

Dynamic Resource Management Architecture Patterns

Lonnie R. Welch

Toni Marinucci

School of EECS

Ohio University

Athens, OH

welch@ohio.edu

tmarinuc@cs.ohiou.edu

Michael W. Masters

Paul V. Werme

Naval Surface Warfare Center

Dahlgren, VA

MastersMW@NSWC.NAVY.MIL,

WermePV@NSWC.NAVY.MIL

FOCUS TOPIC: PATTERNS AND PATTERN LANGUAGES FOR DISTRIBUTED
REAL-TIME AND EMBEDDED SYSTEMS

mailto:welch@ohio.edu

I. Introduction

“In 1985 the Internet connected 2000 computers. At the start of this century the Internet

connected over 37 million computers. Future networks will connect at least a billion users and
will be more complex – they will connect sensors, wireless modems and embedded devices1.”

To address the challenges presented by such tremendous growth, it is important to identify

software patterns and to develop appropriate pattern languages for the domain of distributed,
real-time computing. Distributed computing refers a pool of networked computers that can be
used for solving complex problems. To harness the computational power of a pool of networked
computers, resource management (RM) software that dynamically allocates computing resources
to programs has emerged. Furthermore, technologists have produced RM software that allows
real-time systems (systems that must perform in a timely manner) to meet their performance
constraints in dynamic environments (such as defense [6] and space [5]) by (1) monitoring real-
time performance and (2) reallocating resources as needed to provide adequate real-time
performance [1, 2, 3].

This paper presents patterns (i.e., solutions to commonly occurring design problems [4]) that
have emerged in resource management software. The specific patterns discussed are as follows:

o Resource instrumentation: monitoring the status (e.g., availability and utilization) of
hardware resources, such as computers and networks.

o Software performance monitoring: monitoring the status (e.g., performance) and resource
needs of software systems.

o Allocation planning and management: determining how and when to allocate hardware
resources to software systems.

o Resource control: performing the allocation of hardware resources to software systems.
Each of these patterns is detailed in the remainder of this paper; the patterns are characterized
according to the following pattern template (described in [4]): (a) name of pattern; (b) summary
of the problem and forces that give rise to it; (c) a solution in terms of collaborations with
participating classes; and (d) summary of benefits and consequences of using the pattern.

The remainder of the paper is organized as follows. Sections III-VI details the patterns found

in resource management software. Section II presents a UML-based model of an adaptive
resource management architecture, which is elaborated to describe the patterns. The domain, in
which the patterns have been identified, is characterized by a reference architecture in Section
VII.

II. Computing and network resource management architecture

This section contains a UML-based model of an adaptive resource management architecture. The
patterns are defined in the remainder of the article by refining the UML model.

The architecture (see Figure 1) of our resource management (RM) middleware consists of five
major subsystems: User Management, Allocation Management, Real-Time System
Management, Resource Instrumentation and Control, and Specification File Management.

1 From the Information Technology Office of the Defense Advanced Research Projects Agency.

User
Management

Allocation
Management

Resource Instrumentation
and Control Specification File

Management

Real-Time System
Management

Figure 1. The major subsystems of the middleware and their dependencies.

Specification File Management parses hardware configuration and software specification files;

the specification files describe the characteristics of the computing and network resources and
the features and real-time requirements of the information system software [1, 2]. The other
subsystems use the information from the specification files.

The Resource Instrumentation and Control subsystem has two main purposes. First, its

Resource Monitor component is used to gather information about the utilization and availability
of the computing and network resources [2, 3, 9]. Second, its Application Control component is
used to start and stop the application programs that constitute the information system software.

The User Management subsystem allows an Operator of the RM middleware to give

commands to the Allocation Manager to start or stop a real-time system. It also allows the RM
Operator to view a real-time system’s performance.

The Real-Time System Management subsystem monitors the performance of real-time systems

and provides updates to the User Management subsystem. When real-time performance problems
are detected, Real-Time System Management performs diagnosis of the causes and of possible
resource reallocation actions that could be taken to restore required real-time performance, and
reports its findings to the Allocation Management subsystem.

