
Compound Design PatternAbstract Manager
Abstract Manager

John Liebenau

lieb@itgssi.com

Copyright © 2001, John Liebenau. Permission is granted to copy

for the PLoP 2001 conference. All other rights reserved.
July 31, 2001 Page 1

Compound Design PatternAbstract Manager
1. Intent
Separate an object family’s lifecycle interfaces from its domain interfaces to encapsulate domain
object creation, destruction, and selection. Let concrete subclasses adapt specific lifecycle APIs to
conform to the standard lifecycle interfaces. Abstract Manager enables the clients of domain objects
to be independent of specific component containers and/or persistence repositories.

2. Motivation
Consider a business application, like a portfolio trading server, that will be deployed in a variety of
operating environments. In this context an operating environment is a combination of operating sys-
tem, component container and/or persistence repository. The application contains sets of business
objects, such as Portfolios, Orders, and Reports, that are created, selected, and destroyed in the
course of processing user requests. A business object has a typical lifecycle in which:

• data is gathered into a temporary business object,

• the temporary business object is validated,

• the temporary business object is used to create a more permanent business object that
is managed by a component container or is placed in a persistence repository,

• the managed business object is retrieved for use by some kind of selection mechanism,
and eventually

• the managed business object is destroyed by removal from the component container or
by deletion from the persistence repository.

Specific component containers or persistence repositories have differing lifecycle APIs. These dif-
ferences can complicate the code responsible for creating, selecting, and destroying Portfolio, Or-
der, and Report objects because it will have to contain special cases for each API. What is needed
is a way to insulate the application from specific lifecycle APIs so that the application can be free to
select the operating environment that best fits each platform or deployment requirements.

We can solve this problem by declaring the following: interfaces representing Portfolio, Order, and
Report business objects, Selector interfaces (e.g. PortfolioSelector) for specifying and executing
the selection process for each business object type, and a TradingManager interface for creating
and destroying business objects. The TradingManager interface is also used as the access point
for obtaining Selectors in order to retrieve business objects. Each business object interface has
an implementation called an Essence (e.g. PortfolioEssence) which provides the business object’s
in-memory state and behavior. An Essence is used for validation and as input for creating more per-
manent, managed business objects. The business object subsystem of our application would have
the following interface structure (Orders and Reports are not shown):

Portfolio

setName(s:String)
addEntry(e:Entry)
getName():String
getEntry(s:Symbol):Entry

PortfolioEssence

setName(s:String)
addEntry(e:Entry)
getName():String
getEntry(s:Symbol):Entry
validate()

PortfolioSelector

setInput(input)
getId():SelectorId
getResults(): List

TradingManager

createPortfolio(e:PortfolioEssence)
destroyPortfolio(p:Portfolio)
getPortfolioSelector(id):PortfolioSelector

«use»

«use»«return »

«return »
July 31, 2001 Page 2

Compound Design PatternAbstract Manager
Application code will only depend on the interfaces provided by TradingManager, Portfolio, and
PortfolioSelector. For each container system or persistence repository, the business object devel-
oper will have to provide concrete subclasses of these interfaces that adapt the specific lifecycle
API to the common API. Each TradingManager subclass implements the operations for creating
and destroying concrete subclasses of Portfolio using a specific lifecycle API.

For example, the application could use a relational database as its persistence repository and a
home grown object-to-relational mapping to bring objects in and out of the database. Persistence-
Manager implements the TradingManager interface by providing create and destroy methods that
insert and remove PersistentPortfolios from a relational database.

TradingManager declares methods for returning PortfolioSelector objects that are used to retrieve
Portfolios from the database. PersistenceManager implements those methods by managing refer-
ences to a set of concrete PortfolioSelector objects and returning the reference associated with a
selector’s identifier. This allows the set of selectors to be open to extension while keeping the Trad-
ingManager and PersistenceManager interfaces closed to changes [Meyers88][Martin96].

