
Abstract

Chaotic dynamical systems characteristically exhibit erratic, seemingly random, behavior.
They are highly sensitive to initial conditions. Any alteration to the state of a chaotic sys-
tem will eventually lead to very large differences in behavior. Until recently, the preferred
approach to chaotic dynamical systems has been to avoid them. A method developed by Ott,
Grebogi, and Yorke (OGY) takes advantage of this sensitivity to initial conditions, and other
characteristics of chaotic systems, to produce periodic behavior from chaotic behavior. The
pattern language provided in this paper describes the component steps to implementing the
OGY method for controlling chaotic dynamical systems. It establishes an architecture for
chaos control software that allows for experimentation with algorithms and data structures at
each step in order to improve the performance of the overall system.
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1 Introduction

The study of chaotic dynamical systems spans a range of disciplines including atmospheric sci-
ences, physics, engineering, mathematics, and neurosciences. The behavior of a chaotic system
is by nature unpredictable over long periods of time since the smallest change to the system may
result over time to large changes in behavior. This is the famous “butterfly effect,” in which is
speculated that the flap of a butterfly’s wings might over time change the course of global weather
patterns. There are many problems where it is desirable to control the underlying chaotic dynamics
of a system.

After years of study, both theoretical and experimental, much is known about chaotic dynam-
ical systems. In particular, it is known that even though a chaotic system behaves in a seemingly
random way there is a structure to the underlying behavior, and that structure has certain character-
istics. Edwared Ott, Celso Grebogi, and James A. Yorke (OGY) developed a method for controlling
a chaotic dynamical system[6][1] through small manipulations of the system. The method exploits
the structure of the underlying dynamics and the sensitivity of a chaotic system to small changes
to produce predictable periodic behavior.

The essence of the OGY method for chaos control is fairly straightforward. Once the control
parameters have been calculated it is simply necessary to wait for the system to reach a region of
state space that is covered by the control parameters, then to issue small modifications to a control
parameter to ensure that the system will come back to the same controllable region in a predictable
amount of time.

A software engineer is interested in finding reusable code whereever possible. Since the OGY
method exploits characteristics common to all chaotic systems it should be possible to write the
controller component once and to use it for all chaotic systems. In order to accomplish this goal
it is necessary to answer two challenges. First, the unique characteristics of a particular chaotic
system may require special processing before reaching the OGY specific components. Any special
reshaping or filtering of data should occur outside the implementation of the core control com-
ponent. Second, it is necessary to have flexibility in the method of computing the OGY control
parameters. Assuming that an analytical solution for the chaotic system in question is not avail-
able, which would be the common case for real world chaotic systems, the control software must
calculate the required information from data sampled from the system. It is not clear what method
for calculating this information is best. The notion of “best” implies a set of ranking criteria that
may change depending upon the goals of a particular controller situation. The overall controller
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system should be organized so that control parameter computation methods may be changed with
minimum impact to the rest of the system.

1.1 The Purpose of the Patterns

The pattern language provided in this paper describes the component steps to implementing the
OGY method for controlling chaotic dynamical systems, continuing the work in [7]. It establishes
an architecture for chaos control software that allows for experimentation with algorithms and data
structures at each step in order to improve the performance of the overall system. Rather than spec-
ifying what is done in a particular experimental instance with custom built software, this pattern
language separates problem specific considerations from the more general aspects of OGY control.
By establishing a protocol for communication between components, the architecture allows flexi-
bility in the implementation while improving reusability. This independence may be exploited in
an asynchronous parallel execution environment, for example, by transparently allowing the more
computation intensive aspects of the OGY method to execute on separate processors while time
critical functions, such as sampling, continue to operate simultaneously.

1.2 What is Controlling Chaos?

The basic objective of control is to manipulate a system in a way that produces a predictable result.
To change the behavior of a stable, non-chaotic, system, it is necessary to manipulate the system
in a way that is proportional to the amount of change desired. For example, in order to lift a rocket
off the ground, the rocket motor must produce sufficient thrust to offset the weight of the rocket.
The amount of thrust required varies directly with the weight of the rocket.

Chaotic systems are not stable. They are highly sensitive to even the slightest changes in state.
Any modification to a chaotic system, no matter how small, results in large changes in behavior
over time. Lorenz[5] observed this sensitivity in numerical experiments in weather prediction
using the system of equations given by (1)–(3).���

��� � ��� �	� ��
 (1)� 
��� � � �������� ��
 (2)���
��� � � 
���� � (3)

The state trajectory of the Lorenz equations, produced by numerically integrating the previous
system of equations, is shown in Figure 1. As illustrated in Figure 2, small differences in the initial
conditions of numerical experiments lead to radically different behavior over time. In contrast to
a stable system, where a change in initial conditions leads to a proportional change in behavior,
any change in the initial conditions of a chaotic system lead to long term behavior that cannot be
predicted.

A chaotic system is considered to be controlled if it is made to exhibit quasi-periodic[5] behav-
ior. Quasi-periodic behavior may be loosely visualized as the trajectory of a race car on a circuit
course, where the system of interest is the race car and its state is represented as the position of
its center of mass on the track. A truly periodic trajectory might be traced down the middle of
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Figure 1: The state space trajectory Lorenz system of equations shows the evolution of the system
over time. The point plotted at time

�
is � ���� 
 ��������� . The chaotic nature of the system of equations

means that the trajectory will never repeat itself as it traverses this shape.
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Figure 2: Graph of the  coordinate of the Lorenz equations over time with !#"%$'& , ()"+*-,/.10 , and2 "3,�465 . The solid line is produced with an initial condition of 78$�9'$�9'$�: , and the dashed line is has
an initial condition of 78$�.;&<&�&�&�&�&<&�&�&�&/$<9'$�9'$-: . The horizontal axis is time. The plot begins 90 time
units after the beginning of the experiment.
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Figure 3: Nearly periodic behavior in the Lorenz system. The system appears to repeat its trajec-
tory but is actually just passing very near to itself. If left alone, the Lorenz system will eventually
leave the region of the periodic trajectory and revert to unpredictable behavior. If the system is
held close to this trajectory its future state will be predictable, and the system will be considered
to be controlled.

the course, but the race car wanders freely from side to side on the track as it traverses the cir-
cuit. Since the race car stays within a bounded distance of the true circuit its behavior is said to
be quasi-periodic. The the OGY method is motivated from the observation that a chaotic system
occasionally exhibits behavior that looks quasi-periodic before reverting to more unpredictable be-
havior. Figure 3 illustrates such behavior in the Lorenz attractor. Such nearly periodic behavior
suggests the location of a truly periodic trajectory nearby in the state space since two trajectories
passing very near to each other will be nearly parellel for a period of time.

