
A Pattern Language To Visitors∗

Yun Mai and Michel de Champlain
Department of Electrical and Computer Engineering

Concordia University
{y mai, michel}@ece.concordia.ca

Abstract

Since Gamma et al. first published the Visitor design pattern in 1995, there have been proposed several
variations in the design pattern literature. This paper attempts to classify and organize these variations. It
presents a pattern language to Visitors to assist the application developer to choose the right Visitor pattern that
best suites the intended purpose by enumerating all important forces and consequences for each variation.

Introduction

There are a number of approaches that have been proposed to handle a class of complex and related objects and their
related operations. The baseline approach is the Visitor design pattern proposed by Gamma et al [1]. But this
approach gains flexibility in some aspects and loses it in others. Variations are proposed aiming for some improvement
to the baseline approach.

This paper classifies the major variations of the Visitor pattern and organizes them into a pattern language. It
first provides general descriptions about the basic concepts of Visitors, a road map to Visitors, how to use these
patterns and a comparison on these Visitors. The following sections describe each Visitor in details.

The target audience is the application developer who is the implementor and direct beneficiary of the Visitors.

Terms and Concepts

Visitor

A visitor implements behaviors for traversing a set of element objects and assigning responsibilities to these elements.
It encapsulates operation to be performed over these elements and wraps them in a class separating from the elements
themselves. In general, there are two hierarchies to be defined when a visitor is implemented. One is the element
hierarchy representing the objects that will be visited. The other is the visitor hierarchy representing operations to
be performed on the elements. The use of visitor lets the developer easily change the behaviors that would otherwise
be distributed across classes without modifying these classes.

Element Adder

An Element Adder is a kind of solution that can easily add new elements to an element hierarchy without modifying
the existing programming.

Operation Adder

An Operation Adder is a kind of solution that can easily add new operations over an element hierarchy without
modifying the existing programming.

Cyclic Dependency

A component of a system is said to depend on another component if the correctness of the first component’s behavior
requires the correct operation of the second component. A dependency relationship is said to be acyclic if it forms
part of a tree. That is the set of possible dependencies in a system are considered to form an acyclic graph. It is
possible, however, for a dependency relationship to cycle back upon itself. A cyclic dependency relationship is one
that cannot be described as part of a tree, but rather must be described as part of a directed cyclic graph.

∗Copyright c© 2001, Yun Mai and Michel de Champlain. Permission is granted to copy for the PLoP 2001 conference. All other rights
reserved.

1

A Road Map to Visitors

This section provides a road map for the Visitors. It also gives a short description on how to use these patterns
and a comparison on these Visitors and a guidance that assists the application developer to make the best choice.

Easy Operation Adder Pattern

Catch-All Operation PatternEasy Element Adder Pattern

Double Dispatch Pattern

Easy Element and Operation Adder Pattern

[Easy to extend element hierarchy and make elements stand alone]

[Extend element hierarchy] [Extend element hierarchy occasionally]

Figure 1: Road Map for the Visitor Patterns

Figure 1 shows the road map for major variations of the Visitor patterns. The topmost pattern in Figure 1 is the
Double Dispatch pattern [1, 11, 3] and the following is the Easy Operation Adder pattern [1] introduced by
the GoF book. The Double Dispatch pattern is a kind of generalization of the Easy Operation Adder pattern
and the Easy Operation Adder pattern is the baseline approach of all Visitors. The followings are two Visitor
patterns: the Catch-All Operation pattern [7] introduced by John Vlissides and the Easy Element Adder
pattern [2] developed by Etienne Gagnon in his Sablecc Compiler framework. Both the Catch-All Operation
pattern and the Easy Element Adder pattern use some kinds of run-time type checking and down-casting to
enable the addition of the new elements to the element hierarchy easier. But they do not break the cyclic dependency
between the visitor hierarchy and the element hierarchy, so the two hierarchies have to know each other. The last
approach named Easy Element and Operation Adder pattern [12], presented by the authors, is characterized
by the use of the reflection technique. It not only makes the addition of both new operations and new element
classes easy, but also breaks the cyclic dependency between the visitors and the elements so that the elements have
no knowledge about the visitors. Furthermore, it hides the implementation details of the operations from the clients
and thus simplifies the usage of the visitors. But this Visitor pattern achieves its simplicity in the expense of
performance.

There is not a right approach for the Visitors. The vitality of the Visitors is that it provides a choice that can
robustly apply in certain circumstances.

Pattern Language Summary

This pattern language includes five patterns. They are described in the following order:

1. The Double Dispatch pattern
This pattern [1, 11, 3] is not a kind of Visitor but a generalization of the most Visitors. It exists in the
context that the execution of an operation depends on the kind of request and the types of two receivers, the
dispatcher and the element. The Double Dispatch pattern lets the dispatcher request different operations
on each class of element without modifying the existing classes.

2. The Easy Operation Adder Pattern
This pattern was first introduced in the Design Pattern book [1]. It separates the unrelated operations from
the element hierarchy and wraps these operations into another class hierarchy. By using the Easy Operation
Adder pattern, you can define new operations over the elements by simply adding a new visitor. So the
existing elements can remain unchanged. But adding new element classes is hard because all related visitor
classes have to be redefined.

3. The Catch-All Operation Pattern
This pattern [7] is an improvement to the Easy Operation Adder pattern for occasional extension of
the element hierarchy. It defines a catch-all operation in the visitors and allows new element classes to be

2

occasionally added without modifying the existing visitor interfaces. The cyclic dependencies still exist between
the visitors and the elements.

4. The Easy Element Adder Pattern
This pattern [2] is also an improvement to the Easy Operation Adder pattern in the situation where the
element hierarchy is changed often. It allows new element classes to be added without any limit. But this
approach introduces a deeper binding between the element hierarchy and the visitor hierarchy. It can be used
where reusability of the element hierarchy is not a major concern to the designer.

5. The Easy Element and Operation Adder Pattern
This pattern is proposed by the authors [12]. It takes advantages of the reflection technique to simplify its
structure and implementation. The cyclic dependency between the visitors and the elements is broken and the
implementation details of the operations are encapsulated. Both addition of new operations and new element
classes become easy.