New concrete implementations of TradingManager, Portfolio, and PortfolioSelector can be provided
to use COM, CORBA, or EJB as the component technology without disturbing the applications use
of the business objects.

TradingManager

createPortfolio(e:PortfolioEssence)
destroyPortfolio(p:Portfolio)
getPortfolioSelector(id):PortfolioSelector

1

Portfolio

setName(s:String)
addEntry(e:Entry)
getName():String
getEntry(s:Symbol):Entry

N

PersistentPortfolio

setName(s:String)
addEntry(e:Entry)
getName():String
getEntry(s:Symbol):Entry
refresh();
persist();

PersistenceManager

createPortfolio(e:PortfolioEssence)
destroyPortfolio(p:Portfolio)
getPortfolioSelector(id):PortfolioSelector

NPortfolioSelector

setInput(input)
getId():SelectorId
getResults(): List

PortfolioForClient

setInput(input)
getId():SelectorId
getResults(): List

AllPortfolios

setInput(input)
getId():SelectorId
getResults(): List

1

TradingManager

createPortfolio(e:PortfolioEssence)
destroyPortfolio(p:Portfolio)
getPortfolioSelector(id):PortfolioSelector

PersistenceManager

createPortfolio(e:PortfolioEssence)
destroyPortfolio(p:Portfolio)
getPortfolioSelector(id):PortfolioSelector
July 31, 2001 Page 3

Compound Design PatternAbstract Manager
3. Applicability
Use the Abstract Manager pattern when:
• your application code must be independent of the operating environments on which it is deployed.

• your application must have the capability of choosing a specific component container or persis-
tence repository from multiple choices, usually at deployment time but possibly at runtime or link-
time as well

• you want to insulate your application against changes in the underlying component container or
persistence repository

• your application uses a family of related business objects

• you want to implement persistent or componentized business objects

• each business object can exist in two states: an unmanaged state in which the object exists only
in the application’s primary memory and a managed state in which the object has been inserted
or transformed so that it exists in the component container or persistence repository

4. Structure

N

preProcess();
essence.operation();
postProcess();

Selector

setInput(input)
getId():SelectorId
getResults(): List

ConcreteSelectorA

setInput(input)
getId():SelectorId
getResults(): List

ConcreteSelectorB

setInput(input)
getId():SelectorId
getResults(): List

Subject

operation()

Managed

operation()
preProcess()
postProcess()

Essence

operation()
validate()

1

1 1

essence

AbstractManager

createSubject(e:Essence)
destroySubject(s:Subject)
getSelector(id):Selector

ConcreteManager

createSubejct(e:Essence)
destroySubject(s:Subject)
getSelector(id):Selector

1

N

«instantiate »

«instantiate »

«use»

«return »

«use»«return »
July 31, 2001 Page 4

Compound Design PatternAbstract Manager
5. Participants
• ABSTRACTMANAGER (TradingManager)

- declares operations for creating and destroying MANAGED objects

- declares an operation for choosing SELECTORs in order to retrieve MANAGED objects

• CONCRETEMANAGER (PersistenceManager)

- implements operations for creating and destroying MANAGED objects

- maintains the set of SELECTORs used to retrieve MANAGED objects

• SUBJECT (Portfolio, Order, Report,...)

- declares an interface for some business logic

• MANAGED (PersistentPortfolio, PersistentOrder, PersistentReport,...)

- implements the interface declared by SUBJECT

- provides additional functionality to maintain its “managed” state

• ESSENCE (PortfolioEssence, OrderEssence, ReportEssence,...)

- implements the interface declared by SUBJECT

- represents the unmanaged essence of the SUBJECT

• SELECTOR (PortfolioSelector, OrderSelector, ReportSelector,...)

- declares an operation for identification

- declares operations for parameterizing the selection process

- declares an operation for obtaining the list of SUBJECTs retrieved by the selection process

• CONCRETESELECTOR (PortfoliosForClient, AllPortfolios,...)