Allocation Management uses Resource Instrumentation and Control to (1) gather information
about the resources, and (2) start and stop application programs. The resource information is
used to maintain a feasible allocation (one in which all real-time requirements are met) and that
provides optimal utility to all information systems under its control.

Real-time Software

System

Host

User Management

Allocation

Management

Resource Instrumentation

and Control

Real-Time System

Management

Timestamp

Event
Reallocation

Request

Performance

Updates Service Level / Utility

Updates

Reallocation

Plan
Service Level /

Start or Stop

1

3

2

6

4

5

Figure 2. The subsystem collaboration diagram for the maintain feasible allocation use case.

The most critical use case of our software system, maintain feasible allocation, is illustrated in

Figure 2. Real-time systems report their performance data to Real-Time System Management,
which monitors real-time performance and requests that Allocation Management reallocate
resources if a real-time performance problem is detected. Allocation Management creates a
reallocation plan and uses Resource Instrumentation and Control to execute the plan.

III. Resource instrumentation

The resource instrumentation and control subsystem is subdivided into two service packages,
resource monitor and application control. This section describes the resource monitor
subsystem, which represents the resource instrumentation pattern, and section VI describes the
application control subsystem, which describes the resource control pattern.

A. Summary of the problem and the forces that give rise to it

The resource instrumentation pattern solves the problems of collecting and maintaining
information about the recent state of computing and network resources. The types of resources
include hosts, networks and devices. The state of a resource includes its status (on/off) and its
utilization, as well as several device-type-specific attributes, including the following:

o Host: context switching rate, free memory, etc.
o Network: expected latency, available bandwidth, collisions, etc.

Additionally, the instrumentation pattern solves the problem of maintaining historical
information, calculating trends, forecasting future resource states, analyzing stability, and
diagnosing causes of problems.

The desire to find good solutions to the problem of allocating computing and network

resources to distributed systems give rise to the need for the resource instrumentation pattern.
Typical goals of allocation include load balancing, schedulability analysis, system certification,
and response time prediction; each of these requires knowledge of resource state.

B. A solution in terms of a collaboration with participating classes

This section provides a UML analysis model (see [4]) showing the realization of the use case

in terms of classes and their collaborations.

24

Resource Monitor Service Package

Allocation
Management

Host
Resource Monitor Host Interface

Resource Monitor InterfaceHost Resource

Resource Monitor

Figure 3. A solution for the resource instrumentation pattern.

As shown in Figure 3, the solution for the resource instrumentation pattern involves four

classes. The boundary class resource monitor host interface gathers state information from a

resource (in this example a host resource is shown). The control class resource monitor stores the
state information as well as any computed metrics in the entity class host resource. Queries for
information are received and handled by the boundary class resource monitor interface.

C. Summary of the benefits and consequences of using this pattern

One benefit of using the resource instrumentation pattern is that it masks heterogeneity of

resources. Device-specific and operating system-specific details are hidden in the
implementation of the pattern. Another benefit is that many aggregate metrics (such as trend) can
be implemented once and reused. Since the pattern is device-specific or OS-specific,
implementations of this pattern are not platform-independent.

IV. Software performance monitoring

This section characterizes the software performance monitoring use case.

A. Summary of the problem and the forces that give rise to it

The software performance monitoring pattern addresses the problem of determining and

assessing the performance of distributed real-time subsystems (called paths). One problem it
solves is the aggregation of time-stamped events (from the application programs that constitute a
path) into a single value that represents end-to-end path latency.

In addition to aggregation, the pattern solves the following problems:

o checking that end-to-end latencies meet performance requirements,
o forecasting future end-to-end latencies, and
o diagnosing causes of poor performance.

This pattern is motivated by the need to accommodate dynamic workload changes; this

property makes it necessary to monitor the performance and resource needs of real-time
applications. If the workloads of real-time systems were constant, then resources could be
statically allocated in a way that permits all real-time constraints to be met.