How to Use These Patterns

The reader who searches for a solution to a Visitor problem may resort to Table 1 and Table 2. If a pattern is
of particular interest, Context, Forces, Rationale and Resulting Context sections can be examined to determine the
applicability of this pattern in the target circumstance. Once a pattern is chosen, the Solution and Code Samples
sections can help the reader to implement the chosen pattern in the target system. Table 1 summarizes the pairs of
problem and solution for the patterns.

Table 1: Problem/Solution Summaries
Problem Solution Pattern Name

How to accept additional types
of arguments in a method with-
out modifying the existing code
of the method?

Shift responsibility from the class that
performs the operation to a class hier-
archy, where any element may appear
as an argument to the operation.

Double Dispatch

How to define new operations on
classes over time without chang-
ing these class interfaces?

Package the operations in a separate hi-
erarchy and define the accept method in
the elements to perform dispatch.

Easy Operation Adder

How to prevent the modifi-
cation of the existing visitor
classes while allowing new ele-
ment classes to be added occa-
sionally?

Define a catch-all operation in the Visi-
tor class and override it in the concrete
visitors to perform the run-time type
checking.

Catch-All Operation

How to easily add new element
or new operations without mod-
ifying the existing interfaces?

Redefine a complete interface for all vis-
itors and perform a down-casting in the
elements.

Easy Element Adder

How to enable both addition of
new operations and new element
classes easy, while at the same
time, make the element hierarchy
stand alone?

Remove the accept from the elements
and let the visitor to elegantly handle
the dispatch action based on reflection.

Easy Element and Opera-
tion Adder

A Comparison on Visitors

Table 2 compares the Visitor patterns based on easy addition of new operations, easy addition of new elements,
coupling between the visitor hierarchy and the element hierarchy, and the run-time efficiency:

Table 2: Comparison on Visitor Patterns
Pattern Name Add New Operation Add New Element Coupling Efficiency
Easy Operation Adder Easy Hard Tight High
Catch-All Operation Easy Easy for small extension Tight High
Easy Element Adder Easy Easy Tight High
Easy Element and Operation Adder Easy Easy Loose Low

3

• All Visitor patterns can easily add new operations because they all define two class hierarchies.

• The Easy Element Adder pattern and the Easy Element and Operation Adder pattern allow new
element classes to be easily added. The latter is superior to the previous due to the simplicity of its implemen-
tation. The Catch-All Operation pattern allow a small number of element classes to be added, otherwise,
the programming style will degrade into tag-and-case statements. Use the Easy Operation Adder patterns
to extend the element classes is hard because all related visitors need to be modified to incorporate new element
types.

• The Easy Element and Operation Adder patterns breaks the cyclic dependency between the visitors and
the elements so that they have loose coupling. But other patterns do not.

• Due to the use of reflection technique, the run-time efficiency of the Easy Element and Operation Adder
pattern is low.

There is not a right Visitor pattern all the time. All patterns presented in this paper are selectively applied
in certain circumstances. From Table 2, we can also see that a system’s extensibility is always traded with its
efficiency. For example, the Easy Element and Operation Adder pattern has a very superior structure and
good extensibility, but its efficiency is very slow.

A Simple Example

Expression

SubExprAddExpr MulExpr

ArithmeticExpr AssignmentExpr

DivExpr

2

2

«interface»
Visitable

Constant Variable

New extended classes

Figure 2: An Expression Hierarchy

Because all patterns presented in this paper are closely related, we’ll put all of them together to highlight their
similarities and differences. We’ll use a common example, a simple expression example, to illustrate their implemen-
tations. This simple expression supports arithmetic expressions such as addition, subtraction, multiplication, and
division for constants. Figure 2 shows the language structure hierarchy for this expression example. The expression
structure hierarchy is organized as a composite structure and can be implemented by a Composite design pattern [1].
The abstract syntax tree therefore is represented as a composite object, which is recursively constructed with the
instances of the node classes in the expression structure during the parsing. The code generation or calculation
process then performs the code generation operation or calculation over this abstract syntax tree.

Basically, there are two kinds of potential extensions to the above example: one is the changing of the expression
structure, the other is generating different code formats or switching it to calculation. For example, the expression
structure can be extended with supports of variable and assignment expression that will be used to assign the value
or expression to the variable. As shown in figure 2, they are represented as two extended classes in gray. On the
other hand, the code generation may require target code to be generated in different code format according to the
design requirements or calculate the expression result directly. It may also require easy switching from one format to
another and easy addition of new kind of output code format. For instance, the code generation for above example
may support the two different virtual machines, VM1 and VM2.

4

Double Dispatch

Alias

Visitor Essence.

Context

The behavior of a method depends not only on the class that implements the method but also on the classes of the
method’s arguments as well.

Problem

How to accept additional types of arguments in a method without modifying the existing code of the method?

Forces

• Using a case-like statement to perform type-checking on the types of arguments makes the system difficult to
extend.

• Determining the argument types at run time rather than at compiler time makes the system more flexible.

Solution

accept(in e : AbstractElement)

Dispatcher

visit(in : Dispatcher)

AbstractElement

visit(in : Dispatcher)

Element2
visit(in : Dispatcher)

Element1e.visit(this);

Figure 3: Structure for the Double Dispatch Pattern

Shift responsibility from the class that performs the operation to a class hierarchy, where any element may appear
as an argument to the operation. All these elements share an identical operation interface.

Figure 3 shows the structure of the Double Dispatch pattern. There are two groups defined in the design. One
is the class Dispatcher. The other is the element hierarchy. The Dispatcher defines a method accept that can
accept a concrete element instance. The implementation of the accept method calls the related method visit in the
element hierarchy. The method accept is a double-dispatch operation. It depends on both the types of the Dispatch
and the concrete element.

Rationale

Treating different types of receivers the same and letting the program determine the concrete types at run time
help to avoid degrading the program into a long tag-and-case statement in order to distinguish different types of
receivers. For instance, in Figure 3, we assume that the class Element2 is a newly added concrete element class. It
defines a visit method to implement the corresponding operation that should be executed during the accept method’s
execution. When the accept method is called on an instance of Dispatcher with a given instance of Element2 as
argument, it invokes the polymorphic visit method on the instance of class Element2(the argument of the method
accept) and supplies itself as a parameter. The visit method of class Element2 can call back to any method defined
in the Dispatcher. As a consequence, any concrete element type can be accepted by the Dispatcher without
modifying the invoking method defined in the Dispatcher.

