
1

 An Analysis Pattern for Repair of an Entity

Eduardo B. Fernandez1 and Xiaohong Yuan2

1Dept. of Computer Science and Engineering,
Florida Atlantic University,

Boca Raton, FL 33431
ed@cse.fau.edu

2Dept. of Computer Science,
North Carolina A & T State University,

Greensboro, NC 27411
xhyuan@ncat.edu

Abstract

This analysis pattern models repair events in a repair shop. This pattern focuses on the basic
aspects of the repair events in a repair shop, from the initial estimates until completion of the
repair. Details of the repair shop and of the type of entities it repairs are left for the specific
application or for complementary patterns. This pattern represents a minimum application that
can be applied to a variety of situations and it can be combined with other related patterns to
describe more complex applications. It can also be further abstracted to describe other
situations, not just repair.

1. Introduction

We present an analysis pattern that describes performing repairs in a repair shop. This pattern is
in the category of what we have called Semantic Analysis patterns [Fer00a], thus the pattern
focuses on the basic aspects of the repair events in a repair shop, without detailing the specific
type of repair shop, entity or customer. Details of the repair shop and the type of entities it
repairs are left for the specific application or for complementary patterns. The purpose of this
type of pattern is to serve as a starting point when translating requirements into an actual design.
This pattern represents a minimum application so that it can be applied to a variety of situations
and it can be combined with other related patterns to describe more complex applications. It
can also be further abstracted to apply to other situations.

Sending a broken entity to a repair shop for repair is a common real-life problem. Customers
bring broken entities, for example, computers or cars, to a repair shop and a reception
technician makes an estimate of their repair. If the customer agrees, the entity is assigned for
repair to some repair technician, who keeps a Repair Event document. All the Repair Event

 Copyright 2001, Eduardo B. Fernandez and Xiaohong Yuan
Permission is granted to copy for the PLoP 2001 Conference. All other rights reserved.

2

documents for an entity are collected in its repair log. A repair event may be suspended because
of a lack of parts or other reasons. Repairs can also be cancelled.

2. Intent

This pattern describes the repair events in a repair shop, including making an estimate for
repairing a broken entity, assigning the broken entity for repair to some repair technician, and
logging the repair event of the broken entity.

3. Context

Customers bring computers to a computer repair shop that is part of a chain of similar shops
(Figure 1). A customer may take a computer to several computer repair shops for estimates
(class Estimate), and choose one repair shop to repair the computer. A reception technician
makes estimates, and a repair technician is in charge of repairing computers and keeping a log
of the repairs (class RepairEvent). Each computer has a repair log which records all the repair
events of this computer in these shops (class RepairLog).

This example is a particular case of a more general problem of repairing broken entities, which
appears in a variety of contexts, e.g., repairing a car, a watch, a house appliance, a copy
machine, etc. To make this an analysis pattern useful to develop conceptual models we should
abstract those aspects and define a generic pattern that subsumes all these cases. The generic
pattern is then tailored to the specific situation.

4. Problem

How can we model the repair events in a repair shop? We need to develop a starting model
that includes making an estimate for repairing a broken entity, assigning the broken entity for
repair to some repair technician, and logging the repair event of this broken entity.

5. Forces

• Conceptual models are hard to build. In particular, modeling the events in repair shops is
not a simple problem. An initial generic model can be a great help.

• We want to model repair events in a repair shop. However, there is a variety of repair
situations that have similar structure but differ in details.

• A user may apply to several places for estimates of repair services. However, only one of
the estimates may be selected to receive the required services.

3

• The model must include representations of real-life documents, e.g., Estimate, Repair Event,
Repair Log. Otherwise, it would be complex to create these necessary documents.

6. Solution

6.1 Requirements

The solution corresponds to the realization of the following Use Cases:
(1) Get an estimate for a repair. The reception technician, according to the problems reported

by the customer, checks the broken entity and generates an estimate for the cost of the
repair.

(2) Repair a broken entity. The customer decided to repair the broken entity at this repair shop.
A repair technician is assigned to repair this broken entity. The repair can be cancelled by
different reasons.