1.3 OGY Control

To this point, the discussion has focused on continous systems where the state of the system evolves
smoothly over time. If the state of the system is plotted over time, its track does not contain
any breaks. However, the OGY method is formulated in terms of a a discrete map. Rather than
producing a continuous trajectory, a discrete map shows the point position of the system at each
iteration of the map.

As will be illustrated in the Apply a Poincaré Map pattern, a continuous chaotic system may
be analyzed as a discrete chaotic map. Roughly speaking, a surface, called a surface of sec-
tion, is placed in the region of the chaotic activity. The surface of section is positioned so that
all chaotic trajectories will pierce through it. The Poincaré map produces a sequence of points
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��=>�?�A@'��B'B'B��C�ED/�'B�B'B
. The point

�AD
is produced at the F th iteration of the map when the trajectory of

the underlying continuous system pierces through the surface for the F th time. The coordinates of�ED
are relative to the surface. If the underlying continuous system is in

�
-dimensional space, the

points on the Poincaré map will be in the � � �HG � -dimensional space of the surface of section. The
position of the point on the surface piercing when a trajectory passes through the surface.

The behavior produced on a Poincaré map can be used to interpret behavior in the continuous
system. For example, if

I �EDKJL= � �ED INMHO �
where

O
is very small, then it may be said that the continuous system is exhibiting quasi-periodic

behavior–at least for time period covered by the �PF � G � th iteration of the map.
A controller using the OGY method must identify such points as estimates of actual fixed

points. Once fixed point estimates have been identified, the behavior of the attractor near the fixed
points must be sampled. For each point

�LQ
that falls near a fixed point estimate, the pair � �LQ<�?�AQ�JL=R�

is recorded. Since the behavior of the system changes smoothly with respect to position in state
space, the behavior of the system in a small region around a fixed point may be linearized to
provide a useful estimate of system behavior. The sampled pairs of points are used to calculate
such a linearization in order to determine which regions of state space near the fixed point tend
to move toward it and which regions tend to move away. The small neighborhood over which the
linearization applies is the controllable region of the fixed point.

Having located a fixed point and linearized the system behavior around it, it is necessary to
provide an input to the chaotic system that perturbs its behavior slightly. In the Lorenz system of
equations, the

�
value of (2) may be modified slightly. The effect of a small perturbation should

be to slightly warp the attractor, changing the location of the fixed point in state space.1 The fixed
points of the perturbed system are estimated from sampled data and are matched up with fixed
points of the unperturbed system. The movement of the fixed point with respect to the perturbation
is estimated from these paired points using linear interpolation.

At this point, the OGY control method, as illustrated in Figure 4 may be engaged. The chaotic
system is sampled for a period of time until it falls into the controllable region of a fixed point. If
the point lands in an area that tends to move away from the fixed point the control parameter is
manipulated so that the system tends to move toward the fixed point in the in the perturbed system,
keeping the system in the controllable region.

2 Patterns

2.1 Control a Chaotic System with OGY

2.1.1 Context

You are faced with a chaotic dynamical system which you desire to behave in a predictable way.
A control parameter of the system is avialable to modify the behavior of the system in some way.

1More exotic changes to the attractor are possible for small changes to the control parameter, and it is not clear at
the outset what range of parameter changes is appropriate for a particular chaotic system. Some experimentation is
required to find the appropriate parameter change size.
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Figure 4: Conceptual operation of the OGY control method. Arrowheads indicate the direction of
movement of successive iterates on the discrete map. (A) A point falls near a fixed point of the
discrete chaotic system. (B) The control parameter is perturbed so that the point is in the stable
region of the perturbed fixed point. (C) The next iteration of the system again falls near the original
fixed point.

Sensors on the chaotic system periodically produce a vector samples of the system state in numeric
form.

2.1.2 Problem

What is the basic structure of the relationship between a controller using the OGY method and the
chaotic dynamical system?

2.1.3 Forces

S To avoid code tailored to a specific chaotic system within the controller component, the
interface between the control component and the chaotic system must be expressed in the
most general terms acceptable to the controller.S A time series of samples of the chaotic system state and a control parameter together are
sufficient to compute control parameters and then establish control.

2.1.4 Solution

Figure 5 shows the high level design of the OGY system. The ChaoticSystem class provides
the software interface that is expected by the OgyController. Samples are obtained via the In-
strumentListener interface. The underlying chaotic system is manipulated by the controller
through the setPerturbation(Real p) method. The Real parameter represents the real val-
ued amount by which the ChaoticSystem is to be perturbed by the OgyController. The In-
strumentListener interface provides the mechanism for the ChaoticSystem to communicate
the samples read by its instrumentation devices to interested parties. Samples are communicated
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OgyController

ChaoticSystem

public void addInstrumentListener(InstrumentListener l)
public void setPerturbation(Real p)

<<Interface>>

InstrumentListener

void sampleRead(SampleEvent e) 0..*

<<realize>>

Figure 5: A chaotic dynamical system and its OGY controller

from the ChaoticSystem to its listeners in the raw form retrieved by the instruments. In Figure 5,
the OgyController receives samples directly from the ChaoticSystem via the Instrument-
Listener interface.

This pattern serves to illustrate the conceptual structure of the OGY method. The simplified
view of the OGY control process provided in Figure 5 implicitly assigns responsibilities to the
OgyController that are not directly related to the control function. The raw sequence of samples
received from a chaotic system must often be transformed before it is useful to an OGY controller.
For example, if the dynamics of the chaotic system are continuous, then the samples will represents
points on a continuous trajaectory. It would be necessary for the controller to apply a Poincaré
map to the data stream in order to produce the discrete map that is assumed by the OGY control
mechanism as discussed in Section 1.3. The following patterns serve to separate such implied
responsibilities out of the OgyController class to provide a flexible framework for applying the
OGY control method.

2.1.5 Related Patterns

The InstrumentListener is an Observer[2] that is realized in the OgyController class. The
basic responsibility of the ChaoticSystem class is as an Adapter[2] pattern, converting the inter-
face expected by the OgyController to that of the underlying chaotic system. Depending upon
the implementation of the underlying system, the ChaoticSystem class may be a component in
a larger wrapper-like class such as Bridge, Decorator, Facade, or Proxy, also of [2].

The SampleEvent class is a subclass of java.util.EventObject. A SampleEvent is
passed to the sampleRead() method of an InstrumentListener when a sample is received
from the ChaoticSystem. A SampleEvent object contains a data item in the form of a Point
object representing the vector of salar samples received.