Resulting Context

• Accept additional types of arguments in a method without modifying the existing code of the method. New
type argument can be added in the element hierarchy by inheritance and the method can accept the instance
of this new type and dispatch the operation to this instance by polymorphism.

5

• There is no need to write a case-like statement in the invoking method (eg. accept) to perform type-checking
on the types of arguments and add additional type-checking statements once a new parameter type is added.
Instead, the argument types can be determined at run time dynamically. With Double Dispatch, the
parameter type is determined at run-time, the behavior of the invoking method is hidden at compile time.

• The code is distributed in several classes so that locating and understanding the intending behavior becomes
hard.

Code Samples

We focus on the Constant class in the simple expression example and show how to implement the Double Dispatch
pattern, The following shows the definitions of the related classed and the implementation in Java.

class Constant{
public void accept(CodeGen gen) {

gen.visit(this);
}

}

abstract class CodeGen {
abstract public void visit(Constant expr);

}

class VM1CodeGen extends CodeGen {
public void visit(Constant expr) {

// code generation for virtual machine VM1 ;
}

}

class VM2CodeGen extends CodeGen {
public void visit(Constant expr) {

// code generation for virtual machine VM2 ;
}

}

Related Patterns

The Double Dispatch pattern is a kind of generalization of the Easy Operation Adder pattern.

6

Easy Operation Adder

Aliases

GoF Visitor, Visitor Pattern, Standard Visitor.

Context

There are a fair number of instances of a small number of classes that are rarely changed, and you are expecting to
perform new operation that involves all or most of them [3].

Problem

How to define a new operation on classes over time without changing the classes of the elements on which it operates?

Forces

• Codes that change often will introduce new bugs that are hard to locate and fix.

• If the number of classes is large, adding new operations to these classes needs a significant overhead of recompile.

• Grouping distinct and unrelated operations in a class may lead to a solution that is hard to understand and
maintain.

• A volatile interface is hard to use and maintain because the client code needs to change often.

Solution

visitElementA(in : ElementA)
visitElementB(in : ElementB)
visitElementC(in : ElementC)

AbstractVisitor
accept(in v : AbstractVisitor)

AbstractElement

accept(in v : AbstractVisitor)

ElementA

accept(in v : AbstractVisitor)

ElementB

visitElementA(in : ElementA)
visitElementB(in : ElementB)
visitElementC(in : ElementC)

Visitor1

visitElementA(in : ElementA)
visitElementB(in : ElementB)
visitElementC(in : ElementC)

Visitor2

Client

accept(in v : AbstractVisitor)

ElementC

Adding a new class ElementC requires
 the visitElementC (ElementC) method

 to be added across the Visitor hierarchy,

v.visitElementA(this); v.visitElementB(this);v.visitElementC(this);

Figure 4: Structure for the Easy Operation Adder Pattern

Define two hierarchies. Related operations are grouped into a hierarchy called the visitor hierarchy, and the
other hierarchy includes all elements and is called the element hierarchy. A method accept is defined across the
element hierarchy. An operation is performed on an element object by a call of the accept on the element object
and a supply of the corresponding visitor as argument that represents the desired operation. Thus, in the Easy
Operation Adder pattern, the dispatch action is performed by the element object. A concrete element object
knows which operation associated with it, so it dispatch a call to the corresponding visitor object by supplying itself
as the parameter. Figure 4 shows the structure of the Easy Operation Adder pattern.

Rationale

If an object is too complex to understand, it’s better to separate it into smaller objects that are less complex.
Isolating the changeable parts in an object helps to leading to a system that is easy to maintain and extend. On the
other hand, removal of unrelated operations will make the elements more cohesive. It is also desirable to separate
code that changes from the code that does not. Adding new operations will only happen within the scope of the
visitor hierarchy, while the interface of the element hierarchy keeps unchanged. If any new bugs are introduced due

7

to the adding of new operations, the bugs are easily located by examining the newly added operations in the visitor
hierarchy. This solution structure also supports incremental programming because new operations to an object
structure can be added incrementally.

Resulting Context

• A new operation can be easily added by simply adding a new visitor. Any code in the elements needs not to
be changed.

• adding a new concrete element class is hard. Any addition of a new concrete element class Xxx requires a
visitXxx(Xxx) method to be defined as abstract in the abstract visitor root class and implemented in all concrete
element classes.

Code Samples

We’ll use the simple expression example to illustrate this Visitor pattern. Instead of generating code, we implement
the example as a calculator that calculates the arithmetic expression for integers. The variables and assignment
expressions are added as extensions.

Expression Hierarchy

Figure 2 is the class diagram for the Expression hierarchy. The Expression is an interface:

interface Expression {
public void accept(Visitor visitor);

}

The classes ArithmeticExpr, AddExpr, SubExpr, MulExpr, DivExpr, and Constant are defined as:

abstract class ArithmeticExpr implements Expression {
protected ArithmeticExpr(Expression left, Expression right) {

this.left = left;
this.right = right;

}
abstract public void accept(Visitor visitor);
public Expression getLeft() { return left; }
public Expression getRight() { return right; }

private Expression left;
private Expression right;

}

class AddExpr extends ArithmeticExpr {
public AddExpr(Expression left, Expression right) {

super(left, right);
}
public void accept(Visitor visitor) {

visitor.visitAddExpr(this);
}

}

class SubExpr extends ArithmeticExpr {
public SubExpr(Expression left, Expression right) {

super(left, right);
}
public void accept(Visitor visitor) {

visitor.visitSubExpr(this);
}

}

class MulExpr extends ArithmeticExpr {
public MulExpr(Expression left, Expression right) {

super(left, right);