- implements the interface declared by SELECTOR

- provides a specific selection mechanism used in the selection process

6. Collaborations
The Abstract Manager pattern has the following collaborations:
• Creation - an ESSENCE is validated and passed to the CONCRETEMANAGER via the ABSTRACTMAN-

AGER interface which uses the ESSENCE to create a MANAGED object by inserting the appropriate
data into the CONCRETEMANAGER’s external repository.

• Selection - client code gets a SELECTOR from the CONCRETEMANAGER via the ABSTRACTMANAGER

interface. The SELECTOR is optionally configured with additional selection information provided by
the client code. The MANAGED objects that are retrieved by the selection process are returned to
the client code as a list of SUBJECTs.

• Update - client code uses an SUBJECT which references a MANAGED. The MANAGED object per-
forms the SUBJECT’s operations and executes any additional processing to maintain its state in
the external repository.

• Destruction - client code passes an SUBJECT which references a MANAGED object to the CONCRE-

TEMANAGER via the ABSTRACTMANAGER interface. The CONCRETEMANAGER removes the MAN-

AGED object from the external repository and destroys the MANAGED object in memory.
July 31, 2001 Page 5

Compound Design PatternAbstract Manager
7. Consequences
The Abstract Manager pattern has the following benefits:
• Separates lifecycle from business logic. Abstract Manager allows you to evolve lifecycle mecha-

nisms independently of business domain mechanisms. This separation reduces risks associated
with relying on a single component container or persistence technology. It also increases the ap-
plication’s flexibility to change as new component and persistence technologies become avail-
able.

• Enables multiple kinds of component container or persistence repositories. A single application
may need to run in a variety of operating environments, each necessitating a different component
container or persistence repository. Abstract Manager enables applications to choose between
multiple kinds of operating environments to suit a particular deployment requirement.

• Provides extensible selection mechanism. Abstract Manager provides an open-ended selection
mechanism that can be extended to handle practically any kind of query and retrieval required by
an application. It accomplishes this with a simple and compact interface.

client e : Essence c : ConcreteManager s : Selectorm : Managed repository

create(e : Essence)

validate()

insertData

getSelector(id : SelectorId)

getResults()

operation()

preProcess()

operation()

postProcess()

retrieveData

destroy(m : Subject)

deleteData
isShared()

retrieveData

updateData

Creation

Selection

Update

Destruction
July 31, 2001 Page 6

Compound Design PatternAbstract Manager
Abstract Manager has the following liabilities:
• Introduces additional layers of indirection that could slow performance. By encapsulating the life-

cycle mechanisms behind generic interfaces, performance can be slowed due to the additional
indirection and the mapping between the generic interfaces and the concrete repository mecha-
nisms.

• Complex implementations vs. easy usage. Each ConcreteManager/ConcreteSelector/Managed
implementation becomes internally more complex due to mapping the native lifecycle API to con-
form to the common lifecycle interfaces. However the internal complexity of the lifecycle interfac-
es enables the rest of the application to become simpler.

8. Implementation
The following implementation issues should be considered when using the Abstract Manager pat-
tern:
• Mapping Subjects to Managers. An application may contain a large number of SUBJECTs, howev-

er not all SUBJECTs may be related. Partition the SUBJECTs into related groups by analyzing the
using and containment relations between SUBJECTs. Also consider how SUBJECTs participate in
transactions. Create a ABSTRACTMANAGER for each group.

For example, a more complete description of the portfolio trading server from the Motivation sec-
tion has the following subjects: Portfolio, Order, Report, Client, Company, and Commission-
Schedule. Portfolios contain multiple Orders. Multiple Reports are associated with an Order.
Clients belong to a Company and have an associated CommisionSchedule. These subjects can
be divided into two groups: trading {Portfolio, Order, Report} and billing {Client, Company, Com-
missionSchedule}. The TradingManager interface is the ABSTRACTMANAGER for the trading sub-
jects. The BillingManager is the ABSTRACTMANAGER for the billing subjects.