2.1.6 Example Code

public class OgyController implements InstrumentListener {
private ChaoticSystem chaoticSystem;

private Real computeNextPerturbation(Point e)
{/* OGY control implementation goes here */}
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public void sampleRead(SampleEvent e) {
Real perturb = computeNextPerturbation(e.getPoint());
chaoticSystem.setPerturbation(perturb);

} }

2.2 Time Series Data Filter

2.2.1 Context

In order for a computer program to perform feedback control such as is performed in the OGY
method, it is necessary to obtain a representation of the system activity from periodic measure-
ments of system state as illustrated in Control a Chaotic System with OGY. It is not always the
case that the vector of samples received via the InstrumentListener interface is in a form that
is directly usable for the OGY method in its most general form.

2.2.2 Problem

Requiring the OgyController class to perform necessary data transformations weakens it by
diluting its focus on the specific task of carrying out OGY control and by tightening the coupling
between the chaotic system and the controller. If the OgyController is tightly coupled with the
ChaoticSystem its implementation will tend to be specialized to the ChaoticSystem of interest.

2.2.3 Forces

T Hard coding the data filtering role into the OgyController reduces its flexibility.T Indirect interfaces may be slower than direct interfaces. Response time is critical in real-time
systems, leading to a tendency to write specialized code.T It may be necessary to apply a number of transformations to a raw data stream to convert it
from the form produced by a ChaoticSystem to one usable by OgyController.

2.2.4 Solution

Reduce the coupling between the OgyController and the ChaoticSystem by moving data
filtering responsibilities out of the OgyController. Such a modification allows it to focus more
clearly on its specific task of carrying out OGY control. To loosen the coupling, introduce a chain
of one or more Filter objects between the ChaoticSystem and the OgyController.

Figure 6 depicts the architecture as modified to allow data filters between the ChaoticSystem
and the OgyController. The InstrumentListener interface serves the same purpose as in
Figure 5. The OgyController has been modified to be a TimeSeriesListener so that it is
no longer able to register directly as a listener to the ChaoticSystem. A distinction is made in
the depicted design between data received from an external source as provided through the In-

strumentListener interface, which has a representation determined by the external source, and
data provided through the TimeSeriesListener interface with a format that is determined by
the control application. The data received by OgyController must be in the expected format to
avoid artificial code dependencies in its implementation.
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TimeSeriesSource

void addTimeSeriesListener()

<<Interface>>

TimeSeriesListener

void sampleReceived(SampleEvent e)

TimeSeriesFilter

<<realize>>

SlowLorenzFilter

Figure 6: The SlowLorenzFilter is a TimeSeriesFilter. A TimeSeriesFilter is both a
TimeSeriesListener and a TimeSeriesSource.

ChaoticSystem InstrumentTimeSeries

SlowLorenzFilterOgyController

Figure 7: A block diagram showing a possible sequence of TimeSeriesFilter objects between
the ChaoticSystem and the OgyController.

The TimeSeriesSource class provides the interface for TimeSeriesListener objects to
subscribe as listeners with objects providing time series data. The InstrumentTimeSeries

class is both an InstrumentListener and a TimeSeriesSource. An object of a class derived
from InstrumentTimeSeries translates the external data format of the ChaoticSystem to
the internal format expected by the controller application. The TimeSeriesFilter class is an
abstract class derived from TimeSeriesSource and TimeSeriesListener.

A TimeSeriesFilter is both a TimeSeriesListener and a TimeSeriesSource. A
TimeSeriesFilter receives a data stream from another TimeSeriesSource, modifies the
data, then sends the modified data to its own TimeSeriesListeners. The SlowLorenzFilter,
for example, passes on only every other sample that it receives. TimeSeriesFilters are used to
change the data stream produced by the ChaoticSystem to a form usable by the OgyControl-
ler without requiring modification to either the ChaoticSystem or OgyController software
component.

The block diagram in Figure 7 shows an example flow of information through a series of objects
based on the classes depicted in Figure 6.
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2.2.5 Related Patterns

The TimeSeriesFiltercombines the Observer patterns with a hint of the Adapter, both from [2].
Rather than converting class interfaces, as done by the Adapter, it converts a data stream from one
form to another. The class is a realization of the Observer pattern. It registers with TimeSe-

riesSource to receive data. Since it is derived from TimeSeriesSource, it is also a Subject,
allowing other Observer objects to regeister with it and receive its transformed data stream.

The InstrumentTimeSeries class has similar pattern relationships. It actually implements
the Adapter pattern, translating the interface of InstrumentListener to that of TimeSeries-
Listener.

2.2.6 Example Code

The LorenzSystem class represents a ChaoticSystem.

public class LorenzSystem extends ChaoticSystem {

// ... (some code not shown)

/**
* Integrate one timestep into the future and notify
* listeners of the new sample.
*/

public void integrateNext() {

// Not shown: compute the next point in the trajectory,
// yNext, using a numerical integration technique.

incrementTime( timestep );
Sample s = new Sample(yNext, getCurrentTime());
SampleEvent e = new SampleEvent(this, s);
notifyNewSample(e);

} }

The LorenzTimeSeriesclass handles the translation from the LorenzSystemoutput format
and the application internal time series data format. Since the InstrumentListener and Time-
SeriesListener data formats for this example are equivalent, the class merely serves as an
Adapter between the InstrumentListener and TimeSeriesListener interfaces.

public class LorenzTimeSeries extends InstrumentTimeSeries {
public LorenzTimeSeries() {}

public void readSample(SampleEvent e) {
/* in this example, the instrument data format is
* the same as the time series data format
*/

notifyNewSample(new SampleEvent(this,sampleOut));
} }

The TimeSeriesFilter class provides basic implementation for objects filtering time series
data. It declares an abstract method filterSample(Sample s), which a subclass will use to
implement its particular sampling strategy
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/**
* A TimeSeriesSource which receives samples from another
* TimeSeriesSource, performs some transformation on the
* received samples, then passes the transformed samples
* on.
*/

public abstract class TimeSeriesFilter extends TimeSeriesSource
implements TimeSeriesListener {
public TimeSeriesFilter() {}
/**
* A sample has been read from the instrumented device.
* Transform the data to the TimeSeries format and send the
* sample along to TimeSeriesListeners.
* @param e the object associated with this event, containing
* the sample value.
*/

public void sampleReceived(SampleEvent e) {
Sample sampleIn = e.getSample();
filterSample(sampleIn);

}
/**
* Receive the next sample in the time series. When
* transformed samples are produced by the filter, distribute
* them to this object’s listeners.
* @see TimeSeriesSource#notifyNewSample()
*/

protected abstract void filterSample(Sample sample);
}

The SlowLorenzFilter illustrates time series filtering by discarding every other sample it
receives.

