAndConquer

Linear

Dependent

EmbarrassinglyParallel

Independent

Separable Dependencies Inseparable Dependencies

SeparableDependencies ProtectedDependencies

GeometricDecomposition

Linear

OrganizeByData

Recursive

RecursiveData

Terminal pattern

Decision/branch point

Decision

Key

Start

Figure 1: Decision tree for the AlgorithmStructure design space.

and the major organizing principle, and use this information to select one of the
three branches of the tree; then follow the discussion below for the appropriate
subtree. Notice again that for some problems the final design may combine more
than one algorithm structure; if no one of these structures seems suitable for your
problem, it may be necessary to divide the tasks making up your problem into
two or more groups, work through this procedure separately for each group, and
then determine how to combine the resulting algorithm structures.

– Organize By Ordering. Select the OrganizeByOrdering subtree when the
major organizing principle is how the groups of tasks are ordered with re-
spect to each other. This pattern group has two members, reflecting two
ways task groups can be ordered. One choice represents “regular” order-



The ChooseStructure Pattern 8

ings that do not change during the algorithm; the other represents “irregu-
lar” orderings that are more dynamic and unpredictable.

∗ PipelineProcessing 3: The problem is decomposed into ordered groups
of tasks connected by data dependencies.

∗ AsynchronousComposition4: The problem is decomposed into groups
of tasks that interact through asynchronous events.

– Organize By Tasks. Select the OrganizeByTasks subtree when the execu-
tion of the tasks themselves is the best organizing principle. There are many
ways to work with such “task-parallel” problems, making this the largest
group of patterns. The first decision to make is how the tasks are enumer-
ated. If they can be gathered into a set linear in any number of dimensions,
take the Partitioning branch. If the tasks are enumerated by a recursive
procedure, take the Tree branch.
If the Partitioning branch is selected, the next question is to consider the
dependencies among the tasks. If there are no dependencies among the
tasks (i.e., the tasks do not need to exchange information), then you can
use the following pattern for your algorithm structure:

∗ EmbarrassinglyParallel5: The problem is decomposed into a set of
independent tasks. Most algorithms based on task queues and random
sampling are instances of this pattern.

If there are dependencies among the tasks, you need to decide how they can
be resolved. For a large class of problems, the dependencies are expressed
by write-once updates or associative accumulation into shared data struc-
tures. In these cases, the dependencies are separable and you can use the
following algorithm structure:

∗ SeparableDependencies6: The parallelism is expressed by splitting up
tasks among units of execution. Any dependencies among tasks can be
pulled outside the concurrent execution by replicating the data prior to
the concurrent execution and then reducing the replicated data after the
concurrent execution. That is, once the data has been replicated, the
problem is greatly simplified and looks similar to the embarrassingly
parallel case.

If the dependencies involve true information-sharing among concurrent
tasks, however, you cannot use a trick to make the concurrency look like the
simple embarrassingly parallel case. There is no way to get around explic-
itly managing the shared information among tasks, and you will probably
need to use the following pattern:

∗ ProtectedDependencies7: The parallelism is expressed by splitting up
tasks among units of execution. In this case, however, variables in-

3Section 4 of this paper.
4A pattern in the AlgorithmStructure design space.
5A pattern in the AlgorithmStructure design space; see [6].
6A pattern in the AlgorithmStructure design space; see [6].
7A pattern in the AlgorithmStructure design space.



The ChooseStructure Pattern 9

volved in data dependencies are both read and written during the con-
current execution and thus cannot be pulled outside the concurrent ex-
ecution but must be managed during the concurrent execution of the
tasks. Notice that the exchange of messages is logically equivalent to
sharing a region of memory, so this case covers more than just tradi-
tional shared-memory programs.

This completes the Partitioning branch; now consider the patterns in the
Tree branch. Here we have two cases. These cases are very similar, differ-
ing in how the subproblems are solved once the tasks have been recursively
generated:

∗ DivideAndConquer8: The problem is solved by recursively dividing
it into subproblems, solving each subproblem independently, and then
recombining the subsolutions into a solution to the original problem.