B. A solution in terms of a collaboration with participating classes

The real-time system management subsystem (see Figure 4) provides a solution to the software

performance monitoring pattern. A real-time software system (or its constituent application
programs) provides time-stamped events to the real-time system interface boundary class. The
real-time system manager control class stores the event information in a real-time system event
class; additionally, it (1) performs checking, forecasting, and diagnosis and stores the result in
the real-time system state class and (2) provides data to other subsystems.

21

Real-Time System Management

Allocation
Management

Specification File
Management

User Management

Real-Time System InterfaceReal-Time System
State

Real-Time System
Event

Real-Time System
Manager

Real-time Software
System

Figure 4. A solution for the software performance monitoring pattern.

C. Summary of the benefits and consequences of using this pattern

Use of the software performance monitoring pattern results in several benefits. The

communication with application programs is masked; communication protocols can be
customized for different applications and encapsulated within the real-time system interface
class. Additionally, functions for checking, forecasting and diagnosis can be implemented once
and reused. However, this pattern assumes that the real-time software system contains the ability
to send time stamps to real-time system management.

V. Allocation planning and management

The allocation planning and management pattern is described in this section.

A. Summary of the problem and the forces that give rise to it

The allocation planning and management pattern solves the problem of dynamically

mapping software (the demand space) to hardware resources (the supply space) in a way that
satisfies all constraints (e.g., real-time requirements) and optimizes the utility that accrues from
the system as a result. The software entities to be mapped include systems, subsystems/paths,
application programs and connections between application programs. The hardware includes
CPUs, memory, network components, bandwidth, devices, and power.

The need for the pattern stems from dynamic environments (e.g., war-fighting and space),
dynamic workloads (e.g., unknown event arrival rates and unknown input sizes for data-driven
processing), and hardware failures.

B. A solution in terms of a collaboration with participating classes

22

Allocation Management

Allocation State

Allocation Manager

User Management

Real-Time System
Management

Specification File
Management

Resource Instrumentation
and Control

Figure 5. A solution for the allocation planning and management pattern.

The allocation planning and management pattern is realized by a control class (allocation

manager) that utilizes information contained in the entity class allocation state. The allocation
manager performs constraint checking and allocation optimization analysis in response to
reallocation triggers. Information from allocation state is used to evaluate specific candidate
allocations. Upon discovering a suitable new allocation, the allocation manager class employs
the pattern to carry out its decision.

C. Summary of the benefits and consequences of using this pattern

Benefits of using the pattern include the following:

o flexibility (of allocation),
o adaptability,
o graceful degradation,
o survivability, and
o scalability.

A consequence of employing the pattern is that on-the-fly performance analysis must be

performed.

VI. Resource control

The resource control pattern is described in this section.

A. Summary of the problem and the forces that give rise to it

The resource control pattern addresses the problem of modifying the way that software

components are allocated to hardware resources. The pattern allows for components to be
started, stopped and moved. Additionally, the pattern monitors the status of the components and
provides a notification service that allows clients to be notified when a component unexpectedly
terminates.

The force that gives rise to the pattern is the need to dynamically affect how resources are

being used and the need to provide survivability to software components.

B. A solution in terms of a collaboration with participating classes

23

Application Control Service Package

Allocation
Management

Host

Application Control Host Interface

Application Death Event

Application Control

Application Control Interface

Figure 6. The resource control pattern.

Figure 6 shows a solution for the resource control pattern. The application control interface

class accepts requests to control components and provides notifications of unexpected
component terminations. The application control control class dispatches commands to hosts via
the application control host interface class and records unexpected component terminations in
the application death event class.

C. Summary of the benefits and consequences of using this pattern

A benefit of using this pattern is that control of heterogeneous hardware resources and
software components can be handled via a uniform interface.

The use of this pattern implies interaction among some of the patterns presented here. For

example, in the case that the software performance monitoring pattern forecasts or detects a real-
time constraint violation, it must communicate with the allocation planning and management
pattern. In turn, the allocation planning and management pattern may instruct the resource
control pattern to reallocate resources if the violation may be resolved.