public class SlowLorenzFilter implements TimeSeriesFilter {
private int count = 0;

protected void filterSample(Sample s) {
if ( count % 2 == 0 ) {

notifyNewSample(new SampleEvent(this,s));
}
++count;

} }

The LorenzEx class initializes a LorenzSystem object then creates a LorenzTimeSeries
object and registers it as an InstrumentListener with the LorenzSystem. A SlowLorenz-

Filter object is created and registered as a listener to the LorenzTimeSeries object. Finally,
an object of the inner class LorenzListener is registered with the SlowLorenzFilter object
to print out the filtered time series that it receives.

public class LorenzEx {
private class LorenzListener implements TimeSeriesListener {

public LorenzListener() {}
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public void readSample(SampleEvent e) {
Sample s = e.getSample();
double[] pt = s.getPoint();
System.out.println(""+pt[0]+" "+pt[1]+" "+pt[2]);

} }

private void go() {
double[] yInit = new double[3];
for (int i=0; i<3; i++)

yInit[i] = 1.0000000000;
LorenzSystem ls = new LorenzSystem(yInit,0.01);
TimeSeriesSource lts = new LorenzTimeSeries();
ls.addInstrumentListener( lts );
TimeSeriesSource slf = new SlowLorenzFilter();
lts.addTimeSeriesListener( slf );
slf.addTimeSeriesListener(new LorenzListener());
for (int i=0; i<10000; i++)
{

ls.integrateNext();
} } }

2.3 Embed the Time Series

2.3.1 Also Known As

Delay Coordinates

2.3.2 Context

In sampling a nonlinear F -dimensional dynamical system, it is not always possible to sample all
F dimensions. In order to characterize the behavior of the system it is necessary to represent the
system behavior in the appropriate number of dimensions.

2.3.3 Problem

How does one transform a scalar time series into a F -dimensional series of samples?

2.3.4 Forces
T Time delays between coordinates of the embedding should be multiples of the sample rate.T It is not simple to calculate the optimal time delay or embedding dimension solely from

sampled data.T Downstream components should not care if they’re getting samples from an embedded sys-
tem or from the F -dimensional nonlinear system itself.T It is undesirable to clutter the sampler with two jobs–obtaining samples from the dynamical
system and performing the embedding.
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TimeSeriesSource

ScalarTimeSeries

Time getTimeStep()

<<Interface>>
TimeSeriesListener

TimeSeriesFilter

<<realize>>

EmbeddingFilter

void setDelay()
void setDimensions()

<<Interface>>
InstrumentListener

<<realize>>

ChaoticSystem ScalarTimeSeries EmbedFilter Controller

Figure 8: Embedding filter. Top: UML diagram depicting class relationships; bottom: block
diagram of flow between components.

2.3.5 Solution

A theory due to Takens[8] states that the behavior of a chaotic system can be reconstructed from
a scalar time series with delay coordinates. A U -dimensional point V � �C� with delay W can be
constructed from a scalar time series

� � G �X��� �ZY �>�'B'B�B���� � �C� using delay coordinates as follows.

V � �C� �\[ � � �C�X��� � � � W �>�'B'B�B���� � � � � U �]G � W ��^`_ (4)

Figure 9 shows the Lorenz attractor reconstructed using delay coordinates from the
�

dimension
of the system. While the shape of the reconstructed system is not exactly the shape of the original,
the Lorenz attractor can be recognized.

Figure 8 shows an EmbeddingFilter class derived from TimeSeriesFilter. It can be
used to embed a 1-dimensional time series as part of a filter chain. Two operations for tuning
the behavior of EmbeddingFilter are available. The setDelay(int) operation sets the delay
between dimensions in the embedding. The setDimensions(int) operation sets the number of
dimensions in the embedded data stream.

Calculation of the delay and dimensions parameters from sampled data is both computationally
intensive and data intensive. On the one hand, it is desirable to embed the system in the smallest
number of dimensions that faithfully represents the shape of the attractor. This reduces the com-
plexity of computations later in the process. One method for finding the number of dimensions for
which an embedded trajectory does not intersect with itself. The unavoidable presence of noise in
the data stream adds a level of uncertainty to this calculation since noise may make it falsely ap-
pear that a trajectory crosses itself. On the other hand, the varying time delay between coordinates
warps the shape of the reconstructed attractor. A good time delay value causes maximal separation
between embedded trajectories.
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Figure 9: The Lorenz attractor reconstruced with delay coordinates using the
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dimension of the
equation. The time delay between coordinates in this diagram is a B a�b .
2.3.6 Related Patterns

The EmbeddingFilter may be implemented as a specialization of TimeSeriesFilter from
Section 2.2. Rather than addressing the general concept of filtering, this pattern is concerned with
the conversion of a 1-dimensional time series into a F -dimensional time series that reconstructs the
dynamical behavior of the underlying system.

2.3.7 Example Code

A ScalarTimeSeries object is used as the InstrumentListener applied to the LorenzSys-
tem of the previous example. The ScalarTimeSeriesclass passes along only the first coordinate
of the sample vector received from the ChaoticSystem, simulating the situation where only one
sample dimension is available.

/**
* A source of 1-dimensional time series data received from
* an instrumented system. In this implementation, an
* instrumentation sample is received and only the first
* dimsion of the received sample vector is passed along.
*/

public class ScalarTimeSeries extends TimeSeriesSource
implements InstrumentListener

{
/**
* A sample has been read from the instrumented device.
* Transform the data to the TimeSeries format and send the
* sample along to TimeSeriesListeners.
* @param e the object associated with this event, containing
* the sample value.
*/

public void readSample(SampleEvent e) {
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Sample sampleIn = e.getSample();
double[] pointIn = sampleIn.getPoint();
double[] pointOut = new double[1];
pointOut[0] = pointIn[0];
Sample sampleOut =

new Sample(pointOut,sampleIn.getTime());
notifyNewSample(new SampleEvent(this,sampleOut));

} }

The EmbeddingFilter class receives a time series of scalar samples and reconstructs F -
dimensional dynamics using the method of delays. Once the number of dimensions and the time
delay between coordinates have been decided, the job of computing the embedding is straightfor-
ward. Here, the embedding parameters are set from precalculated values. An adaptable Embed-
dingFilter might calculate the parameters from sampled data.

public class EmbeddingFilter extends TimeSeriesFilter {

// .... (some code not shown)

/**
* Receive the next sample in the scalar time series. When
* transformed samples are produced by the filter, distribute
* them to this object’s listeners.
*
* @see TimeSeriesSource#notifyNewSample()
*/

protected void filterSample(Sample inSample) {
double newPoint = inSample.getPoint()[0];
if (bufSize == buffer.length) {