– Organize By Data. Select the OrganizeByData subtree when the decom-
position of the data is the major organizing principle in understanding the
concurrency. There are two patterns in this group, differing in how the
decomposition is structured — linearly in each dimension or recursively.

∗ GeometricDecomposition 9: The problem space is decomposed into
discrete subspaces; the problem is then solved by computing solutions
for the subspaces, with the solution for each subspace typically requir-
ing data from a small number of other subspaces. Many instances of
this pattern can be found in scientific computing, where it is useful in
parallelizing grid-based computations, for example.
∗ RecursiveData10: The problem is defined in terms of following links

through a recursive data structure.

• Re-evaluate. After choosing one or more AlgorithmStructure patterns to be used
in your design, skim through their descriptions to be sure they are reasonable
suitable for your target platform. (For example, if your target platform consists
of a large number of workstations connected by a slow network, and one of your
chosen AlgorithmStructure patterns requires frequent communication between
tasks, you are likely to have trouble implementing your design efficiently.) If the
chosen patterns seem wildly unsuitable for your target platform, try identifying
a secondary organizing principle and working through the preceding step again.

Examples

Medical imaging

For example, consider the medical imaging problem described in
DecompositionStrategy11. This application simulates a large number of gamma

8Section 3 of this paper.
9A pattern in the AlgorithmStructure design space; see [6].

10A pattern in the AlgorithmStructure design space.
11A pattern in the FindingConcurrency design space; see [7]. This example is also summarized in Sec-

tion 1 of this paper.



The DivideAndConquer pattern 10

rays as they move through a body and out to a camera. One way to describe the
concurrency is to define the simulation of each ray as a task. Since they are all
logically equivalent, we put them into a single task group. The only data shared among
the tasks are read-only accesses to a large data structure representing the body. Hence
the tasks do not depend on each other.

Because for this problem there are many independent tasks, it is less necessary than
usual to consider the target platform: The large number of tasks should mean that we
can make effective use of any (reasonable) number of UEs; the independence of the
tasks should mean that the cost of sharing information among UEs will not have much
effect on performance.

Thus, we should be able to choose a suitable structure by working through the
decision tree in Figure 1. Given that in this problem the tasks are independent, the only
issue we really need to worry about as we select an algorithm structure is how to map
these tasks onto UEs. That is, for this problem the major organizing principle seems
to be the way the tasks are organized, so we start by following the OrganizeByTasks
branch.

We now consider the nature of our set of tasks. Are the tasks arranged hierarchi-
cally, or do they reside in an unstructured or flat set? For this problem, the tasks are in
an unstructured set with no obvious hierarchical structure among them, so we follow
the Partitioning branch of the decision tree.

The next decision takes into account the dependencies among the tasks. In this
example, the tasks are independent. This implies that the algorithm structure to use for
this problem is described in EmbarrassinglyParallel. (Notice, by the way, that an em-
barrassingly parallel algorithm should not be viewed as trivial to implement — much
careful design work is still needed to come up with a correct program that efficiently
schedules the set of independent tasks for execution on the UEs.)

Finally, we review this decision in light of possible target-platform considerations.
As we observed earlier, the key features of this problem (the large number of tasks
and their independence) make it unlikely that we will need to reconsider because the
chosen structure will be difficult to implement on the target platform. Nevertheless, to
be careful we also review EmbarrassinglyParallel; fortunately, it appears to be suitable
for a variety of target platforms.

3 The DivideAndConquer pattern

Problem

How can you exploit the potential concurrency in a problem that can be solved using
the divide-and-conquer strategy?

Context

Consider the divide-and-conquer strategy employed in many sequential algorithms.
With this strategy, a problem is solved by splitting it into subproblems, solving them
independently, and merging their solutions into a solution for the whole problem. The



The DivideAndConquer pattern 11

subproblems can be solved directly, or they can in turn be solved using the same divide-
and-conquer strategy, leading to an overall recursive program structure. The potential
concurrency in this strategy is not hard to see: Since the subproblems are solved in-
dependently, their solutions can be computed concurrently. Figure 2 illustrates the
strategy and the potential concurrency.

problem

solution

split

subproblem

subproblem

subproblem

subsolution

subsolution

subsolution

split

solvesolve

merge

merge

sequential

��������� -way
concurrency

�������
	 -way
concurrency

��������� -way
concurrency

sequential

subproblem

subproblem

subproblem

subsolution

subsolution

subsolution

split

solve solve

merge

Figure 2: The divide-and-conquer strategy.