CompShopChain Employee
name name

empNumber

CompRepairShop

Computer

name
location

serial#
manufacturer

ReceptionTechnician RepairTechnician

subset

RepairEvent
number
date

number
Estimate

date

RepairLog

*

* InChargeOf*

ResponsibleFor

Customer
name
address *

ResponsibleFor

*

*

WorksAt

startDate
endDate1

* *

1*

1 1

1 1
1

Figure 1. Class diagram for the computer repair shop

6.2 Class model

4

Figure 2 is a class diagram for the realization of these Use Cases. This diagram is an abstraction
and extension of the diagram of Figure 1. A BrokenEntity is considered for repair at a
RepairShop. A Customer is responsible for the BrokenEntity (he will pay the costs of
repair). The many-to-many association between BrokenEntity and RepairShop reflect the
facts that a broken entity can be estimated by different shops in the chain. The many-to-one
association between these same classes describes that one of these estimates may become an
actual repair. A computer that has been repaired at least once has a repair log that collects all its
repair events. The collection of repair shops is described by class RepairShopChain.
Typically, two types (or roles) of employees are required: a ReceptionTechnician, who
prepares estimates, and a RepairTechnician, who performs repairs.

6.3 Dynamic aspects

Figure 3 shows the state diagram for class RepairEvent. A RepairEvent could be in the states
of AssignRepairTechnician, InRepair, Suspended, and Completed. The superstate around
InRepair and Suspended implies that cancellation of repairs can be performed from these two
states. Figure 4 shows the sequence diagram for getting an estimate for a repair, it assumes that
the customer is a new customer and it adds it to the list of customers. Figure 5 shows the
sequence diagram for assigning repair jobs to technicians.

RepairShopChain Employee
name name

empNumber

RepairShop

BrokenEntity

name
location

serial#
manufacturer

ReceptionTechnician RepairTechnician

subset

RepairEvent
number
date

number
Estimate

date

RepairLog

*

* InChargeOf*

ResponsibleFor

Customer
name
address *

ResponsibleFor

*

*

WorksAt

startDate
endDate1

* *

1*

1 1

1 1..*
1

Figure 2. Class diagram for the repair shop pattern

5

Figure 3. State diagram for class RepairEvent

aCustomer aReceptionTechnician:
Reception Technician

calcCost()

receive()

create()

addCustomer()

aCustomer:
Customer

anEstimate:
Estimate

cost cost

Figure 4. Sequence diagram for getting an estimate for a repair

Suspended

Estimate. sendToRepair / createRepairEvent

AssignRepair
Technician

[assigned] suspend

resume

[completed]

Completed

In Repair

pickup V timeout/addToLog

cancel

6

Figure 5. Sequence diagram for assigning repair jobs to technicians

7. Consequences

This pattern presents the following advantages:
• It describes in a generic way a variety of real-life situations (see Section 8). This means that

one can use it in different applications.
• Typical documents are represented by classes, e.g., Estimate.
• It provides a systematic structure for the activities needed in repair activities and as such it

optimizes the handling of repairs in a shop.

A disadvantage is that not all the situations described by this pattern are exactly alike:
• In situations such as repairing a watch or repairing a car, the customer brings the broken

entity to the repair shop. The customer may also ship the broken entity to the broken shop.
In situations such as repairing a refrigerator, the repair technician has to come to the house
of the customer to perform the repair.

• Sometimes the reception technician is able to estimate the repair cost directly according to
the report of the problems from the customer. In other situations, the reception technician
(or the manager) has to assign a diagnosis technician to examine the broken entity and
report the problems, and then give the estimate of repair cost. The customer may be
charged for the diagnosis cost or the examination cost whether he decides to repair the

aManager

anEstimate:
Estimate

create()

aRepairEvent:
RepairEvent

aTechnician:
Technician

aRepairLog:
RepairLog

aCustomer

assignTech()
AssignToRepair()

suspend()

resume()

addToLog()

[completed]

CalcCost()
pickup()

release()

7

broken entity at this repair shop or not. The diagnosis technician often turns out to be the
repair technician if the customer decides to repair the broken entity at this repair shop.