VII. Domain reference architecture

This paper deals with the domain of large, distributed real-time systems that have execution

times and resource utilizations which cannot be characterized a priori. (The motivation for our
work is provided in part by the characteristics of combat systems, as described in [7].) There are
several implications of these characteristics: (1) demand space workload characterizations may
need to be determined a posteriori, and (2) an adaptive approach to resource allocation may be
necessary to accommodate dynamic workload changes. Thus, this paper considers approaches
for dynamically managing distributed computing resources by continuously computing and
assessing QoS and resource utilization metrics that are determined a posteriori. This section
defines the domain by presenting an adaptive distributed system reference architecture [8] that is
suitable for such an approach. This reference architecture provides the capabilities and
infrastructure needed to construct multi-component, replicated, distributed real-time systems that
negotiate for distributed computing resources to achieve desired QoS levels.

Figure 7 depicts the distributed system reference architecture. The diagram shows the

functional architecture structure needed to support distributed application programs for a
computer containing a client application. This structure is repeated throughout the computers of
the distributed system; in particular, the computer hosting the server application contains a
comparable structure. Also executing somewhere in the distributed system's collection of
computers is a set of QoS management components that interact with the computers, network
components and applications of the distributed system to provide QoS management.

Besides the applications themselves, the components of the reference architecture consist of

four primary types: operating systems, network services, high-level communication and state
management middleware services, and resource management services. The operating system
services are those needed to support real-time applications. The network services provide low-
level network communications and time management capabilities. The middleware components
provide the ability to communicate in accord with three high level communication models:
publish-subscribe; group programming, with associated ordered multicast and state data
synchronization services; and distributed object programming. The resource management
services consist of computing resource and application status monitoring and reporting services,
QoS negotiation services, and program control services.

Program Ctrl
Agent

Network
Monitor

Replication
Services

Distributed
Objects

Group
Ordered

Publish
Subscribe

Name
Service

Failure
Monitor

Resource &
QoS Broker

Resource
Utilization

Time
Service

Mid-level
Protocols

Low-level
I/O

Program
Control

QoS
Specs.

Application
QoS Broker

Computer / Network Hardware

Operating
System

Server
Computer

Server
Application

Visual-
ization

Security
Management

Network
QoS Broker

Process
Failure

Network
Hardware

Client
Computer

Process
Startup

User
RequirementsA

Physical Media

Network
QoS

Auto-
Config.

Security
Services

Client
Application

Appl. QoS
Mgt. & Neg.

Resource
Allocation

Resource
Mgt. & Neg.

Security
Agent

A

Figure 7. A distributed system reference architecture.

Taken together, these services allow distributed applications to perform allocated processing
functions, to communicate with each other, to perform fault detection and recovery activities, to
perform load sharing activities, and to negotiate resource utilization and QoS requirements with
the underlying distributed system infrastructure. This architecture has been partially
implemented and successfully employed for dynamic management of QoS and distributed
computing resources within a Navy distributed computing testbed [2,9] and within a NASA
satellite constellation testbed [10]. Features of the testbeds include real-time mission critical
computing, fault tolerance and scalability (a description of the testbed is contained in [2]).

The reference architecture is currently serving as a roadmap for the construction of a

distributed resource management system; a significant portion of the architecture has been
realized [2]. In addition to providing guidance for implementation, the authors have found that
the architecture is very useful for classifying emerging and existing technology components.
Thus, it is used as the starting point for the pattern definitions contained in the remainder of the
paper.

VIII. Summary

This paper characterizes important patterns within the domain of dynamic resource
management. A reference architecture that characterizes the domain is provided. Additionally, an

architecture that focuses on the sub-domain of computing and network resource management is
provided. The architecture is decomposed to provide solutions for the following patterns:

o resource instrumentation,
o software performance monitoring,
o allocation planning and management, and
o resource control.

For each pattern, the paper describes (1) the problem that it address and the forces that give rise
to it, (2) solutions to the problem, and (3) the benefits and consequences of using it.