The divide-and-conquer strategy can be more formally described in terms of the
following functions (where N is a constant):

• Solution solve(Problem P): Solve a problem (returns its solution).

• Problem[] split(Problem P): Split a problem into N subproblems,
each strictly smaller than the original problem (returns the subproblems).

• Solution merge(Solution[] subS): Merge N subsolutions into solu-
tion (returns the merged solution).

• boolean baseCase(Problem P): Decide whether a problem is a “base
case” that can be solved without further splitting (returns true if base case,
false if not).

• Solution baseSolve(Problem P): Solve a base-case problem (returns
its solution).

The strategy then leads to the top-level program structure shown in Figure 3.



The DivideAndConquer pattern 12

Solution solve(Problem P) {
if (baseCase(P))

return baseSolve(P);
else {

Problem subProblems[N];
Solution subSolutions[N];
subProblems = split(P);
for (int i = 0; i < N; i++)

subSolutions[i] = solve(subProblems[i]);
return merge(subSolutions);

}
}

Figure 3: Sequential pseudocode for the divide-and-conquer strategy.

Indications

Use DivideAndConquer when:

• The problem can be solved using the divide-and-conquer strategy, with subprob-
lems being solved independently.

This pattern is particularly effective when:

• The amount of work required to solve the base case is large compared to the
amount of work required for the recursive splits and merges.

• The split produces subproblems of roughly equal size.

Forces

• The traditional divide-and-conquer strategy is a widely useful approach to algo-
rithm design. Algorithms based on this strategy are almost trivial to parallelize
based on the obvious exploitable concurrency.

• As Figure 2 suggests, however, the amount of exploitable concurrency varies
over the life of the program; at the outermost level of the recursion (initial split
and final merge) there is no exploitable concurrency, while at the innermost level
(base-case solves) the number of concurrently-executable tasks is the number
of base-case problems (which is often the same as the problem size). Ideally,
you would like to always have at least as many concurrently-executable tasks as
processors, and clearly this pattern falls short in that respect, and the problem
only gets worse as you increase the number of processors, so in general this
pattern does not scale well.

• This pattern is more efficient when the subproblems into which each problem is
split are roughly equal in size / computational complexity.



The DivideAndConquer pattern 13

Solution

Overview

If the subproblems of a given problem can be solved independently, then you can solve
them in any order you like, including concurrently. This means that you can produce a
parallel application by replacing the for loop of Figure 3 with a parallel-for construct,
so that the subproblems will be solved concurrently rather than in sequence. It is worth
noting at this point that program correctness is independent of whether the subprob-
lems are solved sequentially or concurrently, so you can even design a hybrid program
that sometimes solves them sequentially and sometimes concurrently, based on which
approach is likely to be more efficient (more about this later).

This strategy can be mapped onto a design in terms of tasks by defining one task
for each invocation of the solve function, as illustrated in Figure 4 (rectangular boxes
correspond to tasks).

split

base-case
solve

split

base-����� �

solve
base-case

solve

split

base-case
solve

merge

mergemerge

� �	�	
���
�������� ��
 ��������� ��� �	
���
��

Figure 4: Parallelizing the divide-and-conquer strategy.

Note the recursive nature of the design, with each task in effect generating and then
absorbing a subtask for each subproblem.

Note also that either the split or the merge phase can be essentially absent:

• No split phase is needed if all the base-case problems can be derived directly
from the whole problem (without recursive splitting). In this case, the overall
design will look like the bottom half of Figures 2 and 4.



The DivideAndConquer pattern 14

• No merge phase is needed if the problem can be considered solve when all of
the base-case problems have been identified and solved. In this case, the overall
design will look like the top half of Figures 2 and 4.