8

}
public void accept(Visitor visitor) {

visitor.visitMulExpr(this);
}

}

class DivExpr extends ArithmeticExpr {
public DivExpr(Expression left, Expression right) {

super(left, right);
}
public void accept(Visitor visitor) {

visitor.visitDivExpr(this);
}

}

class Constant implements Expression {
public Constant(int value) { this.value = value; }
public int getValue() { return value; }
public void accept(Visitor visitor) {

visitor.visitConstant(this);
}

private int value;
}

Then we add two extended expressions to the Expression hierarchy. They are classes Variable and Assignment
and can be declared like:

class Variable implements Expression {
public Variable(String id) {

this.id = id;
this.value = 0;

}
public void accept(Visitor visitor) {

visitor.visitVariable(this);
}
public int getValue() { return value; }
public void setValue(int value) { this.value = value; }
public String getId() { return id; }

private String id;
private int value;

}

class AssignmentExpr implements Expression {
protected AssignmentExpr(Expression lvalue, Expression rvalue) {

this.lvalue = lvalue;
this.rvalue = rvalue;

}
public void accept(Visitor visitor) {

visitor.visitAssignmentExpr(this);
}
public Expression getLvalue() { return lvalue; }
public Expression getRvalue() { return rvalue; }

private Expression lvalue;
private Expression rvalue;

}

Visitor Hierarchy

The visitor hierarchy encapsulates calculation operations performed over the expression.
The following implementation also shows that a concrete element can also be a composite object.

9

interface Visitor{
public void visitAddExpr(AddExpr expr);
public void visitSubExpr(SubExpr expr);
public void visitMulExpr(MulExpr expr);
public void visitDivExpr(DivExpr expr);
public void visitConstant(Constant expr);

// newly added methods due to the extension of the expression
public void visitAssignmentExpr(AssignmentExpr expr);
public void visitVariable(Variable expr);

}

class CalculationVisitor implements Visitor {
public void visitAddExpr(AddExpr expr) {

Expression left = expr.getLeft();
Expression right = expr.getRight();
left.accept(this);
int leftResult = result;
right.accept(this);
result = leftResult + result;

}
public void visitSubExpr(SubExpr expr) {

Expression left = expr.getLeft();
Expression right = expr.getRight();
left.accept(this);
int leftResult = result;
right.accept(this);
result = leftResult - result;

}
public void visitMulExpr(MulExpr expr) {

Expression left = expr.getLeft();
Expression right = expr.getRight();
left.accept(this);
int leftResult = result;
right.accept(this);
result = leftResult * result;

}
public void visitDivExpr(DivExpr expr) {

Expression left = expr.getLeft();
Expression right = expr.getRight();
left.accept(this);
int leftResult = result;
right.accept(this);
result = leftResult / result;

}
public void visitConstant(Constant expr) {

result = expr.getValue();
}

// newly added methods due to the extension of the expression
public void visitAssignmentExpr(AssignmentExpr expr) {

Expression lvalue = expr.getLvalue();
Expression rvalue = expr.getRvalue();
rvalue.accept(this);
if (lvalue instanceof Variable);

((Variable)lvalue).setValue(result);
}
public void visitVariable(Variable expr) {

result = expr.getValue();
}

10

public int getResult() { return result; }

protected int result;
}

Related Patterns

Visitor pattern can be used to perform operations on a composite object defined in the Composite pattern [1]. It
can also be applied to perform the interpretation in the Interpreter pattern [1].

11

Catch-All Operation

Aliases

Vlissides Visitor, Restricted Element Adder Visitor.

Context

You want to use visitors and you need to occasionally add new element classes. But you do not want to change the
interfaces of the visitors once they have been defined.

Problem

How to prevent the modification of the existing visitor classes while allowing new element classes to be added
occasionally?

Forces

• It is hard to modify an interface once it has been built in a framework.

• The structure proposed in the Easy Operation Adder pattern separates operations from elements. Adding
new operations are easy because it needs not modify the existing interfaces of elements. But adding a new
element class is hard. All interfaces of related visitor classes must be modified to incorporate a method to visit
the newly added element class.

• A structure with changing interface is fragile.

• An interface can be easily extended by inheritance without modifying the existing interface.

• If a method could not be added to the existing classes, it can be added to the extended classes. But since the
definition of this method is missing in the ancestors, a type casting is mandatory if the message receiver has a
declared type of the ancestors.

• If the implementation of a method in a class could not be changed, it can be overridden in the extended classes.
An overridden method is only necessary if it has a distinct behavior that the original method could not handle.

visit(in : ElementA)
visit(in : ElementB)
visit(in : AbstractElement)

AbstractVisitor

accept(in v : AbstractVisitor)

AbstractElement

accept(in v : AbstractVisitor)

ElementA

accept(in v : AbstractVisitor)

ElementB
visit(in : ElementA)
visit(in : ElementB)
visit(in : AbstractElement)

Visitor1

visit(in e : AbstractElement)

ExtendVisitor1

Client

accept(in v : AbstractVisitor)

ElementC
{
 if (e instanceof ElementC) {
 // perform operation
 }
 else // default operation
 super.visit(e);
}

v.visit(this);

v.visit(this);

v.visit(this);

Figure 5: Structure of the Catch-All Operation Pattern

Solution

Similar with the Easy Operation Adder pattern, the structure of the pattern defines two class hierarchies, the
element hierarchy and the visitor hierarchy. A catch-all operation is defined in the base class AbstractVisitor and
it is overridden in its descendants. If a new element class is added in the element hierarchy, new visitor classes

12

are defined to extend the existing concrete visitor classes and the catch-all operation is re-written to perform the
run-time type test on the newly added element class.

Figure 5 shows the structure for the Catch-All Operation pattern. The newly added classes are adorned in
gray. The ElementC is a newly added element class. A ExtendVisitor1 class is defined to subclass the Visitor1
and the catch-all operation visit is overridden to perform the run-time type checking on the ElementC. If a element
to be visited is a newly added element, specific operation related to the new class is performed. Otherwise, the
method demonstrates its previous behavior.

Rationale

Two simple class hierarchies as that defined in the Easy Operation Adder pattern have many advantages including
one that allows the new operation to be added easily without recompiling the element hierarchy. A catch-all operation
is so blurring that it leaves margin to allow the new elements to be easily added and handled. Occasional addition
of the element classes will not degrade the programming style of the catch-all operation because the tag-and-case
statement is very short.