//
// Circular buffer is full, generate an embedded point
double[] outPoint = new double[numDims];
for (int i=0; i<numDims-1; i++) {

int sourceIndex = startIndex + i * delay;
sourceIndex %= buffer.length;
outPoint[i] = buffer[sourceIndex];

}
outPoint[numDims-1] = newPoint;
/*
* Create an output Sample object. Use the latest
* scalar sample’s time as the embedded sample’s time.
*/

Sample outSample =
new Sample(outPoint,inSample.getTime());

notifyNewSample(new SampleEvent(this,outSample));
// Bookkeeping:
// replace oldest point in buffer with newest
buffer[startIndex] = newPoint;
// then move start index
startIndex ++;
// remember: we know bufSize == buffer.length here
if (startIndex == bufSize) {

startIndex = 0;
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} }
else // bufSize < buffer.length; fill the buffer
{

buffer[bufSize] = newPoint;
++bufSize;

} } }

2.4 Apply a Poincaré Map

2.4.1 Also Known As
T Surface of Section

2.4.2 Context

The OGY method operates on a discrete chaotic map. Periodic points are identified through ob-
servation of system behavior on the map. The dynamical behavior of the system near the periodic
points is determined experimentally, both with and without perturbation of the control parame-
ter. After sampling the local behavior of the periodic points, the behavior is linearized, and the
parameters for control are calculated.

Many chaotic systems are continuous in nature. Periodic behavior in such systems is exhibited
as traversal of periodic orbits in the system’s state space. In order to gain control of the system
with the OGY method, the continuous behavior must be converted into a discrete map.

2.4.3 Problem

How does one apply the OGY method to a continuous U -dimensional dynamical system?

2.4.4 Forces
T It is not simple to find an optimal placement for a Poincaré surface.T The time delay between piercings of the Poincaré surface is not predictable in general. The

notion of time must be modified or discarded.T Finding periodic points on a discrete map requires less data and computation than finding
periodic orbits in continuous data.T It is possible to determine characteristics of a continuous system by analyzing the discrete
behavior exhibited on a Poincaré map.

2.4.5 Solution

Apply a Poincaré map to the system to obtain a discrete time view of the continuous system’s
dynamical behavior. A surface of section is a � U �cG � -dimensional surface that is situated so that
it is transverse to the flow on the attractor. The surface may be considered to be polarized, so that
it has a back and a front. As depicted in Figure 10, each time the flow of the system pierces the
surface from back to front, a point is plotted on the surface at the location of the piercing[4]. The
resulting discrete map is a Poincaré map[3]. Periodic points on the surface of section correspond
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Figure 10: A Poincaré map is calculated by detecting when the flow of the continuous system
pierces the surface of section.

to periodic orbits in the continuous system. Figure 11 depicts a closeup view of a Poincaré map of
the Lorenz attractor.

The PoincareFilter class in Figure 12 implements a Poincaré map. The Continuous-

TimeSeries receives U -dimensional samples from a continuous dynamical system and transmits
them to the PoincareFilter, which translates the continuous time series into a � U ��G � -dimensional
discrete system suitable for OGY control.

2.4.6 Related Patterns

The PoincareFilter may be implemented as a specialization of TimeSeriesFilter from
Section 2.2. Since the OGY method is defined for discrete chaotic systems, the ability to convert
a continuous flow into a discrete map while preserving the required dynamical information is
fundamental to the wide applicability of the OGY method.

2.4.7 Example Code

/**
* Transforms a n-dimensional continuous time series into
* a discrete time series of points on the surface of section.
*/

public class LorenzPoincareFilter extends TimeSeriesFilter {
private boolean lastPointNegative = false;
private Sample lastSample = null;

protected void filterSample(Sample inSample) {
if ( surfacePierceDetected() ) // just pierced through {

double[] pt = inSample.getPoint();
double[] newPt = new double[inSample.getNumDimensions()-1];
/*
* The last step likely did not land exactly on the
* surface. Backtrack to the surface and get the
* coordinates of the new n-1 dimensional point.
*/

double[] newPt = bactrackToSurface(lastSample.getPoint(), pt);
/*
* Create an output Sample object. Use the latest
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Figure 11: A closeup of a Poincaré map of the Lorenz attractr. The map is placed at
� �d��e Bgf .
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 and
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coordinates, respectively, where the
continuous system pierced the surface of section.
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Figure 12: A Poincaré map may be implemented as a TimeSeriesFilter, converting a contin-
uous time series to a discrete time series
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* scalar sample’s time as the embedded sample’s time.
*/

Sample outSample =
new Sample(newPt,inSample.getTime());

notifyNewSample(new SampleEvent(this,outSample));
lastPointNegative = false;

} }
lastSample = inSample;

} }

2.5 Find Periodic Behavior in Chaos

2.5.1 Context

The OGY method controls a chaotic system by exploiting the behavior of the system around the
unstable periodic points of the chaotic attractor. A great strength of the OGY method is that it
works without knowledge of the dynamical equations describing the system. However, the lack of
an analytical solution means that fixed points must be located within chaotic activity empirically.

2.5.2 Problem

How can fixed points be determined from data sampled from a chaotic dynamical system?

2.5.3 Forces

T For an embedded time series, it is critical that the embedding space has enough dimensions
to reconstruct the state trajectory of the chaotic system. If the embedding space has too few
dimensions, the system’s trajectory will cross over itself leading to false identification of
fixed points.T Empirical detection of fixed points requires a period of uncontrolled sampling. The duration
of the sampling period cannot be predicted from the outset, and it may be long.T Finding periodic orbits in a continuous system may be expensive in terms of data and com-
putation.T The ergodic nature of chaotic systems guarantees that the system will approach all periodic
points. Thus, it is guaranteed that there will be periodic points and that it is possible to get
information about the system near an arbitrary periodic point.T Finding periodic orbits in a continuous system may be considered equivalent to finding pe-
riodic points in a discrete system. A Poincaré section placed appropriately in the state space
yields a discrete map where a point

�h
on the map represents the i th piercing of the map by

the continuous trajectory.T It is not clear in general how close a point and its successor have to be before they are con-
sidered to be close to a fixed point. The critical distance depends on the system in question.

2.5.4 Solution

A chaotic attractor has infinitely many periodic cycles[9]. For OGY control, it is necessary to find
one or more of them by observing the behavior of the system. A F -cycle on a discrete map consists
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Figure 13: A fixed point collector may be a listener on the time series, estimating fixed point
locations from pairs of successive points in the series.

of a sequence of F points, j =X�'B'B�B�� j D that repeats indefinitely on the map. Each point of a F -cycle
of a discrete map k is a fixed point of the map k

D
, where

k
=
� �L� � kl� �L�

k
@
� �L� � kl��kl� �L�C�

...