Designs based on this pattern include the following key elements:

• Definitions of the functions described in the Context section above (solve,
split, merge, baseCase, and baseSolve).

• A way of scheduling the tasks that efficiently exploits the available concurrency
(subproblems can be solved concurrently).

Key elements

• Definitions of functions. It is usually straightforward to produce a program
structure that defines the required functions: What is required is almost the same
as the equivalent sequential program, except for code to schedule tasks, as de-
scribed in the next section.

• Scheduling the tasks. Where a parallel divide-and-conquer program differs
from its sequential counterpart is that the parallel version is also responsible for
scheduling the tasks in a way that exploits the potential concurrency (subprob-
lems can be solved concurrently) efficiently.

The simplest approach is to simply replace the sequential for loop over sub-
problems with a parallel-for construct, allowing the corresponding tasks to ex-
ecute concurrently. (Thus, in Figure 4, the two lower-level splits execute concur-
rently, the four base-case solves execute concurrently, and the two lower-level
merges execute concurrently.) To improve efficiency (as discussed later in this
section), you can also use a combination of parallel-for constructs and sequen-
tial for loops, typically using parallel-for at the top levels of the recursion
and sequential for at the more deeply nested levels. In effect, this approach
combines parallel divide-and-conquer with sequential divide-and-conquer.

Correctness issues

Most of the correctness issues in implementing this pattern are the same ones involved
in sequential divide-and-conquer, plus a few additional restrictions to make the concur-
rency work properly.

• Considering first the sequential divide-and-conquer strategy expressed in the
pseudocode of Figure 3, you can guarantee that solve(P) returns a correct
solution of P if the other functions meet the following specifications, expressed
in terms of preconditions and postconditions. (As before, N is an integer con-
stant.)

– Solution baseSolve(Problem P):
Precondition: baseCase(P) = true .
Postcondition: returned value is a solution of P.



The DivideAndConquer pattern 15

– Problem[] split(Problem P):

Precondition: baseCase(P) = false .

Postcondition: returned value is an array of N subproblems, each strictly
smaller than P, whose solutions can be combined to give a solution of P.
Here, “strictly smaller” means smaller with respect to some integer mea-
sure that, when small enough, indicates a base-case problem. (This ensures
that the recursion is finite.)

– Solution merge(Solution[] subS):

Precondition: subS is an array of N solutions such that for some problem
P and array of subproblems subP = split(P), subS[i] is a solution
of subP[i], for all i from 1 through N.

Postcondition: returned value is a solution of P.

• To make the concurrency work, it is sufficient for the solutions of subproblems to
be computed independently. That is, for two distinct subproblems subP[i] and
subP[j] of P, solve(subP[i]) and solve(subP[j]) must be com-
puted independently. This will be true if neither call to solvemodifies variables
shared with the other call. If the solutions of subproblems cannot be computed
independently, then any access to shared variables must be protected with ap-
propriate synchronization. This, of course, tends to reduce the efficiency of the
calculation.

Efficiency issues

Effective use of this pattern depends on reducing the fraction of the program’s lifespan
during which there are fewer concurrently-executable tasks than processors, and there
are several factors that contribute to this goal:

• Having a problem whose split and merge operations are computationally trivial
compared to its base-case solve.

• Having a problem size that is large compared to the maximum number of pro-
cessors available on the target environment.

• Reducing the number of levels of recursion required to arrive at the base-case
solve by splitting each problem into more subproblems. This generally requires
some algorithmic cleverness but can be quite effective, especially in the limit-
ing case of “one-deep divide-and-conquer”, in which the initial split is into P
subproblems, where P is the number of available processors. See the Related
Patterns section for more discussion of this strategy.

• If problem size is large compared to the number of available processors, at some
point in the computation the number of concurrently-executable tasks will ex-
ceed the number of processors. If you take the simple approach of always using
the parallel-for construct to schedule the tasks corresponding to subproblems,
this approach produces a situation in which at some point the number of units of



The DivideAndConquer pattern 16

execution exceeds the number of available processors. If such a situation would
be inefficient in the target environment (i.e., if context-switching among UEs12

is expensive), or if there is significant overhead associated with the parallel-for
construct, it will probably be more efficient to use the parallel-for construct
only for the outer levels of the recursion, switching to a sequential loop when
the total number of subproblems (number of subproblems per split multiplied by
recursion level) exceeds number of available processors.