Resulting Context

• New element classes can be added occasionally without any modification of the existing visitor classes.

• If new element classes are constantly added, Catch-All Operation will degrade into a tag-and-case-statement
style of programming.

Code Samples

We’ll still use the expression example to calculate the arithmetic expression for integers. The variables and assignment
expressions are added as extensions.

Element Hierarchy

The classes defined in the element hierarchy are the same as the class declarations in the Easy Operation Adder.

Visitor Hierarchy

interface Visitor{
public void visit(AddExpr expr);
public void visit(SubExpr expr);
public void visit(MulExpr expr);
public void visit(DivExpr expr);
public void visit(Constant expr);

// catch-all operation
public void visit(Expression expr);

}

class CalculationVisitor implements Visitor {
public void visit(AddExpr expr) {

Expression left = expr.getLeft();
Expression right = expr.getRight();
left.accept(this);
int leftResult = result;
right.accept(this);
result = leftResult + result;

}
public void visit(SubExpr expr) {

Expression left = expr.getLeft();
Expression right = expr.getRight();
left.accept(this);
int leftResult = result;
right.accept(this);
result = leftResult - result;

13

}
public void visit(MulExpr expr) {

Expression left = expr.getLeft();
Expression right = expr.getRight();
left.accept(this);
int leftResult = result;
right.accept(this);
result = leftResult * result;

}
public void visit(DivExpr expr) {

Expression left = expr.getLeft();
Expression right = expr.getRight();
left.accept(this);
int leftResult = result;
right.accept(this);
result = leftResult / result;

}
public void visit(Constant expr) {

result = expr.getValue();
}

// catch-all operation
public void visit(Expression expr) { }
public int getResult() { return result; }

protected int result;
}

Operations for newly added elements are encapsulated in the extended concrete visitor class.

class ExtendCalculationVisitor extends CalculationVisitor {
// catch-all operation
public void visit(Expression expr) {

if (expr instanceof AssignmentExpr)
visit((AssignmentExpr)expr);

else if (expr instanceof Variable)
visit((Variable)expr)

else
super.visit(expr);

}
public void visit(AssignmentExpr expr) {

Expression lvalue = expr.getLvalue();
Expression rvalue = expr.getRvalue();
rvalue.accept(this);
if (lvalue instanceof Variable);

((Variable)lvalue).setValue(result);
}
public void visit(Variable expr) {

result = expr.getValue();
}

}

Related Patterns

This pattern is an improvement to the Easy Operation Adder pattern [1].
Visser’s Visitor [8] is a variation on the Vlissides Visitor framework [7]. It defines generic counterparts AnyVisitor

and AnyVisitable for visitor and element hierarchies respectively.

14

Easy Element Adder

Aliases

Sablecc Visitor.

Context

You have visitor that works well. You are expecting to add element classes in the future, but you are unable to
change the existing class interfaces.

Problem

How to easily add new element or new operations without modifying the existing interfaces?

Forces

• The Easy Operation Adder pattern makes the addition of new operations easy, but adding new element
classes is hard because it needs to modify the existing interfaces of the visitors.

• The Catch-All Operation pattern is not suitable because constantly adding new element classes will degrade
the implementation of the catch-all operation to be a tag-and-case style of programming.

• Inheritance provides a good means to extend the existing interface without actually modifying it.

• If the inheritance tree is high, a structure is hard to understand because the underneath classes could not be
understood without resorting to its ancestors.

• A type casting can satisfy the compiler because it can precisely refer to a method defined in some classes but
not in others. But the type casting is unsafe. It always depends on the good wills of the programmer.

accept(in v : VisitorIF)

AbstractElement

accept(in v : VisitorIF)

ElementA

accept(in v : VisitorIF)

ElementB

visitElementA(in : ElementA)
visitElementB(in : ElementB)

ConcreteVisitor1

Client

accept(in v : VisitorIF)

ElementC
((ExtendVisitor)v).visitElementC(this);

((Visitor)v).visitElementA(this);

visitElementA(in : ElementA)
visitElementB(in : ElementB)
visitElementC(in : ElementC)

AllVisitorAdapter

accept(in v : VisitorIF)

«interface»
Visitable

«interface»
AllVisitor

visitElementC(in : ElementC)

«interface»
ExtendVisitor

«interface»
VisitorIF

visitElementA(in : ElementA)
visitElementB(in : ElementB)

«interface»
Visitor

((Visitor)v).visitElementB(this);

Figure 6: Structure for the Easy Element Adder Pattern

Solution

Separate the elements and their operations in two class hierarchies, one is the Visitor, and the other is the Element.
An interface VisitorIF is defined on the top of the visitor hierarchy. New operations can be easily added by defining
concrete visitor classes in the visitor hierarchy. New element classes can be added by extending existing interfaces
in the Visitor hierarchy and defining concrete visitor to implement the newly added interface.

15

Figure 6 shows the structure for the Easy Element Adder pattern. It is a snapshot after adding a new
element class ElementC. The new added classes are adorned in gray. The interfaces of the visitors are extended
by introducing two new interface classes: ExtendVisitor and AllVisitor. The previous extends the root interface
VisitorIF by defining a new visit operation for the newly added element class. The latter represents the complete
interface for the visitors due to the changing of the subject elements. Class AllVisitorAdapter is a new visitor
class that implements the complete interface AllVisitor. In order to adapt to the changing interfaces in the visitor
hierarchy, the accept methods that are defined in the element classes must indicate which visitor class it dispatches
to by performing down-casting.

Rationale

An existing interface is hard to change, but it is easy to extend. A redefinition of the concrete visitors due to any
addition of new element class is easy to understand without resorting to the ancestors. In general, both hierarchies
are developed or maintained by the same person. So a type casting in the accept can be considered to be safe.

Resulting Context

• The elements and their operations can be easily extended without any restriction and without modifying the
existing class interfaces.

• Frequently adding new classes makes the class hierarchy too complicated to understand and implement.

• The type-casting in the accept method makes the programming unsafe and tightly coupled with the concrete
element types.

Code Samples

The following shows the Java implementation on how to applying Easy Element Adder pattern to the calculation
for the simple expression example.

