Anonymous Caching: Managing Duplication and
Dependencies

Joel Jones
Department of Computer Science
University of Alabama
jones@cs.ua.edu

1 Intent

Provide an interface for computing objects with derived state only once with the object
collecting the cached values having no dependencies on the derived objects.

2 Motivation

Consider a compiler where various analyses may be done on a per-method basis. This
analysis information may be needed by code optimizations or in the calculation of
other analyses. This information may be expensive to calculate and the user of this
information is not concerned with how analyses depend upon each other. If the client
is responsible for supplying analysis information to construct the analysis the client
desires, then several problems result. The analysis information may be recalculated if
there are other users of identical information, leading to unnecessary duplicated work.
Also, the dependencies of a particular analysis are exposed, leading to more complex
code in the client.

We can solve this problem by having the representation of the method keep track
of which analyses have been performed on it and supplying them when requested by
either returning them or calculating them. The application of the Anonymous Caching
pattern in our compiler example is shown in figure 1. The JavaMethod contains the in-
formation needed for analyzing a particular Java method. A DuChain is a collection of
information about the definitions and subsequent uses of all variables in a Java method.
Each definition (d) is linked with its subsequent uses (u) forming a def-use chain or
du-chain. Using Anonymous Caching, JavaMethod caches analyses such as DuChains
anonymously—there is no specific knowledge of or dependence upon DuChains in
JavaMethod.

Copyright (c) 2001, Joel Jones. Permission is granted to copy for the PLoP 2001
conference. All other rights reserved.

getinfo

caches
JavaMethod >—— >

info: Hashtable ChalﬂSv
mi: Methodinfo analyzeStructure | puChains(:JavaMethod)

cf: ClassFile

Coloring_allocator

getDefs(vr: int): Vector

getinfo(className:String)

getDefs

Figure 1: Compiler Example

3 Applicability

Use Anonymous Caching when the following conditions hold:
e There is an object that can have a variable number of objects associated with it.
e The associated objects may be needed by other associated objects or by clients.

e The associated objects can be constrained to be constructed using only the central
object as an argument to the associated object’s constructor.

e There is at most one instance of a particular class of an associated object for each
central object.

¢ A client needs no information about the dependencies an associated object may
have on other associated objects.

Do not use Anonymous Caching if the analysis computation cost is not high enough to
outweigh the complexity of using caching.

4 Structure

getAnalysis caches .
Structure Analysis
analysisResult
analyzeStructure | doAnalysis(:Structure)
getResultDetail()

Analysis User

cachedAnalyses
structure
getAnalysis(className:String) —Z

getStructure()

useAnalysis

Figure 2: Structure of Anonymous Caching

5 Participants

As shown in Figure 2, there are three kinds of participants in Anonymous Caching.

Structure The object which has information derived from it and holds the cache for
the derived data. It provides various accessors methods (get St ruct ure())
to access information about it (st ruct ur e.)

Analysis The information derived from Structure. It can be constructed by calling
a constructor or method whose only argument is Structure (doAnal ysi s().)
The results of the analysis can be obtained through accessor methods
(get Resul tDetail ().)

AnalysisUser The object which requests Analyses from Structure and subsequently
uses the Analyses.

6 Collaborations

In our compiler example, an optimization (Analysis User) may request a specific anal-
ysis (Analysis) by its class name. To acquire this analysis, it makes a request of
JavaMethod (Structure.) If JavaMethod has had this analysis performed on it before,
then the previous value is returned. Otherwise, JavaMethod constructs the analysis ob-
ject, stores the analysis object in the JavaMethod’s cache, and returns the analysis ob-
ject. The optimization then treats the analysis object as the requested type, with access
protocols that may be unrelated to any other analysis object. During the construction
of an analysis object, the analysis object will invoke methods on JavaMethod to obtain
information that it needs to construct itself. In addition, an analysis object may make
requests of the JavaMethod to supply another analysis object during its construction.

7 Consequences

This pattern allows the introduction of new Analyses without having to add code to
Structure. By constraining requests for Analyses to identify which class is desired,
and by requiring Analyses to have a construction method which takes a Structure as
an argument, the Analysis User is simplified. The Analysis User is not required to
have knowledge of how to build an Analysis; in particular, what other Analyses the
desired Analysis depends upon. The Structure is simplified by keeping track of derived
Analyses by keeping an association between the class name and the previously calcu-
lated Analysis. By keeping this collection of associations, Structure does not have to
implement a new method every time a new type of Analysis is introduced. To intro-
duce a new kind of Analysis, one only need implement the new Analysis, modify any
Analysis Users to request it from Structure, and potentially write code to register the
construction method. In Section 8.2 we discuss the potential registration code.

If the Structure can change after the analyses are done, then some mechanism must
be used to flush appropriate Analyses from the cache. The simplest approach is simply
flush all Analyses from the cache. More elaborate mechanisms could be integrated
into the interfaces of the Analyses. One approach would be to use Observer, where
Structure plays the role of Subject and the Analyses play the role of Observer. [4]

Using Observer, the “changed” message would be parameterized by the type of change
in Structure. Then each Analysis would determine if it needs to be recalculated.