Examples

Mergesort

Mergesort is a well-known sorting algorithm based on the divide-and-conquer strategy,
applied as follows to sort an array of N elements:

• The base case is an array of size 1, which is already sorted and can thus be
returned without further processing.

• In the split phase, the array is split by simply partitioning it into two contiguous
subarrays, each of size N/2 (or (N + 1)/2 and (N−1)/2, if N is odd).

• In the solve-subproblems phase, the two subarrays are sorted (by applying the
mergesort procedure recursively).

• In the merge phase, the two (sorted) subarrays are recombined into a single sorted
array in the obvious way.

This algorithm is readily parallelized by performing the two recursive mergesorts
in parallel.

Matrix diagonalization

[3] describes a parallel algorithm for diagonalizing (computing the eigenvectors and
eigenvalues of) a symmetric tridiagonal matrix T . The problem is to find a matrix
Q such that QT · T ·Q is diagonal; the divide-and-conquer strategy goes as follows
(omitting the mathematical details):

• The base case is a 1-by-1 matrix, which is already diagonal and can be returned
without further processing.

• The split phase consists of finding matrix T ′ and vectors u, v, such that
T = T ′+ uvT , and T ′ has the form

[
T1 0
0 T2

]

where T1 and T2 are symmetric tridiagonal matrices (which can be diagonalized
by recursive calls to the same procedure).

12Units of execution — generic term for a collection of concurrently-executing entities, usually either
processes or threads.



The PipelineProcessing Pattern 17

• The merge phase recombines the diagonalizations of T1 and T2 into a diagonal-
ization of T .

Details can be found in [3] or in [4].

Other known uses

• Classical graph and other algorithms. Any introductory algorithms text will have
many examples of algorithms based on the divide-and-conquer strategy, most of
which can be parallelized with this pattern. (As noted in the Consequences
section, however, such parallelizations are not always efficient.)

• Leslie Grignard’s Fast Multipole Algorithm.

• Floating Point Systems’ FFT (Fast Fourier Transform — an algorithm for com-
puting discrete Fourier transforms).

• Tree-based reductions, particularly for the PRAM model, as described in [5].

• Certain well-known algorithms for solving the N-body problem, for example the
Barnes-Hut algorithm and some algorithms of John Salmon.

Related Patterns

It is interesting to note that just because an algorithm is based on a (sequential) divide-
and-conquer strategy does not mean that it must be parallelized with DivideAndCon-
quer. A hallmark of this pattern is the recursive arrangement of the tasks, leading
to a varying amount of concurrency. Since this can be inefficient, it is often better
to rethink the problem such that it can be mapped onto some other pattern, such as
GeometricDecomposition or SeparableDependencies13.

4 The PipelineProcessing Pattern

Problem

If your problem can be solved by an algorithm in which data flows through a sequence
of tasks or stages (a pipeline), how can you exploit the potential concurrency in this
approach?

Context

The basic idea of this pattern is much like the idea of an assembly line: To perform
a sequence of essentially identical calculations, each of which can be broken down
into the same sequence of steps, we set up a “pipeline”, one stage for each step, with
all stages potentially executing concurrently. Each of the sequence of calculations is
performed by having the first stage of the pipeline perform the first step, and then

13Patterns in the AlgorithmStructure design space.



The PipelineProcessing Pattern 18

the second stage the second step, and so on. As each stage completes a step of a
calculation, it passes the calculation-in-progress to the next stage and begins work on
the next calculation.

This may be easiest to understand by thinking in terms of the assembly-line anal-
ogy: For example, suppose the goal is to manufacture a number of cars, where the
manufacture of each car can be separated into a sequence of smaller operations (e.g.,
installing a windshield). Then we can set up an assembly line (pipeline), with each
operation assigned to a different worker. As the car-to-be moves down the assembly
line, it is built up by performing the sequence of operations; each worker, however,
performs the same operation over and over on a succession of cars.