Expression Hierarchy

interface Visitable { }

interface Expression extends Visitable {
public void accept(Visitor visitor);

}

The classes ArithmeticExpr, AddExpr, SubExpr, MulExpr, DivExpr, and Constant are defined as:

abstract class ArithmeticExpr implements Expression {
protected ArithmeticExpr(Expression left, Expression right) {

this.left = left;
this.right = right;

}
abstract public void accept(Visitor visitor);
public Expression getLeft() { return left; }
public Expression getRight() { return right; }

private Expression left;
private Expression right;

}

class AddExpr extends ArithmeticExpr {
public AddExpr(Expression left, Expression right) {

super(left, right);
}
public void accept(Visitor visitor) {

((Visitor)visitor).visitAddExpr(this);
}

}

16

class SubExpr extends ArithmeticExpr {
public SubExpr(Expression left, Expression right) {

super(left, right);
}
public void accept(Visitor visitor) {

((Visitor)visitor).visitSubExpr(this);
}

}

class MulExpr extends ArithmeticExpr {
public MulExpr(Expression left, Expression right) {

super(left, right);
}
public void accept(Visitor visitor) {

((Visitor)visitor).visitMulExpr(this);
}

}

class DivExpr extends ArithmeticExpr {
public DivExpr(Expression left, Expression right) {

super(left, right);
}
public void accept(Visitor visitor) {

((Visitor)visitor).visitDivExpr(this);
}

}

class Constant implements Expression {
public Constant(int value) { this.value = value; }
public int getValue() { return value; }
public void accept(Visitor visitor) {

((Visitor)visitor).visitConstant(this);
}

private int value;
}

Two extended expressions, classes Variable and AssignmentExpr can be added to the Expression hierarchy
as following:

class Variable implements Expression {
public Variable(String id) {

this.id = id;
this.value = 0;

}
public void accept(Visitor visitor) {

((ExtendVisitor)visitor).visitVariable(this);
}
public int getValue() { return value; }
public void setValue(int value) { this.value = value; }
public String getId() { return id; }

private String id;
private int value;

}

class AssignmentExpr implements Expression {
protected AssignmentExpr(Expression lvalue, Expression rvalue) {

this.lvalue = lvalue;
this.rvalue = rvalue;

}
public void accept(Visitor visitor) {

17

((ExtendVisitor)visitor).visitAssignmentExpr(this);
}
public Expression getLvalue() { return lvalue; }
public Expression getRvalue() { return rvalue; }

private Expression lvalue;
private Expression rvalue;

}

Visitor Hierarchy

For extending the new elements without modifying the existing visitors, the new visitor interfaces are defined to
support the extension.

interface VisitorIF { }

interface Visitor extends VisitorIF {
public void visitAddExpr(AddExpr expr);
public void visitSubExpr(SubExpr expr);
public void visitMulExpr(MulExpr expr);
public void visitDivExpr(DivExpr expr);
public void visitConstant(Constant expr);

}

interface ExtendVisitor extends VisitorIF {
public void visitAssignmentExpr(AssignmentExpr expr);
public void visitVariable(Variable expr);

}

interface AllVisitor extends Visitor, ExtendVisitor { }

class CalculationVisitor implements Visitor {
public void visitAddExpr(AddExpr expr) {

Expression left = expr.getLeft();
Expression right = expr.getRight();
left.accept(this);
int leftResult = result;
right.accept(this);
result = leftResult + result;

}
public void visitSubExpr(SubExpr expr) {

Expression left = expr.getLeft();
Expression right = expr.getRight();
left.accept(this);
int leftResult = result;
right.accept(this);
result = leftResult - result;

}
public void visitMulExpr(MulExpr expr) {

Expression left = expr.getLeft();
Expression right = expr.getRight();
left.accept(this);
int leftResult = result;
right.accept(this);
result = leftResult * result;

}
public void visitDivExpr(DivExpr expr) {

Expression left = expr.getLeft();
Expression right = expr.getRight();
left.accept(this);
int leftResult = result;

18

right.accept(this);
result = leftResult / result;

}
public void visitConstant(Constant expr) {

result = expr.getValue();
}

public int getResult() { return result; }

protected int result;
}

class ExtendCalculatorVisitor extends CalculatorVisitor implements AllVisitor {
public void visitAssignmentExpr(AssignmentExpr expr) {

Expression lvalue = expr.getLvalue();
Expression rvalue = expr.getRvalue();
rvalue.accept(this);
if (lvalue instanceof Variable);

((Variable)lvalue).setValue(result);
}
public void visitVariable(Variable expr) {

result = expr.getValue();
}

}

Related Patterns

This pattern is an improvement to the Easy Operation Adder pattern [1].
Acyclic Visitor [10] allows new elements to be added without changing the existing classes. It defines an individual

visitor interface for each element to provide the operation interface. A dynamic cast is needed in the accept method
to cast the visitor parameter to its corresponding visitor interface.

19

Easy Element and Operation Adder

Aliases

Reflective Visitor.

Context

You want to use visitors and you want to make both addition of new operations and new elements easy. You are
also expecting to reuse the element hierarchy.

Problem

How to enable both addition of new operations and new element classes easy, while at the same time, make the
element hierarchy stand alone?

Forces

• A structure that proposed in the Easy Operation Adder pattern makes adding new operations easy, but
adding new element classes is hard and reusing these elements is also hard.

• Structures proposed in the the Catch-All Operation pattern and the Easy Element Adder pattern
support the extension on both the element hierarchy and visitor hierarchy, but reuse elements is hard because
these elements depend on the visitors.

• Breaking the cyclic dependency and letting the element hierarchy stand alone, the system can reuse the elements
hierarchy easily.

• If the dependency is removed on the side of elements, the Visitors must carry out the dispatch action that
requires the type information about the related elements.

• The reflection technique provides an easy way to locate a method if its naming convention is known in advance.
But the use of reflection gains simplicity in the expense of performance.

• A unified simple interface for operations is easy to use and maintain.

• To modify an interface is hard, but extend it is easy.