Anonymous Caching has the usual negative consequences of using nameless col-
lections of methods, in that the control flow of the program is difficult to follow from
static analysis. This applies to both humans and compilers.

8 Implementation

There are two different techniques that may be used in implementing Anonymous
Caching. The first technique minimizes the changes that have to be made when a
new Analysis is introduced. However, it is restricted to implementation languages that
have reflective facilities. The second technique does not require reflection, but does
have a greater number of places code has to be inserted to introduce a new Analysis.

Both the reflective and non-reflective implementation techniques of Anonymous
Caching share code. Below is the code from the Press Pot compiler, where we first
encountered this pattern. [5]

public class JavaMet hod {
Hashtabl e info = new Hashtabl e();

public Object getlnfo(String classNanme) {
Obj ect thelnfo;
if ((thelnfo = info.get(classNanme)) == null) {
thelnfo = createlnstanceCf (cl assNane) ;
i nfo. put (cl assNanme, thelnfo);

}

return thelnfo;

}

private Object createlnstanceOf (String classNane) {

}
}

public class DuChains {
publ i c DuChai ns(JavaMet hod jn) ({

CFG cfg = (CFG jmgetlnfo("G aph. CFG');

}

The JavaMethod class is acting as the Structure, and both DuChains and Graph.CFG
are acting as Analyses. The get | nf o method of JavaMethod acts as the get Anal ysi s
method.

8.1 Reflective Implementation

In languages that allow it, reflection provides the easiest implementation. In such lan-
guages, the Structure should have a method that takes the class name of the desired

Analysis. This method is responsible for checking the cache to see if the desired Anal-
ysis already exists. If not, then the method uses the reflective facilities of the language
to create the requested Analysis and place it into the cache. Once the desired Analysis
is obtained, it is returned to the Analysis User by the Structure. Code introduced for an
Analysis is in the Analysis itself and in any Analysis Users that use the Analysis.

In the source code for a reflective implementation, such as in Press Pot, the body
of cr eat el nst anceOF would be as follows:

private (oject createlnstanced (String classNane) {
Cl ass infoC ass = d ass. forName(cl assNane) ;
Constructor iConstructor =
i nf od ass. get Constructor (j Met hodCl assArr);
Object jmArr[] = new hject[1];
jmArr[0] = this;
return i Constructor.new nstance(j mArr);

}

The Class object for the Analysis is first obtained using Cl ass. f or Name() . The
f or Namre method is a reflective method that is part of Java’s standard set of reflection
facilities. Then we find the constructor which takes JavaMethod as an argument, using
an array (j Met hodCl assAr r) pre-initialized to contain one element, an instance of
Class representing JavaMethod. We then construct the argument(s) to the constructor
by building a list of the values, represented as an array of Objects, and passing it to
newl nst ance(), which creates the requested Analysis. The class Const r uct or
is also part of Java’s standard reflective facilities.

8.2 Non-reflective Implementation

In languages that do not have reflection, a non-reflective implementation must be used.
Of course, it is also possible to implement the techniques described below in a language
that does have reflection. A non-reflective implementation of Anonymous Caching is
similar to a reflective one, in that there is still the action of creating an instance of a
class given the name of the class.

There is a naive approach that immediately comes to mind—have an “if” or “switch”
based decision tree implemented in the code of Structure. The leaves of this decision
tree would test the requested Analysis name against a literal constant and invoke the
corresponding constructor or Factory Method. This does answer the forces of hiding
dependencies between Analyses from the Analysis User and of avoiding recalculation
of Analyses. However, it doesn’t answer the force that Structure not be dependent upon
the Analyses.

To lessen the dependence of Structure on Analyses, a method is provided on Struc-
ture to register the pair (Analysis hame, Analysis Factory). Then, when a request is
made of Structure to provide an Analysis, this registry can be searched and the appro-
priate construction method invoked. No code in Structure needs to be changed when a
new Analysis is introduced.

The non-reflective implementation requires more code to implement the cache than
does the reflective one. Again, we use Press Pot as an example. First, we need to

declare an interface, AnalysisFactory, which every analysis factory must implement
and which has a method taking a JavaMethod which produces an analysis object.

public interface AnalysisFactory {
public Object createAnal ysis(JavaMethod jnj;

}

The next step is to create an implementation of the AnalysisFactory interface for
creating DuChains:

public class DuChainsFactory inplenents AnalysisFactory ({
public Object createAnal ysis(JavaMethod jm) {
return new DuChains(jm;

}
}

We also need to extend JavaMethod to contain a global collection of mappings from
analysis class names to AnalysisFactories and a method for registering AnalysisFacto-
ries with JavaMethod:

public class JavaMethod {
private static Hashtable factories = new Hashtable();
public static registerFactory(String classNane,
Anal ysi sFactory factory) {
factories. put (cl assNanme, factory);