Returning to a more abstract view, if we call the calculations to be performed C1,
C2, and so forth, then we can describe operation of a PipelineProcessing program thus:
Initially, the first stage of the pipeline is performing the first operation of C1. When
that completes, the second stage of the pipeline performs the second operation on C1;
simultaneously, the first stage of the pipeline performs the first stage of C2. When
both complete, the third stage of the pipeline performs the third operation on C1, the
second stage performs the second operation on C2, and the first stage performs the first
operation on C3. Figure 5 illustrates how this works for a pipeline consisting of four
stages.

���������������	��
���
��	��� C1

time

C2 C3 C4 C5 C6

���������������	��
���
������ C1 C2 C3 C4 C5 C6

���������������	��
���
��	��� C1 C2 C3 C4 C5 C6

���������������	��
���
������ C1 C2 C3 C4 C5 C6

Figure 5: Pipeline stages.

This idea can be extended to include situations in which some operations can be
performed concurrently. Figure 6 illustrates two pipelines, each with four stages. In
the second pipeline, the third stage consists of two operations that can be performed
concurrently.

These figures suggest that we can represent a pipeline as a directed graph, with
vertices corresponding to elements of the calculation and edges indicating dataflow. To
preserve the idea of the pipeline, it is necessary that this graph be acyclic, and it is



The PipelineProcessing Pattern 19

���������
	 ���������
� ���������
� �����������

����������	 �����������

�������������

�����������

�������������

����������� �!�"�!���"�����

non-
�"��������� �!���!�����"�#�

Figure 6: Example pipelines.

probably best if it does not depart too much from a basically linear structure, in which
the elements can be divided into stages, with each stage communicating only with the
previous and next stages.

We can describe the linear case more formally, as follows: This pattern describes
computations whose goal is to take a sequence of inputs in1, in2, etc. and compute a
sequence of outputs out1, out2, etc., where the following is true:

• outi can be computed from ini as a composition of N functions f (1), f (2), and so
on, where (letting ◦ denote function composition)

outi = f (N) ◦ · ◦ f (2) ◦ f (1)(ini)

• For i and j different, and m and n different, the computation of out(m)
i is in-

dependent of the computation out(n)
j , where we have defined input and output

sequences for the functions f (k) as follows:

– out(m)
i = f (m)(in(m)

i )

– in(1)
i = ini

– out(N)
i = outi

– in(m+1)
i = out(m)

i , for m between 1 and N−1.

To restate this less formally: For different stages m and n of the pipeline, and
different elements Ci and C j of the sequence of calculations to be performed, stage m
of the calculation for Ci can be done independently of stage n of the calculation for C j.
This is the key restriction in this pattern and is what makes the concurrency possible.



The PipelineProcessing Pattern 20

Indications

Use PipelineProcessing when:

• The problem consists of performing a sequence of calculations, each of which
can be broken down into distinct stages, on a sequence of inputs, such that for
each input the calculations must be done in order, but it is possible to over-
lap computation of different stages for different inputs as indicated in Figures 5
and 6.

The pattern is particularly effective when:

• The number of calculations is large compared to the number of stages.

• It is possible to dedicate a processor to each element, or at least each stage, of
the pipeline.

This pattern can also be effective in combination with other patterns:

• As part of a hierarchical design, in which the tasks making up each stage of the
pipeline are internally organized using another of the AlgorithmStructure pat-
terns.

Forces

• This pattern can be straightforward to implement (as described in the Solution
section below), particularly for message-passing platforms.

• However, in a pipeline algorithm, concurrency is limited until all the stages are
occupied with useful work. This is referred to as “filling the pipeline”. At the tail
end of the computation, again there is limited concurrency as the final item works
its way through the pipeline. This is called “draining the pipeline”. In order for
pipeline algorithms to be effective, the time spent filling or draining the pipeline
must be small compared to the total time of the computation. This pattern there-
fore is most effective when the number of calculations is large compared to the
number of operations/stages required for each one.