The location of a fixed point on a discrete map may be estimated from sampled data by observing
pairs of successive points in the time series. Figure 13 shows how a fixed point collector fits
into the example class hierarchy. The FixedPointCollector class implements the TimeSe-

riesListener interface, receiving a discrete time series of points from a ChaoticSystem. The
FixedPointCollector implements the FixedPointSource interface which provides access
to the best fixed point estimate currently available. The metric for fixed point quality is left to the
FixedPointCollector implementation. Since system behavior changes smoothly with distance
from the fixed point, a good candidate metric would be the distance from a point in the time series
to its successor. Points that are closer together are considered to be better estimates of fixed points.

Figure 3 shows a trajectory of the Lorenz attractor that is estimated to be near a periodic
trajectory–one that would repeat its course indefinitely. The depicted cycle would present itself
as a fixed point on a surface of section placed at

� �mG a , and would be a 2-cycle on a surface of
section placed at

� �n�oG a .
2.5.5 Example Code

public class FixedPointCollector
implements TimeSeriesListener,FixedPointSource {
private Point prevPoint = null;

// ... (some code not shown)

public FixedPoint getBestFixedPoint()
{/* return best fixed point currently held */}

public void readSample(SampleEvent e) {
Point p = e.getSample().getPoint();
double fixedness = distance(p, prevPoint);
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Figure 14: A neighborhood sampler listens to the time series and collects data points falling near
fixed point estimates obtained from a fixed point source.

if (fixedness < getMaxFixedness())
storeFixedPoint(new FixedPoint(p,fixedness));

} }

2.6 Sample the Fixed Point Neighborhood

2.6.1 Context

Once the location of a fixed point has been estimated, the OGY method must be able to characterize
the behavior of the system around the fixed point. In order to accomplish this numerically, sample
points a neighborhood around the fixed point must be collected.

2.6.2 Problem

How does one collect samples around a fixed point estimate for characterizing the locally linear
behavior?

2.6.3 Forces
T In general, the optimal size of the neighborhood cannot be guessed without prior knowledge

of the chaotic system.T While sampling behavior around two different estimates of fixed points it might become
apparent that the estimates are of the same fixed point. The data from the neighborhoods of
the two estimates should be combined.T A fixed point estimate as collected by the fixed point collector provides a rough estimate of
the location of a possible fixed point on the attractor. By collecting samples of system activity
around the estimate it is possible to more reliably characterize nearby system behavior.

2.6.4 Solution

Figure 14 depicts the NeighborhoodSampler class. It is a TimeSeriesListener so that it can
obtain points from the discrete time series produced by the chaotic system. The Neighborhood-
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Sampler also has a reference to a FixedPointSource, such as the FixedPointCollector of
Section 2.5, to obtain estimates of fixed points to seed the sampling process. Each sample is an
ordered pair � �Eh8�?�Eh`JL=C� , where

�Eh
is a point falling into the neighborhood of the fixed point and

�Lh`JL=
is the next point in the discrete time series from which

�h
was obtained.

It may not be clear at the outset what diameter of the neighborhood around a fixed point es-
timate is the right size to obtain control. One approach is to limit the number of neighborhood
points collected around a fixed point to a size that is sufficient for subsequent calculations. Once
the maximum number of points have been collected around a particular fixed point, the farthest
point defines the diameter of the current neighborhood. When a closer point is encountered in
the input stream it is added to the collection and the farthest point is removed. Through this pro-
cess, the size of the neighborhood shrinks over time, automatically tuning to the system under
observation.

As the NeighborhoodSamplercollects data, it may improve its estimate of the location of the
fixed point. For example, it is possible that while collecting samples around a fixed point estimate,
a sample point falling into the region is also a better estimate of the fixed point. The Neighbor-
hoodSampler should take into account improvements in the estimate of the fixed point location.

A chaotic system may have more than one fixed point on the discrete map representing its
dynamics. The NeighborhoodSampler should be capable of sampling the neighborhoods of
multiple fixed point estimates simultaneously. When sampling multiple fixed point neighborhoods
simultaneously, the NeighborhoodSamplermust determine from sampled data if two fixed point
estimates refer to the same fixed point or if they represent the existence of two distinct fixed points.

2.6.5 Example Code

public class NeighborhoodSampler
implements TimeSeriesListener

{
FixedPointCollector fpCollector;
Vector queues = new Vector();
int numQueues;
int queueSize;
double[] prevPt = null;

NeighborhoodSampler(FixedPointCollector fpc,int numQs,int qSize) {
numQueues = numQs; queueSize = qSize; fpCollector = fpc;

}

public void sampleReceived(SampleEvent e) {
Sample s = e.getSample();
double[] pt = s.getPoint();

manageQueues();
if (prevPt != null && queues.size() > 0) {

Iterator qIt = queues.iterator();
NeighborhoodSample ns = new NeighborhoodSample(prevPt,pt);
while (qIt.hasNext()) {

NeighborQueue q = (NeighborQueue)qIt.next();
try {

q.put(ns);
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break; /* break if insert succeeds */
}
catch (NeighborQueue.TooFarAwayException e)
{/*ignore-try next queue*/}

} }
prevPt = pt;

}

private void manageQueues() {
/* Create NeighborQueues using fixed point estimates
* from fpCollector. Make sure that two different queues
* do not cover the same space (same fixed point region).
*/

// ... (code not shown)
} }

/**
* A NeighborQueue stores samples in a double ended priority
* queue. If the maximum size of the queue is reached a new
* sample must have higher priority than the lowest priority
* sample in the queue. When a new sample is inserted in this
* condition, the lowest priority sample is removed and
* discarded. Priority is inversely proportional to the queue’s
* fixed point estimate.
*/

public class NeighborQueue {
/** thrown in put() if queue is full and new sample has lower
* priority than the lowest priority sample in the queue.
*/

public class TooFarAwayException extends Exception {}

/** Stores the neighborhood samples. Priority is inverse
* of distance from this queue’s fixed point.
* @see #fp
*/

private DePriQueue data;

/** The point around which samples are collected */
private FixedPointEstimate fp;

// ... (not shown: constructor, accessors)

/**
* Put a new NeighborhoodSample in the queue if possible.
* Each NeighborhoodSample contains a point and its successor.
* @param item the NeighborhoodSample

public void put(NeighborhoodSample item)
throws TooFarAwayException {
/* Confirm that the new sample has high enough priority to be
* inserted into this queue. If it does, then insert it.
* If the new sample is a better fixed point estimate, then
* designate new sample as the fixed point estimate and
* reorder the queue.
*/
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Figure 15: A controllable fixed point has stable regions, where the system tends to move towards
the fixed point, and unstable regions, where the system tends to move away. The stable and unstable
regions are identified from the linear approximation of dynamics near the fixed point. OGY control
attempts to keep the system in the stable region of the fixed point.