• Some repair shops specialize on repairing a specific type of entity, even an entity from a
specific manufacturer, or a specific model. Other repair shops provide repair services for
many types of entities, for example, refrigerators, dishwashers, air-conditioning units, and
other house appliances.

• The customer may have a contract with some repair service provider, so that the customer
does not have to pay for each repair service. Instead, the customer pays certain amount
each year according to the contract. In this case, the repair cost is not estimated.

• In the case that the broken entity is under warranty (within some time period), the customer
does not need to pay for the repair service. Therefore the repair cost is not estimated.

• Depending on whether free repair technicians are available, the customer may have to wait
for hours, or even days to get a repair technician assigned to the broken entity. The duration
of the repair varies depending on the problems with the broken entity.

All this means that the pattern needs to be tailored for specific applications.

Some aspects not represented in the pattern are:
• Description of contextual and environmental aspects of the broken entity
• Billing and payment policies
• How to deal with varieties of customers, e.g., individual, corporate, preferred
• Exceptions, e.g., bringing back the repaired entity (repair not satisfactory)
• How to order parts when the parts required to repair the broken entity are not available
• How to keep track of the parts in stock
• How to queue up customer requests when no free technicians are available
• How to ship the repaired entity to the customer when shipping is required
• The customer makes an appointment with the repair technician to bring in the broken entity,

or an appointment for the repair technician to come to the house (or other location) where
repair is needed

These aspects have been left out to make the pattern more general. They can be described by
complementary patterns (see Section 8) or directly in an application model.

8. Known uses

The following are examples of uses of this pattern:
• A customer takes a car to a car repair shop (or car dealer) for repair
• A customer takes a broken computer to a computer shop for repair
• A company orders repair for a copy machine
• A customer orders repair for a refrigerator in her house

8

9. Related patterns

When the parts needed to repair the broken entity are not available, the repair shop needs to
order the parts. Therefore the Order/Shipment [Fer00b] pattern complements this pattern. The
customer may need to make an appointment with the repair technician, part of the Reservation
and Use pattern [Fer99] can be used to capture this aspect. The Stock Manager pattern
[Fer00c] is also complementary, it can be used to keep track of the parts in stock in the repair
shop. To consider payment of orders a detailed treatment of money aspects can be found in
[Hay96] and [Fow97].

The pattern includes two other patterns: a Collection pattern (A repair shop is a collection of
repair shops), and a Role pattern [Bau00] (Employees appear in the roles of reception and
repair technicians).

The pattern can be made even more general [Fer00a]. The same structure needed to model
repairs can also describe the action of applying for admission or service to several institutions
and selecting one of them. Examples include hospital admissions and student application and
registration. This generalization is useful when one is building conceptual models; however, the
list of aspects that need to be tailored becomes longer in this case.

Acknowledgements

We thank our shepherd Mary Lynn Manns for her valuable suggestions that have significantly
improved this paper.

References

[Bau00] D.Baumer, D. Riehle, W. Siberski, and M. Wolf, “Role Object”, Chapter 2 in Pattern
Languages of Program Design 4 (N. Harrison, B. Foote, and H. Rohnert, Eds.). Also in
Procs. of PLoP’97, http://jerry.cs.uiuc.edu/~plop/plop97
[Fer00a] E.B. Fernandez and X. Yuan. “Semantic analysis patterns”, Procs. of 19th Int. Conf.
on Conceptual Modeling, ER2000, 183-195.
[Fer00b] E. B. Fernandez and X. Yuan. “Analysis patterns for the order and shipment of a
product”, Procs. of PloP 2000. http://jerry.cs.uiuc.edu/~plop/plop2k
[Fer00c] E. B. Fernandez. “Stock Manager: an analysis pattern for inventories ”, Procs. of
PloP 2000. http://jerry.cs.uiuc.edu/~plop/plop2k
[Fow97] M. Fowler, Analysis patterns -- Reusable object models, Addison- Wesley,
1997.
[Hay96] D.Hay, Data model patterns-- Conventions of thought, Dorset House Publ.,
1996.