• Also, either the stages of the pipeline must be kept synchronized or there must
be some way of buffering work between successive stages. The pattern there-
fore usually works better if the operations performed by the various stages of
the pipeline are all about equally computationally intensive. If the stages in the
pipeline vary widely in computational effort. The slowest stage defines a bot-
tleneck for the algorithm’s aggregate throughput. Furthermore, a much slower
stage in the middle of the pipeline will cause data items to back up on the input
queue, potentially leading to buffer overflow problems.



The PipelineProcessing Pattern 21

Solution

Overview

Viewing the pattern in terms of tasks, define one task for each element of the pipeline
(one element per stage in a linear pipeline, possibly more for a nonlinear pipeline).
Each task can be thought of as having a predecessor (in the previous stage) and a
successor (in the next stage), with obvious exceptions for tasks corresponding to the
first and last stages of the pipeline and a straightforward generalization to nonlinear
pipelines (where a task can have multiple predecessors or successors). Data depen-
dencies are defined as follows. Each task requires as input a sequence of input items
from its predecessor (or synchronized sequences from its predecessors); for each input
item it generates an output item to be used by its successor (or synchronized groups of
items, each group to be distributed among its successors).

Designs based on this pattern include the following key elements:

• A way of defining the elements of the pipeline, where each element corresponds
to one of the functions that make up the computation. In a linear pipeline (such
as the “linear pipeline” of Figure 6), these elements are the stages of the pipeline;
in a more complex pipeline (such as the “non-linear pipeline” of Figure 6) there
can be more than one element per pipeline stage. Each pipeline element will
correspond to one task.

• A way of representing the dataflow among pipeline elements, i.e., how the func-
tions are composed.

• A way of scheduling the tasks.

Key elements

• Defining the elements of the pipeline. What is needed here is a program struc-
ture to hold the computations associated with each stage. There are many ways
to do this. A particularly effective approach is an SPMD14 program in which the
ID associated with the UE15 selects options in a case statement, with each case
corresponding to a stage of the pipeline.

• Representing the dataflow among pipeline elements. What is needed here is
a mechanism that provides for the orderly flow of data between stages in the
pipeline. This is relatively straightforward to accomplish in a message-passing
environment by assigning one process to each function and implementing each
function-to-function connection (between successive stages of the pipeline) via
a sequence of messages between the corresponding tasks. Since the stages are
hardly ever perfectly synchronized, and the amount of work carried out at differ-
ent stages almost always varies, this flow of data between pipeline stages must

14“Single program, multiple data” — a parallel-programming style in which each thread or process runs
the same program, but on different data.

15Unit of execution — generic term for one of a collection of concurrently-executing entities, usually
either processes or threads.



The PipelineProcessing Pattern 22

usually be both buffered and ordered. Most message-passing environment (e.g.,
MPI) make this easy to do.

If a message-passing programming environment is not a good fit with the target
platform, you will need to explicitly connect the stages in the pipeline with a
buffered channel. Such a buffered channel can implemented as a shared queue
(using SharedQueue16 ).

• Scheduling the tasks. What is needed here is a way of scheduling the tasks that
make up the design. Usually all tasks are scheduled to execute concurrently (e.g.,
as elements of an SPMD program), since this avoids bottlenecks and potential
deadlock.

Correctness issues

• What makes concurrency possible here is the requirement that for different stages
m and n of the pipeline, and different elements Ci and C j of the sequence of
calculations to be performed, stage m of the calculation for Ci can be done in-
dependently of stage n of the calculation for C j. The tasks that make up the
pipeline should therefore be independent, except for the interaction needed to
pass data from one stage to the next. This happens naturally in a distributed-
memory environment; in a shared-memory environment, it can be guaranteed
by (i) making sure the mechanism used to pass data from one pipeline stage to
the next is correctly implemented (e.g., by using a concurrency-safe shared data
structure such as SharedQueue) and (ii) not allowing tasks to modify any shared
variables except those used in this mechanism.

Examples

Fourier-transform computations

A type of calculation widely used in signal processing involves performing the follow-
ing computation repeatedly on different sets of data:

• Perform a discrete Fourier transform (DFT) on a set of data.