• Identifying Subjects. SUBJECTS may need to provide multiple schemes for identifying themselves.
A common approach is to generate object ids (OIDs) for each new SUBJECT instance. The OID
acts as a SUBJECT’s unique address and can be used to represent relationships between SUB-

JECTs or as a selection key for use in SELECTORs. However an additional identification scheme
may be provided to identify SUBJECTs based on an attribute, such as a name or timestamp, in or-
der to compare an ESSENCE, which does not yet have an OID, to a MANAGED object.

• Validating business objects. Business objects need to be validated prior to becoming managed
by the system. This can be accomplished by using the ESSENCE as a representation of the busi-
ness object before it has been inserted into the component container or persistence repository by
the CONCRETEMANAGER. The ESSENCE can provide a validate() method and may also provide
an isValid() query method so the CONCRETEMANAGER can check if an ESSENCE has been val-
idated.

• Parameterizing Selectors. Many concrete selection mechanisms, such as stored procedures or
prepared statements, require data to be passed to them in order to configure their queries to re-
trieve the desired objects. The SELECTOR interface can accommodate these mechanisms by de-
claring various setInput(...) methods which the concrete implementations can override if
necessary:

interface Selector

{

 void setInput(int input);

 void setInput(double input);

 void setInput(String input);

 // ...

}

July 31, 2001 Page 7

Compound Design PatternAbstract Manager
class ConcreteSelectorThatTakesOneStringParam

{

 private String queryInput;

 // ...

 public void setInput(int input) {}

 public void setInput(double input) {}

 public void setInput(String input) { queryInput = input }

 // ...

}

The SELECTOR’s setInput(...) methods should be general enough to be applicable for all
CONCRETESELECTOR implementations allowing the Selector to be open for extension but closed
to change [Meyer88][Martin96]. The SELECTOR interface can also provide versions of the set-
Input(...) method that can accommodate queries that require multiple inputs either by spec-
ifying the inputs’ names or the inputs’ positions, or by passing in a Parameter Object [Fowler99]
that contains all of the inputs:

interface Selector

{

 void setInput(String name,double input);

 void setInput(int position,String input);

 void setInput(Parameter input);

 // ...

}

• Returning Selectors that have state. The ABSTRACTMANAGER declares methods for getting SELEC-

TORs and returning them for use in client code. If the SELECTORs maintain state in the form of input
data, there may be conflicts as each caller of the SELECTOR sets its input data overwriting the pre-
vious caller’s input data. The Prototype design pattern [GHJV95] can eliminate this problem by
having the CONCRETEMANAGER’s getSelector() method return a clone of the requested SE-

LECTOR. SELECTORs that do not have state can implement a clone() method that returns a ref-
erence to themselves. The CONCRETEMANAGER then becomes a Prototype-based factory
[GHJV95][Vlissides98a].

• Configuring the ConcreteManager with Selectors. There are two approaches to configuring the
CONCRETEMANAGER with its SELECTORs. The first approach is to have the CONCRETEMANAGER ex-
plicitly create and store instances of the ConcreteSelectors needed by the client. The second ap-
proach is to have the ABSTRACTMANAGER provide an interface for registering SELECTORs. The first
approach has the advantage of freeing the clients from the responsibility of configuring the selec-
tors but it has the disadvantage of requiring the CONCRETEMANAGER to be recompiled and
relinked if additional CONCRETESELECTORs are added to the system. The second approach has
the advantage of flexibility in that additional CONCRETESELECTORs can be added without affecting
the CONCRETEMANAGER but it clutters up client code with configuration details. By combining both
approaches, we can reach a balanced medium in which the default CONCRETESELECTORs are
configured by the CONCRETEMANAGER and custom CONCRETESELECTORs can be added by cli-
ents.