Solution

visit(in : Visitable)
findMethod(in : Visitable) : Method

AbstractVisitor

AbstractElement

ElementA ElementB
evaluate(in : ElementA)
evaluate(in : ElementB)

Visitor1

evaluate(in : ElementA)
evaluate(in : ElementB)

Visitor2

Client

ElementC

evaluate(in : ElementC)

ExtendVisitor1

evaluate(in : ElementC)

ExtendVisitor2

«interface»
Visitable

Figure 7: Structure for the Easy Element and Operation Adder Pattern

Separate operations from the elements. Objects of the elements to be visited are specified as Visitable. All
accept methods are removed from the element hierarchy. Method visit in the root class AbstractVisitor is the only
visible method in the visitor hierarchy and invokes the findMethod method to perform the dispatch operation. The
method findMethod uses reflection technique to locate the desirable methods for the supplied parameter. Various
evaluate methods are defined in the concrete visitors to perform specific operations on the related elements. Figure 7
shows the structure for the Easy Element and Operation Adder pattern.

20

Rationale

A common interface Visitable enables distinct elements to be built in different element hierarchies to share a
common ancestor. The method visit implemented in the AbstractVisitor class is the only public method in the
visitor hierarchy. It takes a role of a dynamic dispatcher by invoking the corresponding evaluate method found
by findMethod method. The reflection is used by the method visit and findMethod to support the method finding
and method invocation dynamically. Because the dispatch operation is performed by the Visitor class, the accept
methods can be removed from the element hierarchy and thus the developer can reuse these elements without the
visitors’ supports. The method evaluate can visit a composite object recursively because an evaluate method is
invoked by the visit method and it can also make a call to the method visit if needed. The use of reflection will lead
to a severe performance penalty, but it can still be accepted if performance is not a major concern in the system
design. Any addition of new operations only needs to define a new concrete visitor class in the visitor hierarchy.
Any addition of new element class only needs to extend the related concrete visitor classes and define new evaluate
methods in the new visitor classes. Existing classes are thus kept from any potential modification.

Resulting Context

1. As that of the Easy Operation Adder pattern, adding a new operation is easy. The existing code can
be avoided from modifying by simply subclassing the visitor hierarchy if a new operation over the element
hierarchy is to be added.

2. Adding a new element class is easy. Since the AbstractVisitor is responsible for the dynamic dispatch, any
operation operating on this new element can be defined within a new visitor subclass without modifying the
existing codes. The system’s extensibility is then improved.

3. The cyclic dependencies are broken and the coupling between the element hierarchy and the visitor hierarchy
is reduced. As the key of the traditional Visitor pattern, the double-dispatch technique is used to associate the
operation with the concrete element at run time. But this technique reduces the system’s reusability. With the
reflection technique, the Visitor pattern can avoid the cyclic dependencies by performing the dynamic dispatch
within the AbstractVisitor class. Since the visitor is responsible for the dynamic dispatch, the element
hierarchy has no knowledge about the visitor. Hence the system’s reusability is improved. On the other hand,
the visitor can visit any object that has a corresponding evaluate operation in the visitor hierarchy only if this
object has a Visitable interface.

4. The visit method is the only visible interface of the visitor hierarchy. The client only needs to invoke this method
to perform any desired operation on the visitable elements. Since the interface and the implementation of the
operations on the elements are separated, the client is shielded from any potential changes of the implementation
details.

5. The name of the operation needs to be fixed. The system designer should follow the name convention and
keeps all the operations named evaluate. Since the evaluate is only visible within the visitor hierarchy, there is
no direct influence to other parts of the system.

6. The programming languages that used to implement this Visitor pattern need to support reflection. This
limitation lets some languages, like C++, can not be used as the implementation language for this pattern.

7. The use of reflection imposes a significant performance penalty and reduces the system efficiency [5]. This
pattern can be considered to be used only in time non-critical systems.

Code Samples

The Java implementation of the Easy Element and Operation Adder for the simple expression example as
following:

Expression Hierarchy

The general interface Visitable for all visitable expressions may be declared like:

interface Visitable { }

The Expression is an abstract class implementing the Visitable interface:

abstract class Expression implements Visitable { }

The classes ArithmeticExpr, AddExpr, SubExpr, MulExpr, DivExpr, and Constant are defined as:

21

abstract class ArithmeticExpr extends Expression {
protected ArithmeticExpr(Expression left, Expression right) {

this.left = left;
this.right = right;

}
public Expression getLeft() { return left; }
public Expression getRight() { return right; }
private Expression left;
private Expression right;

}

class AddExpr extends ArithmeticExpr {
public AddExpr(Expression left, Expression right) {

super(left, right);
}

}

class SubExpr extends ArithmeticExpr {
public SubExpr(Expression left, Expression right) {

super(left, right);
}

}

class MulExpr extends ArithmeticExpr {
public MulExpr(Expression left, Expression right) {

super(left, right);
}

}

class DivExpr extends ArithmeticExpr {
public DivExpr(Expression left, Expression right) {

super(left, right);
}

}

class Constant extends Expression {
public Constant(int value) { this.value = value; }
public int getValue() { return value; }

private int value;
}

Then two extended expressions, classes Variable and AssignmentExpr are added to the Expression hierarchy.

class Variable extends Expression {
public Variable(String id) {

this.id = id;
this.value = 0;

}
public int getValue() { return value; }
public void setValue(int value) { this.value = value; }
public String getId() { return id; }

private String id;
private int value;

}

class AssignmentExpr extends Expression {
protected AssignmentExpr(Expression lvalue, Expression rvalue) {

this.lvalue = lvalue;
this.rvalue = rvalue;

}

22

public Expression getLvalue() { return lvalue; }
public Expression getRvalue() { return rvalue; }

private Expression lvalue;
private Expression rvalue;

}

Visitor Hierarchy

The abstract class Visitor would be declared in Java like:

abstract class Visitor {
public void visit(Visitable v) throws NoSuchMethodException {

Method m = findMethod(v);
try {

m.invoke(this, new Object[] { v });
}
catch (IllegalAccessException e1) { /* code handling */ }
catch (InvocationTargetException e2) { /* code handling */ }

}

private Method findMethod(Visitable v) throws NoSuchMethodException {
String methodName = "evaluate";
Class visitable = v.getClass();
while (isAncestorOf("Visitable", visitable) {