• Manipulate the result of the transform elementwise.

• Perform an inverse DFT on the result of the manipulation.

Examples of such calculations include convolution, correlation, and filtering opera-
tions, as discussed in [8].

A calculation of this form can easily be performed by a three-stage pipeline:

• The first stage of the pipeline performs the initial Fourier transform; it repeatedly
obtains one set of input data, performs the transform, and passes the result to the
second stage of the pipeline.

16A pattern in the SupportingStructures design space.



The PipelineProcessing Pattern 23

• The second stage of the pipeline performs the desired elementwise manipulation;
it repeatedly obtains a partial result (of applying the initial Fourier transform to
an input set of data) from the first stage of the pipeline, performs its manipula-
tion, and passes the result to the third stage of the pipeline.

• The third stage of the pipeline performs the final inverse Fourier transform; it
repeatedly obtains a partial result (of applying the initial Fourier transform and
then the elementwise manipulation to an input set of data) from the second stage
of the pipeline, performs the inverse Fourier transform, and outputs the result.

Each stage of the pipeline processes one set of data at a time. However, except during
the initial “filling” of the pipeline, all stages of the pipeline can operate concurrently;
while the first stage is processing the N-th set of data, the second stage is processing
the (N−1)-th set of data and the third stage is processing the (N−2)-th set of data.

Known uses

• Image processing applications.

• Problems in the CMU task-parallel Fortran test suite [1].

• Other pipelined computations, as described in [5].

Related Patterns

This pattern is very similar to the Pipes and Filters pattern of [2]; the key differ-
ence is that this pattern explicitly discusses concurrency. This pattern is similar to
AsynchronousComposition17 in that both patterns apply to problems where it is natural
to decompose the computation into a collection of semi-independent entities. The dif-
ference is that in PipelineProcessing, these entities interact in a more regular way, with
all “stages” of the pipeline proceeding in a loosely synchronous way, whereas in the
AsynchronousComposition pattern, there is no such requirement, and the entities can
interact in very irregular and asynchronous ways.

Acknowledgments

We thank Intel Corporation, the National Science Foundation (grant #9704697), and
the Air Force Office of Scientific Research (grant #4514209-12) for their financial sup-
port. We also thank Doug Lea and Alan O’Callaghan, who acted as shepherds for our
two previous PLoP papers ([6] and [7]), and Bob Hanmer, our shepherd for this paper.

17Another pattern in the AlgorithmStructure design space.



References 24

References

[1] The CMU task-parallel fortran test suite. Available at http://www.cs.cmu.
edu/afs/cs.cmu.edu/project/iwarp/member/fx/public/www/
fx.h%tml.

[2] Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad, and Michael
Stal. Pattern-Oriented Software Architecture, Volume 1: A System of Patterns. John
Wiley & Son Ltd, 1996.

[3] J.J. Dongarra and D.C. Sorensen. A fully parallel algorithm for the symmetric
eigenvalue problem. SIAM J. Sci. and Stat. Comp., 8:S139–S154, 1987.

[4] G.H. Golub and C.F. Van Loan. Matrix Computations. The Johns Hopkins Uni-
versity Press, 1989.

[5] J. JáJá. An Introduction to Parallel Algorithms. Addison-Wesley, 1992.

[6] Berna L. Massingill, Timothy G. Mattson, and Beverly A. Sanders. Patterns for
parallel application programs. In Proceedings of the Sixth Pattern Languages of
Programs Workshop (PLoP99), 1999. See also our Web site at http://www.
cise.ufl.edu/research/ParallelPatterns.

[7] Berna L. Massingill, Timothy G. Mattson, and Beverly A. Sanders. Pat-
terns for finding concurrency for parallel application programs. In Proceed-
ings of the Seventh Pattern Languages of Programs Workshop (PLoP’00), August
2000. See also our Web site at http://www.cise.ufl.edu/research/
ParallelPatterns.

[8] W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling. Numerical
Recipes in C: The Art of Scientific Computing. Cambridge University Press, 1988.