• Preventing dangling references. It is important to keep a SUBJECT’s external state and its internal
state synchronized. A mismatch between the internal and external state can occur when the AB-

STRACTMANAGER’s destroy operation destroy’s a Subject that is shared through multiple referenc-
es. This will cause some clients to reference a Subject that no longer exists in the component
container or persistence repository (i.e. its external state has been removed). The available lan-
guage features will shape the solution:

• In C++ and other languages that permit “smart pointers”, we can prevent dangling refer-
ences by introducing reference counting into the MANAGED objects. Each object keeps
track of how many references it has. The CONCRETEMANAGER can only destroy those ob-
July 31, 2001 Page 8

Compound Design PatternAbstract Manager
jects that are not shared, possibly throwing an exception to indicate an attempt to destroy
a shared object. If the objects are only shared in the same process or on the same ma-
chine the reference count can exist in-memory or shared memory. However, if the objects
are to be shared by multiple machines on a network, the reference counting must exist
in an external repository such as a relational database or on a server-side CORBA object.

• In Java it is difficult to do “smart pointers” and reference counting. The Observer design
pattern [GHJV95] provides us with an alternative. We can define an Observer similar to
the Java Beans VetoableChangeListener [CL98], which broadcasts a client’s attempt to
destroy a SUBJECT. If there are other clients interested in the SUBJECT they throw an ex-
ception to prevent the destroy operation from completing. Each client of the ABSTRACT-

MANAGER will have to implement the Observer’s interface and register with the
ABSTRACTMANAGER.

9. Sample Code.
The sample Java code is taken from the example given in the motivation section. It illustrates some
of the key features required for using Abstract Manager to integrate a persistence infrastructure into
an application.

The TradingManager interface declares methods the creating, destroying, and selecting Portfolios
and other business objects.

interface TradingManager

{

 void createPortfolio(PortfolioEssence p);

 void destroyPortfolio(Portfolio p);

 PortfolioSelector getPortfolioSelector(String id);

 // Orders and Reports not shown ...

}

The PersistenceManager class implements the TradingManager as an object-to-relational mapper
that stores and retrieves objects to and from a relational database.

class PersistenceManager

{

 private Connection connection;

 private ObjectOutput writer;

 private List selectors;

 // ...

 public void createPortfolio(PortfolioEssence p)

 {

 PortfolioSelector selector = getPortfolioSelector("PORT_BY_NAME");

 selector.setInput(p.getName());

 if (!p.isValid())

 throw new CreationException("Portfolio has not been validated.");

 if (!selector.getResults().isEmpty())

 throw new CreationException("Portfolio already exists.");

 p.writeExternal(writer);

 }
July 31, 2001 Page 9

Compound Design PatternAbstract Manager
 public void destroyPortfolio(Portfolio p)

 {

 if (p.isShared())

 throw new DestructionException("Can’t destroy a shared Portfolio.");

 Statement destroyer = connection.createStatement();

 destroyer.executeUpdate("delete from ENTRY where PORT_ID="+p.getId());

destroyer.executeUpdate("delete from PORTFOLIO where PORT_ID="+p.getId());

 p.markAsDestroyed();

 }

 public PortfolioSelector getPortfolioSelector(String id)

 { return (PortfolioSelector)selectors.get(id); }

 // ...

}

The Portfolio interface is one of the business object interfaces that is managed by the TradingMan-
ager. It provides basic operations for manipulating portfolios as used by a stock trading application.

interface Portfolio

{

 void setName(String n);

 void addEntry(Entry e);

 String getName();

 Entry getEntry(Symbol s);

 // ...