Class visitor = getClass();
while (isAncestorOf("Visitor", visitor) {

try {
Method m = visitor.getDeclaredMethod(methodName,new Class[]{visitable});
return m;

} catch (NoSuchMethodException e) {
visitor = visitor.getSuperclass();

}
}
visitable = visitable.getSuperclass();

}
String errMsg = "put error message here";
throw new NoSuchMethodException(errMsg);

}

private boolean isAncestorOf(String ancestorName, Class descendant) {
try {

return Class.forName(ancestorName).isAssignableFrom(descendant);
}
catch (ClassNotFoundException e) { /* code handling */ }
return false;

}
}

The CalculationVisitor derives from the Visitor class and is defined to perform a calculation operation on the
expressions. Its declaration may like:

class CalculationVisitor extends Visitor {
protected void evaluate(AddExpr expr) throws NoSuchMethodException {

Expression left = expr.getLeft();
Expression right = expr.getRight();
visit(left);
int leftResult = result;
visit(right);
result = leftResult + result;

}

23

protected void evaluate(SubExpr expr) throws NoSuchMethodException {
Expression left = expr.getLeft();
Expression right = expr.getRight();
visit(left);
int leftResult = result;
visit(right);
result = leftResult - result;

}
protected void evaluate(MulExpr expr) throws NoSuchMethodException {

Expression left = expr.getLeft();
Expression right = expr.getRight();
visit(left);
int leftResult = result;
visit(right);
result = leftResult * result;

}
protected void evaluate(DivExpr expr) throws NoSuchMethodException {

Expression left = expr.getLeft();
Expression right = expr.getRight();
visit(left);
int leftResult = result;
visit(right);
result = leftResult / result;

}
protected void evaluate(Constant c) { result = c.getValue(); }
public int getResult() { return result; }
protected int result;

}

In order to adapt to the changing of the Expression hierarchy, a concrete Visitor class ExtendCalculationVisitor
is defined to perform calculation operation on the newly added Expression classes. The class ExtendCalculation-
Visitor is an immediate subclass of the CalculationVisitor and can be declared like:

class ExtendCalculationVisitor extends CalculationVisitor {
protected void evaluate(Variable var) {

result = var.getValue();
}
protected void evaluate(AssignmentExpr expr) throws NoSuchMethodException {

Expression lvalue = expr.getLvalue();
Expression rvalue = expr.getRvalue();
visit(rvalue);
if (lvalue instanceof Variable);

((Variable)lvalue).setValue(result);
}

}

Client Code

To calculate the expression x= 2*y+3, a client method calculate can be written as:

void calculate() {
Expression expr = new Assignment(new Variable("x"),

new AddExpr(new MulExpr(new Constant(2),
new Variable("y")),

new Constant(3)));
ExtendCalculationVisitor calculator = new ExtendCalculationVisitor();
try {

calculator.visit(expr);
System.out.println(calculator.getResult());

}
catch (NoSuchMethodException e) { /* code handling */ }

}

24

Related Patterns

This pattern is an improvement to all other Visitor patterns presented in this paper and is applied when the
programming environment supports reflection and efficiency is not a major concern.

Walkabout Visitor pattern [5] removes the cyclic dependency between the elements and the visitor hierarchy by
using the Java reflection technique to perform the dispatch action. Its drawback is that it can not visit a complex
multi-level composite hierarchy. The Reflective Visitor pattern can replace Walkabout Visitor pattern wherever it is
used.

Blosser Visitor pattern [6] and Jeanne Sebring [4] Visitor pattern also implements the dispatch action with Java
reflection. It supports re-dispatch actions so that it can visit a complex multi-level composite hierarchy. The accept
method is still used to implement the recursive traversal in this pattern. The Blosser Visitor pattern can be replaced
by the Reflective Visitor pattern when the designer wants to remove the cyclic dependencies and to define a unified
operation interface and encapsulate the implementation details.

Extrinsic Visitor pattern [9] removes the cyclic dependencies between the element hierarchy and the visitor
hierarchy by defining a dispatch method in the visitor to perform the dispatch action dynamically. Although the
Extrinsic Visitor Pattern reduces the coupling between the elements and visitors, adding new element classes is hard
because all related visitor classes have to redefined. The Extrinsic Visitor Pattern is limited to be implemented under
a C++ development environment.

Conclusion

This paper presents a pattern language to Visitors that have been proposed since 1995. The authors hope the
pattern language can assist the application developer to better understand the circumstance a Visitor pattern can
be applied and the pros and cons of them so that a right decision can be made. However, this pattern language does
not come to the end. As long as new Visitor patterns continue to emerge, this pattern language will evolve with
them.

Acknowledgements

We would like to thank Dr. Stephane Ducasse, our PLoP ’2001 shepherd, for the valuable comments for this paper.

References

[1] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley, 1995.

[2] Etienne Gagnon. Sablecc, An Object-Oriented Compiler Framework. Master’s thesis, McGill University, 1998.

[3] James W. Cooper. The Design Patterns: Java Companion. Addison-Wesley, 1998.

[4] Jeanne Sebring. Reflecting on the Visitor Design Pattern. Java Report, March 2001.

[5] Jens Palsberg and C. Barry Jay. The Essence of the Visitor Pattern. Technical Report 05, University of
Technology, Sydney, 1997.

[6] Jeremy Blosser. Reflect on the Visitor Design Pattern. http://www.javaworld.com/javatips/jw-javatip98.html,
January 2001.

[7] John Vlissides. Visitor in Frameworks. C++ Report, November 1999.

[8] Joost Visser. Visitor Combination and Traversal Control. http://www.jforester.org, 2001.

[9] Martin E. Nordberg III. The Variations on the Visitor Pattern. PLoP ’96 Writer’s Workshop, September 1996.

[10] Robert C. Martin. Acyclic Visitor. PLoP ’96, September 1996.

[11] Sherman R. Alpert, Kyle Brown, and Bobby Woolf. The Design Patterns: Smalltalk Companion. Addison-
Wesley, 1998.

[12] Yun Mai and Michel de Champlain. Reflective Visitor Pattern. Submitted and accepted for EuroPLoP ’2001
Writer’s workshop, Irsee, Germany, July 2001.

25