}

We need a different version of cr eat el nst anceOF in JavaMethod than we used
in the reflective implementation:

private (oject createlnstanced (String classNane) {
Anal ysi sFactory factory = factories.get(classNane);
return factory. createAnal ysis(this);

}

The next step in implementing Anonymous Caching non-reflectively is to ensure
that the registration of AnalysisFactories occurs. The semantics of the implementation
language determine whether additional code outside of the Analysis is needed to cause
the registration method to be invoked. In languages with static initializers, like C++,
the registration method can be invoked by placing a call to the registration process in
a static initializer. This initializer can be placed in the source file for the Analysis,
thereby centralizing the changes that occur when introducing a new Analysis. The
linker takes care of the details of insuring that the static initialization occurs. In lan-
guages without such a facility, like Java, the invocation of the registration method has
no natural home in the source. Static class initialization in the Analysis does not suf-
fice, as the Analysis’s class is not loaded into the VM unless it is “referenced.” There
are two ways of solving the initialization problem. One is to place an invocation of the
registration method in the overall application’s startup code. Another is to place an in-
vocation of the registration method in the Analysis User’s class initialization code. The
second solution is preferred, as it places a dependence on the Analysis in a place where

it already exists, the Analysis User. In either case, the registration method should be
idempotent i.e. avoid registering with Structure multiple times.

Below we have an example of the second technique for ensuring registration takes
place, with registration code placed in the Analysis User. We have an optimization,
Coloring_allocator, which acts as a Analysis User. We can have its class initialization
do the job of registration:

public class Coloring_allocator {
static {
JavaMet hod. r egi ster Fact ory(" G aph. DuChai ns",
new DuChai nsFactory());

}

The implementation of Hashtable, used by the method r egi st er Fact ory of
JavaMethod, ensures that only one AnalysisFactory exists for each Analysis.

If an analysis depends upon another analysis, we also need to insure that the de-
pended upon analysis has its factory registered. In our example, DuChains relies upon
CFG, so we must add code to DuChains:

static {
JavaMet hod. r egi st er Factory (" Graph. CFG',
new CFGFactory());

}

AnalysisFactories should be implemented as Singletons, but have not in this exam-
ple, for clarity of exposition; instead we have just allowed the Hashtable of JavaMethod
to overwrite any previously registered AnalysisFactory.

9 Known Uses

This pattern is used in Press Pot, a compiler for annotating Java . cl ass files with op-
timization information for use in an annotation-aware Java virtual machine. [5] There,
the representation of Java methods, the class JavaMethod, acts as the Structure. The
implementation of register allocation, Coloring_optimizer, acts as a Analysis User. In
doing the register allocation, Coloring_optimizer has need of definition-use informa-
tion, represented by the class DuChains, acting as an Analysis. The class DuChains in
turn relies upon control-flow information, represented as the class CFG, also an Anal-
ysis.

10 Related Patterns

Extensible Attributes is a very similar pattern. [3] Doble, in turn, cites Variable State
as being similar to it. [2] Both of these pattern are similar to Anonymous Caching in
that they allow the run-time extension of an object’s attributes. However, our constraint
on the construction method, i.e. requiring a method taking Analysis as an argument,
makes the Anonymous Caching pattern easier to use. It allows the Analysis User to

have hidden from it any dependencies the Analysis might have on other Analyses. The
resulting code in Analysis User is simpler than it would be without this constraint.

Singleton is a good way of implementing the registry of Analysis Factories in a
non-reflective implementation. [4]

Factory Method is used in in the non-reflective implementation to handle the actual
object construction. [4] The AnalysisFactory performs the role of Creator and the
implementors of Analysis Factory perform the role of ConcreteCreator.

Lazy Initialization is a dual of Anonymous Caching. [1] They share caching as
a core element, but the intent and the details are different. In Lazy Initialization, the
details of construction are hidden in the state holder from the client, whereas in Anony-
mous Caching all the details of construction are hidden from the state holder.

11 Acknowledgments

Thanks to Scott Hawker for suggestions and for forcing me to consider the non-reflective
implementation techniques.

References

[1] AUER, K. Reusability through self-encapsulation. In Pattern Languages of Pro-
gramDesign, J. O. Coplienand D. C. Schmidt, Eds. Addison-Wesley, 1995, ch. 27.

[2] Beck, K. Smalltalk Best Practice Patterns. Prentice Hall, 1997.

[3] DOBLE, J., AND AUER, K. Smalltalk scaffolding patterns. In Pattern Languages
of ProgramDesign 4, N. Harrison, B. Foote, and H. Rohnert, Eds. Addison-Wesley,
2000, ch. 11, pp. 199-219.

[4] GAMMA, E., HELM, R., JOHNSON, R., AND VLISSIDES, J. Design Patterns.
Addison-Wesley Publishing Company, Inc., Reading, Massachusetts, 1994. ISBN
0-201-63361-2.

[5] JONES, J., AND KAMIN, S. Annotating java class files with virtual registers for
performance. Concurrency: Practice and Experience 12, 6 (2000), 389-406.