}

The PortfolioEssence class implements the Portfolio interface by providing the actual business
functionality for portfolios. PortfolioEssence is the in-memory representation of portfolios. In this ex-
ample, PortfolioEssence also implements the Externalizable interface [RSBMZ97] in order to seri-
alize its state.

class PortfolioEssence implements Portfolio, Externalizable

{

 private String name;

 private Map entries;

 // ...

 public void setName(String n) { name = n; }

 public void addEntry(Entry e) { entries.put(e.getSymbol(),e); }

 public String getName() { return(name); }

 public Entry getEntry(Symbol s) { return(entries.get(s)); }

};

The PersistentPortfolio class implements the Portfolio interface by providing persistence manage-
ment functionality that surrounds the business functionality of PortfolioEssence. PersistentPortfolio
contains a PortfolioEssence (essence), an ObjectInput (reader), and an ObjectOutput (writer)
[RSBMZ97] which are used to automatically refresh and persist the state of the PortfolioEssence.
The concrete instantiations of reader and writer depend on the type of external repository, in this
case a JDBC database.
July 31, 2001 Page 10

Compound Design PatternAbstract Manager
class PersistentPortfolio implements Portfolio

{

 private PortfolioEssence essence;

 private ObjectInput reader;

 private ObjectOutput writer;

 // ...

 public void setName(String n) { essence.setName(n); persist(); }

 public void addEntry(Entry e) { essence.addEntry(e); persist(); }

 public String getName() { refresh(); return essence.getName(); }

 public Entry getEntry(Symbol s) { refresh(); return essence.getEntry(s); }

 public void refresh() { essence.readExternal(reader); }

 public void persist() { essence.writeExternal(writer); }

};

The PortfolioSelector interface declares the methods for: identifying each PortfolioSelector in-
stance, retrieving a List of Portfolios, and setting parameters to configure concrete queries with ad-
dition information.

interface PortfolioSelector

{

 String getId();

 List getResults();

 void setInput(int input);

 void setInput(double input);

 void setInput(String input);

}

The PortfoliosForClient class implements the PortfolioSelector interface by constructing an SQL
query to retrieve all portfolios owned by the specified client and executing that query on a JDBC
Connection. The connection returns a JDBC ResultSet which is passed to a ResultReader, an im-
plementation of the ObjectInput interface, which deserializes the query results into PortfolioEs-
sence.

class PortfoliosForClient implements PortfolioSelector

{

 private String client;

 private Connection connection;

 // ...

 public void setInput(String input) { client = input; }

 public String getId() { return("GET_CLIENT_PORTS"); }

 public List getResults()

 {

 Statement stmt = connection.createStatement();

 String query = "SELECT * FROM PORTFOLIO WHERE CLIENT=" + client;

 ResultSet results = stmt.executeQuery(query);

 ResultReader reader = new ResultReader(results);

 List output = new ArrayList();

 PortfolioEssence essence = new PortfolioEssence();

 while (reader.hasMore())

 {

 essence.readExternal(reader);

 output.add(new PersistentPortfolio(essence));

 }

 return(output);

 }

}

July 31, 2001 Page 11

Compound Design PatternAbstract Manager
The following is an excerpt of code that makes use of the various participants of the Abstract Man-
ager pattern. A list of portfolios are loaded into the application as essences. They are validated and
then used to create persistent portfolios. Finally a list of portfolios belonging to a single client are
retrieved through the selector.

TradingManager manager = new PersistenceManager();

List essences = getPortfoliosToCreate();

PortfolioSelector selector = manager.getPortfolioSelector("GET_CLIENT_PORTS");

String clientName = "Portfolio Management Inc.";

List portfoliosForClient = null;

try

{

 for (Iterator terator i = essences.getIterator();i.hasNext();)

 {

 PortfolioEssence essence = (PortfolioEssence)i.next();

 try { essence.validate(); }

 catch (ValidationException e) { e.printStackTrace(); }

 manager.createPortfolio(essence);

 }

}

selector.setInput(clientName);

portfoliosForClient = selector.getResults();