IX. Acknowledgements

This project was funded in part by the DARPA program entitled Program Composition for
Embedded Systems.

X. References

[1] L. R. Welch, B. Ravindran, B. A. Shirazi and C.Bruggeman, “Specification and modeling of
dynamic, distributed real-time systems,” in Proceedings of The 19th IEEE Real-Time Systems
Symposium, 72-81, IEEE Computer Society Press, 1998.

[2] Lonnie R. Welch, Paul V. Werme , Larry A. Fontenot, Michael W. Masters, Behrooz A.
Shirazi, Binoy Ravindran and D. Wayne Mills, “Adaptive QoS and Resource Management
Using A Posteriori Workload Characterizations,” The IEEE Real-Time Technology and
Applications Symposium, 266-275, June 1999.

[3] Binoy Ravindran, Lonnie R. Welch and Behrooz A. Shirazi, “Management Middleware for
Dynamic, Dependable Real-Time Systems,” in The Journal of Real-Time Systems, 20:183-196,
Kluwer Academic Press, 2000.

[4] I. Jacobson, G. Booch and J. Rumbaugh, The Unified Software Development Process, 1998,
Addison Wesley Longman, Inc.

[5] G. E. Prescott, S. A. Smith and K. Moe, “Real-Time Information System Technology
Challenges for NASA’s Earth Science Enterprise,” in Proceedings of the International Workshop
on Real-Time Mission-Critical Systems, Dec. 1999.

[6] Lonnie R. Welch, Binoy Ravindran, Robert D. Harrison, Leslie Madden, Michael W. Masters
and D. Wayne Mills, “Challenges in Engineering Distributed Shipboard Control Systems,”
Work-in-progress - The IEEE Real-Time Systems Symposium, 19-22, December 1996.

[7] Robert D. Harrison Jr., “Combat system prerequisites on supercomputer performance
analysis,” in Proceedings of the NATO Advanced Study Institute on Real Time Computing,
NATO ASI Series F(127), 512-513, Springer-Verlag 1994.

[8] Lonnie R. Welch, Michael W. Masters, Leslie A. Madden, Paul V. Werme, Dave Marlow,
Phil Irey and Behrooz A. Shirazi, “A Distributed System Reference Architecture for Adaptive
QoS and Resource Management,” Lecture Notes in Computer Science, 1586:1316-1326, Jose
Rolim et al. (eds.), ISBN 3-540-65831-9, Springer-Verlag, 1999.

[9] Lonnie R. Welch, Paul V. Werme, Behrooz A. Shirazi, Charles D. Cavanaugh, Larry
Fontenot, Eui-Nam Huh and Michael W. Masters, “Load Balancing for Dynamic Real-Time
Systems,” Cluster Computing, 3(2000):125-138, 2000.

[10] Toni Marinucci, Anbuselvan Neelamegam, Brett Tjaden, Lu Tong, Lonnie R. Welch, Brian
Goldman, Greg Greer, Deepak Kaul, and Barbara B. Pfarr, “Sensor Web Adaptive Resource
Manager,” NASA Earth Science Technology Conference (ESTC-2001), August 2001.

	Dynamic Resource Management Architecture Patterns
	
	
	
	
	
	
	Lonnie R. Welch
	Toni Marinucci
	Michael W. Masters

	I. Introduction

	II. Computing and network resource management architecture
	
	
	
	A. Summary of the problem and the forces that give rise to it
	B. A solution in terms of a collaboration with participating classes
	C. Summary of the benefits and consequences of using this pattern

	IV. Software performance monitoring
	
	Summary of the problem and the forces that give rise to it

	V. Allocation planning and management
	
	
	Summary of the problem and the forces that give rise to it

	VI. Resource control
	A. Summary of the problem and the forces that give rise to it
	B. A solution in terms of a collaboration with participating classes
	
	
	C. Summary of the benefits and consequences of using this pattern

	VII. Domain reference architecture
	VIII. Summary
	IX. Acknowledgements
	X. References