// ... (code)
} }

2.7 Linearize Dynamics near the Fixed Point

2.7.1 Context

OGY control is carried out around fixed points that have both stable and unstable regions. When the
system state is in the stable region it will tend to move towards the fixed point in the next iteration.
In the unstable region, the system tends to move away from the fixed point. Values derived from
a linear approximation of dynamics near a fixed point are used by the OGY method to establish
and maintain control of the system. Figure 15 illustrates the type of information derived from
linearization.

The theoretical process for estimating linear dynamics has been documented in chaos control
literature[1]. It is not clear that a straightforward implementation of the process is the best for
all situations. The component will be implemented differently depending upon the criteria placed
upon the estimates. For example, there is generally a tradeoff between computational efficiency
and data efficiency. Depending upon the target computation environment, one or the other of these
criteria may have to be sacrificed.

2.7.2 Problem

How can the estimation of linear dynamics near a fixed point be carried out in a way that allows
for variation in implementation that is transparent to the rest of the system?

2.7.3 Forces

T Assuming no analytical solution to the system in question, the local dynamics must be esti-
mated from sampled data.
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Figure 16: The dynamical behavior near a fixed point is estimated by the Linearizer class. The
Linearizer receives sample points from the NeighborhoodSampler. The control parameter
setting is stored with the linearization around each fixed point.

T The optimal size of the neighborhood for which a linear approximation is appropriate is
system dependent, and not necessarily known at the outset.T There is a tension between the size of the linearized neighborhood and the ability to control.
If the neighborhood is too large, the linearization will be less useful. If the neighborhood is
too small it will take too long for the system to fall into the controllable region.

2.7.4 Solution

The Linearizer component depicted in Figure 16 encapsulates the function of linearizing the dy-
namics of the system near a fixed point. The Linearizer gets fixed point neighborhood sample
data from the NeighborhoodSampler. The getFixedPoint() method of Neighborhood-
Sampler returns an Iterator of FixedPoint objects that represent the fixed point estimates
for which neighborhood information is currently being sampled. The sampled points around a par-
ticular fixed point may be retrieved with the getSamples(FixedPoint)method, which returns
an iterator of SamplePairobjects. Each SamplePair object contains two Points, representing
a point falling in the neighborhood of the fixed point and the next iterate of the discrete map.

There is two-way communication between the OgyController and the Linearizer. Com-
munication from the OgyController is performed indirectly through the PerturbationLis-
tener interface which is implmented by the Linearizer. Whenever the OgyController

changes the perturbation value of the ChaoticSystem, it broadcasts an event to its Perturba-
tionListeners notifying them of the change. The LinearParams class encapsulates the linear
dynamics information in a form useful to the OgyController. Because the perturbation param-
eter can change the location and the local behavior of a fixed point, the Linearizer stores the
current perturbation value with the LinearParams object created for a fixed point. To obtain per-
turbation parameter change information, the Linearizer is a PerturbationListener. Once a
linear estimate has been produced, the Linearizer provides the estimate to the OgyController
through its receiveLinearParams()method.

2.7.5 Example Code

public class Linearizer implements PerturbationListener {
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private OgyController controller;
private NeighborhoodSampler sampler;
private double perturb;

public Linearizer(OgyController c,NeighborhoodSampler s) {
controller = c; sampler = s; }

/**
* Changing the perturbation changes the dynamical behavior, so
* get the samples collected under the previous perturbation
* value and estimate fixed point neighborhood dynamics.
* @param e event notifying of change in perturbation value.
* The PerturbationEvent object contains the new value
* of the perturbation parameter.
* @see java.util.EventObject
*/

public void perturbationChanged(PerturbationEvent e) {
double newPerturb = e.getPerturbation();
Iterator fpIt = sampler.getFixedPoints();
while (fpIt.hasNext()) {

FixedPoint fp = (FixedPoint)fpIt.next();
Iterator sampleIt = sampler.getSamples(fp);
Vector v = new Vector();
while (sampleIt.hasNext()) v.add(sampleIt.next());
LinearParams lp = linearizeNeighborhood(fp,v,perturb);
controller.setLinearParams(lp);

}
perturb = newPerturb;

}

/** Calculates values representing the linear characterization
* of behavior around the fixed point based on samples.
* @return the parameters
*/

private LinearParams linearizeNeighborhood(
FixedPoint fp,Vector v,double perturb) {
LinearParams lp = new LinearParams();
// ... (calculate parameters and populate lp with them)
return lp;

} }

2.8 Track Fixed Point Migration

2.8.1 Context

When the system falls within the controllable region of a fixed point, the OgyControllerperturbs
the ChaoticSystem control parameter in such a way that system state will tend to fall in the con-
trollable region of the fixed point on the next iteration. The OgyController obtains information
about the location of the stable and unstable regions around a fixed point from the Linearizerfor
a particular setting of the perturbation parameter. By perturbing the ChaoticSystem’s control
paramter When the chaotic system state lands near a fixed point for which the OgyController
has control information, the OgyController attempts to keep the state in the neighborhood of
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Figure 17: The FixedPointTracker obtains fixed point estimate values from the Neighbor-
hoodSampler, then contacts the OgyController to change the control parameter value for a
new round of sampling. After finding the fixed points of the perturbed system, fixed point migration
parameters are calculated and sent to the OgyController.

the fixed point on succeeding iterations. If the state is in the unstable region of the fixed point the
state will move away from the fixed point. In such a case, the OgyController will perturb the
ChaoticSystem so that the current state is in the stable region of the perturbed system’s fixed
point, thereby achieving the desired control.

2.8.2 Problem

How can one predict the movement of a fixed point under perturbation?

2.8.3 Forces

T The fixed point is assumed to move smoothly with respect to small changes to the control
parameter.T Chaotic systems can change drastically with minute perturbations. For example, if the pa-
rameter is moved past a bifurcation point for the system, the fixed point may become a
two-cycle. It is better to avoid such situations.T The notion of what is a small perturbation change varies with each chaotic system. The range
of safe parameter change values must be determined through experience with the chaotic
system of interest.

2.8.4 Solution

Once a fixed point is located in the unperturbed system, a small perturbation is applied to the system
and the fixed points of the perturbed system are located. To track the movement of the fixed point
of interest, it is matched with the nearest fixed point of the perturbed system. To characterize the
movement of the fixed point under perturbation, a linear interpolation between the two fixed point
locations is calculated. The OGY method uses this linear interpolation along with the information
provided by the Linearizer to calculate the amount of perturbation to apply.