10. Known Uses
Enterprise Java Beans [MH99][Monson00] use the Abstract Manager pattern to achieve portability
across EJB component container implementations, such as IBM’s Websphere and BEA’s WebLog-
ic application servers. An enterprise bean provides client code with a Home interface which acts as
the ABSTRACTMANAGER providing lifecycle methods for creating, destroying, and finding SUBJECTs.
SUBJECTs implement a Remote interface providing business methods. You can structure the Home
interface’s create methods to accept ESSENCE objects as the input for creating enterprise beans.
The Home interface is implemented by an automatically generated component container class that
manages creation, selection, and destruction of Remote objects the same as a CONCRETEMAN-

AGER. The Remote interface is implemented by two classes, an automatically generated proxy that
fulfils the MANAGED role and the actual bean implementation that provides the business functional-
ity. EJBs are portable between vendor implementations because applications only depend on the
Home and Remote interfaces. When an application changes EJB component container implemen-
tations, the component container related classes (CONCRETEMANAGER and MANAGED) are automat-
ically generated for the new component container.

CORBA Object Factories [HV99] use the Abstract Manager pattern in much the same way as En-
terprise Java Beans, to achieve portability across implementations. Object factories in CORBA pro-
vide lifecycle methods for creating, destroying and finding CORBA objects. An object factory is
represented by an IDL interface (AbstractManager) on the client side and a class implementation
on the server side. Object factories return references to user defined CORBA business objects
(Subject). The IDL compiler provided by a CORBA implementation will automatically generate
proxy classes that implement the Object factory and user defined CORBA business object interfac-
es (CONCRETEMANAGER and MANAGED).
July 31, 2001 Page 12

Compound Design PatternAbstract Manager
11. Related Patterns
Abstract Manager is a compound design pattern [Riehle97][Vlissides98b] combining the Manager
[Sommerlad97], Proxy, Strategy [GHJV95], and (a variation of) Essence [Carlson98] design pat-
terns. The Manager design pattern serves as the center for drawing the other patterns together to
form a cohesive whole. The Manager and Proxy design patterns overlap with the SubjectManager and
the SubjectProxy participants combining into the SubjectAbstract Manager participant. The Manager and
Strategy design patterns overlap with the ManagerManager and the ContextStrategy participants com-
bining into the ConcreteManagerAbstract Manager participant. The Proxy and Essence design patterns
overlap with the RealSubjectProxy and EssenceEssence participants combining into the EssenceAbstract

Manager participant. The following shows the correspondence between participants:

AbstractManagerAbstract Manager → ManagerManager

ConcreteManagerAbstract Manager → ManagerManager, ContextStrategy

SubjectAbstract Manager → SubjectManager, SubjectProxy

ManagedAbstract Manager → ProxyProxy

EssenceAbstract Manager → RealSubjectProxy, EssenceEssence

SelectorAbstract Manager → StrategyStrategy

ConcreteSelectorAbstract Manager → ConcreteStrategyStrategy

Abstract Manager is closely related to many of the patterns described in “Connecting Business Ob-
ject to Relational Databases” [YJW98]. Abstract Manager is one way of implementing the CRUD
pattern described in [YJW98]. Abstract Manager is more general than the [YJW98] patterns be-
cause Abstract Manager can encapsulate component containers such as EJB in addition to persis-
tence repositories such as relational databases.

The Observer design pattern [GHJV95] can be used to prevent dangling references if the imple-
mentation language does not allow “smart pointers”.

The Serializer design pattern [RSBMZ97] can be used internally by the MANAGED participant to im-
plement persistence.

The MANAGED participant can use the Adapter design pattern [GHJV95] to adapt component inter-
faces like those produced by CORBA or EJB to conform to the interface provided by the SUBJECT

participant.

The Visitor design pattern [GHJV95] can be used to validate a complex ESSENCE by applying vali-
dation logic to each element of the ESSENCE.

The Prototype design pattern [GHJV95] can be used to return clones of SELECTORs, avoiding prob-
lems with overwriting SELECTOR state.

Transaction related patterns [YJW98][Lea00][KC97]] can be used to enable SUBJECTs to participate
in transactions if necessary.

Acknowledgments
Thanks go to Jim Stern and Alex Shindich for reviewing the first draft of this pattern, and thanks go
to my shepherd, Wolfgang Keller, for providing many iterations of helpful feedback.
July 31, 2001 Page 13

Compound Design PatternAbstract Manager
References

Carlson98 Carlson, Andy. Essence. Pattern Languages of Program Design 4, pp 33-40. Addi-
son-Wesley. 2000.

CL98 Chan, Patrick and Rosanna Lee. The Java Class Libraries Second Edition, Volume
2. pp 1505-1509, Addison-Wesley. 1998.

Fowler99 Refactoring: Improving the Design of Existing Code. pp 295-299, Addison-Wesley.
1999.

GHJV95 Gamma, Erich, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley. 1995.

HV99 Henning, Michi and Steve Vinoski. Advanced CORBA Programming in C++. Addison-
Wesley. 1999.

KC97 Keller, Wolfgang and Jens Coldewey. Accessing Relational Databases. Pattern Lan-
guages of Program Design 3, pp 313-343. Addison-Wesley. 1998.

Lea00 Lea, Doug. Concurrent Programming in Java Second Edition, Design Principles and
Patterns. pp 249-260, Addison-Wesley. 2000.

Martin96 Martin, Robert. Open Closed Principle. C++ Report January 1996. SIGS Publica-
tions. 1996. http://www.objectmentor.com/publications/ocp.pdf

MH99 Matena, Vlada and Mark Harper. Enterprise Java Beans Specification v1.1. pp 41-47,
88-94, 114-115. Sun Microsystems, Inc. 1999.

Meyer88 Meyer, Bertrand. Object-Oriented Software Construction 1st Edition. pp 23-25. Pren-
tice Hall International Ltd. 1988.

Monson00 Monson-Haefel, Richard. Enterprise Java Beans 2nd Edition. pp 23-29, 135-147,
161-165. O’Reilly, Inc. 2000.

Riehle97 Riehle, Dirk. Composite Design Patterns In Proceedings of the 1997 Conference on
Object-Oriented Programming Systems, Languages and Applications (OOPSLA ’97).
pp 218-228. ACM Press, 1997.
http://www.riehle.org/papers/1997/oopsla-1997.html

RSBMZ97 Riehle, Dirk, Wolf Siberski, Dirk Baumer, Daniel Megert, and Heinz Zullighoven. Se-
rializer. Pattern Languages of Program Design 3, pp 293-312. Addison-Wesley. 1998.
http://www.riehle.org/papers/1996/plop-1996-serializer.html

Sommerlad97 Sommerlad, Peter. Manager. Pattern Languages of Program Design 3, pp 19-28. Ad-
dison-Wesley. 1998.

Vlissides98a Vlissides, John. Pluggable Factory Parts I & II. C++ Report November 1998, Febru-
ary 1999. SIGS Publications.
http://www.research.ibm.com/designpatterns/pubs/ph-nov-dec98.pdf
http://www.research.ibm.com/designpatterns/pubs/ph-feb99.pdf

Vlissides98b Vlissides, John. Composite Design Patterns (They Arent’ What You Think). C++ Re-
port June 1998, SIGS Publications.
http://www.research.ibm.com/designpatterns/pubs/ph-jun98.pdf

YJW98 Yoder, Joseph, Ralph Johnson, and Quince Wilson. Connecting Business Objects to
Relational Databases. Pattern Languages of Programming Conference Proceedings,
1998. http://jerry.cs.uiuc.edu/~plop/plop98/final_submissions/P51.pdf
July 31, 2001 Page 14

	1. Intent
	2. Motivation
	3. Applicability
	4. Structure
	5. Participants
	6. Collaborations
	7. Consequences
	8. Implementation
	9. Sample Code.
	10. Known Uses
	11. Related Patterns