Figure 17 illustrates class relationships for the FixedPointTracker class, which calculates
parameters for estimating the migration of fixed points under control parameter perturbation. The

28



FixedPointTracker obtains fixed point estimates of the unperturbed system from the Neigh-
borhoodSampler, then requests that the OgyController apply a perturbation to the Chaotic-
System. It implements the PerturbationListener interface to ensure that the starting After a
period of sampling the perturbed system, the FixedPointTracker obtains new fixed point estimates
from the NeighborhoodSampler, matches them up with fixed points of the unperturbed system, then
calculates linear interpolation parameters for estimating the movement of each fixed point with
respect to the control parameter. These parameters are communicated to the OgyController in
a TrackParameters object. The TrackParameters class encapsulates the linear interpolation
parameters in the form used in the OgyController.

2.8.5 Example Code

public class FixedPointTracker implements PerturbationListener {
private OgyController controller;
private NeighborhoodSampler sampler;
private double perturb;
/**
* Stores fixed point estimates along with the perturbation
* values at which they were encountered.
*/

private Collection fpHistory;

public FixedPointTracker(OgyController c,NeighborhoodSampler s) {
controller = c; sampler = s; }

/**
* Get the fixed point estimates from the NeighborhoodSampler.
* These pertain to the previous perturbation value. If possible,
* calculate fixed point migration parameters and pass them
* to the OgyController.
* @param e event notifying of change in perturbation value.
* The PerturbationEvent object contains the new value
* of the perturbation parameter.
* @see java.util.EventObject
*/

public void perturbationChanged(PerturbationEvent e) {
double newPerturb = e.getPerturbation();
Iterator fpIt = sampler.getFixedPoints();
while (fpIt.hasNext()) {

TrackParameters tp;
tp = trackFp((FixedPoint)fpIt.next(),perturb);
controller.setFixedPointTrack(tp);
/* HistoryItem is a class that stores a FixedPoint
* value and a perturbation value.
*/

fpHistory.add(new HistoryItem(fp,perturb));
}
perturb = newPerturb;

}

/**
* Determines the movement of a fixed point with respect
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* to the perturbation parameter.
* @return an object characterizing the movement of the
* fixed point.
*/

private TrackParameters trackFp(FixedPoint fp,double p) {
TrackParameters tp = new TrackParameters();
/* Get all fixed points from fpHistory for a perturbation
* value near p. Match fp with the nearest of these fixed
* points. Populate tp with parameters estimating the
* movement of fp with respect to p.
*/

// ... (code)
return tp;

} }

3 Conclusion

The pattern language described here provides the basis for a flexible software architecture for
working with chaotic systems. Since OGY control operates on general principles of chaotic sys-
tems, the language includes patterns that separate application specific code from the more general
code applicable to all chaotic dynamical systems. Having accomplished such a separation, it is
possible to develop general OGY control code that may be applied without modification to a vari-
ety of chaotic systems. In doing so it becomes possible to study the OGY code independent of the
system being controlled.

The OGY control procedure has been further subdivided into data transformation, information
gathering, and processing patterns. The data transformation patterns, Time Series Data Filter; Em-
bed the Time Series; and Apply a Poincaré Map, serve to separate the details of a particular chaotic
system from the core of the OGY method. The information gathering patterns, Find Periodic Be-
havior in Chaos; and Sample the Fixed Point Neighborhood, provide the raw information that the
OGY method requires for control. The processing patterns, Linearize Dynamics near the Fixed
Point; Track Fixed Point Migration; and Control a Chaotic System, take the collected information,
compute the parameters for OGY control, and initiate the perturbations to the chaotic system to
establish control.

The relative independence of each of these patterns allows for loose coupling between the
components implementing them. This loose coupling in turn allows for easy modification or re-
placement of components, which is advantageous in an experimental environment where different
techniques for implementing a pattern are to be tested. In addition to facilitating component re-
placement, loose coupling allows flexibility in the linkage between components leading to possible
parallel execution.

3.1 Future Work

The pattern language described here lays the foundation for the development of a fully autonomous
OGY controller. To reach this goal, further elaboration of the Embed the Time Series; Apply a
Poincaré Map; and Track Fixed Point Migration patterns is necessary since these patterns state
what needs to be done but are vague on how to actually do it. Each of these patterns has aspects
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which tend to reduce its tractability in an unsupervised mode.
In the case of Embed the Time Series, two variables must be calculated. First, the number of

dimensions in which to embed the time series must be calculated. It is necessary to provide enough
dimensions so that the state space behavior is faithfully reconstructed. While on the one hand the
problem of embedding is to make the number of dimensions sufficiently large, it is also important
to minimize the number of dimensions as much as possible to minimize the complexity of later
calculations. In a noiseless environment, it would be sufficient to choose the lowest number of
dimensions in which the embedded trajectory does not cross itself. Since noise is an ever present
component of real world systems and a chaotic trajectory will pass arbitrarily close to itself, an
embedded trajectory may appear to cross itself due to noise interference. Therefore a calculation
of embedding must accept some amount of trajectory intersection. The second variable affecting
the embedding is the time delay between coordinates of the embedded system. This is the W value
of Equation 4. It has the effect of warping the reconstructed trajectory, and a well chosen W can
aid in the calculation of embedding dimension.

A well placed Poincaré map makes the job of locating fixed points easier. It should be placed
so that it is transverse to the flow and so that the flow passing through it contains unstable periodic
trajectories that may be used for control.

Tracking fixed point migration with respect to parameter perturbations involves application of
a small perturbation to the system, locating the fixed points of the perturbed system, and matching
them up with those of the unperturbed system. It is necessary for an unsupervised system to
calculate what is meant by “small.” One may base the size of the perturbation on the diameter of
the sampled fixed point neighborhood. Depending upon the sensitivity of a particular system to
the perturbation parameter, other heuristic rules may be more appropriate. The OGY method tends
to assume that manipulation of the perturbation parameter merely deforms the chaotic attractor.
However, a perturbation may result in bifurcation of a fixed point or more profound change in
dynamical behavior. An unsupervised controller must be able to take these factors into account
while tuning the range of perturbations to the chaotic system.

With the advent of computing clusters built from commodity PCs, parallel execution is an in-
creasingly viable approach to accomplishing all necessary processing in the short time interval be-
tween samples. Using the mechanism introduced in Time Series Data Filter for inserting process-
ing steps in the chain of communication, it is possible to provide a type of filter that communicates
between distributed processes. By using technologies such as CORBA or Java Remote Method
Invocation, procedure calls across a network link may be accomplished transparently through the
interface of the target class. Components need not be aware of the distributed nature of their
environment.
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