
Policy Enforcement Pattern

Yu Zhou, Qian Zhao, Mark Perry*

{yuzhou | qianzhao | markp} @csd.uwo.ca
Department of Computer Science

University of Western Ontario
London ON N6A 5B7 Canada

Abstract
Rapid development within organisations and their environments requires quick response
and changes to law, business rules and other policy driven activities. Object-oriented
systems, with their increasing dependence on component reuse, require an architecture
that emphasises flexibility and run-time adaptability. In this paper, we abstract a high-
level policy enforcement pattern that can satisfy the major requirements of such systems.
The prerequisite of flexibility is addressed by using scripted policy rules. The need for
adaptability is addressed by using a policy repository and plug-in modules of policy
elements.

1. Intent
Enforce different kinds of policy in a uniform way. The policies and their enforcement
processes can be changed easily to accommodate future changes.

2. Example
Consider a license management system of software component, as shown in Figure 1, in
which we want to make sure that rights for identified clients are correctly attributed and
authorised, and the usage of protected software component is properly recorded. To
realise access control, and usage tracking and recording, it is necessary that there be a
variety of policies that specify both the clients and their corresponding license types; that
is, what they are able to do within the licensing scheme, and what they cannot do (for
example make unauthorised distributions of a software component). Whether a license
request is allowed or denied is based on policies that may be pre-defined by the developer
of the licensing system, or a third party supplier, or may even be set up or changed by
licensors at a later date, so long as this falls within the capabilities (i.e. legal restrictions)
of that licensor. There may be occasions where this process is inherited by secondary
licensors from primary licensors. In relation to the licensing of software, an area of high
complexity and economic significance [Per2001], such a process is a commonly recurring
pattern within the legal system and in business. The type of license and related licensing
activities vary from client to client and over time; thus policies may need to change
frequently. To maintain such licensing policies is difficult and resource intensive.

Figure 1: License Management System

A generalised and flexible architecture is required in which corresponding policies can be
applied, so long as the policy elements are readily available in the rapidly changing
policy environment.

3. Context
In many business environments, whether working with network management, quality of
service (QoS) or within the mortgage and insurance sectors, we often have to face a
policy pattern of the kind “When Who Can/Cannot Do What”. As shown in Figure 2,
Privileges specify “When”, Subject specifies “Who”, Conditions specify “Can/Cannot”,
and “Do What” is specified by Object and Actions.

Figure 2: Policy Model

Business and management environments need flexibility and adaptability when
implementing their policies. Although the target objects and their structures may be
stable, the tasks, including the handling rules and procedures, are varied.

4. Problem
How to enforce policies no matter what kind of policies are required to be enforced?
How to provide flexibility and adaptability to this policy enforcement, to
accommodate future changes?

• System environments are in a constant state of flux, whether looked at from a
high level of abstraction in business or from a lower level, such as in component
management. In the face of such changeable circumstances, there have been some
approaches proposed that fulfil the purpose of representing the dynamic business
rules and management policies adaptively and effectively, including Command
Dispatcher Pattern [Dup2001], Rule Object [Ars2000], Ponder [Dam2001],
Internet Engineering Task Force (IETF) Policy Core Information Model
[Moo2001].

• However, the Command Dispatcher pattern emphasises a plug-in mechanism and
run-time interpretation of a sequence of command executions written in plain text,
but does not consider organising those commands into policies like “if condition
then action else action”. The Rule Object Pattern, on the contrary, considers the
language for policy/rule construction, but does not provide an easy way for
building up policies/rules for people who are not familiar with any programming
language. Ponder and PCIM take an implementation perspective and are mainly
concerned with management of networks and QoS.

5. Forces
When the requirements and goals of network policies, management policies, and business
policies are taken into consideration, the following forces need to be addressed in the
context of policy enforcement:

1. Integrating pre-built policy libraries: Pre-built libraries are modules for a large
number of policy elements that are used in a policy, such as privilege, condition
and action. The libraries are extensible, which means that the policy elements
inside can be independently developed and delivered even when the system is in
runtime.

2. Flexible configuration: In a policy, there is the need for several collaborating
elements to reach a specific purpose. Furthermore, a policy element may invoke
other elements in order to complete its execution. In both situations, a number of
options maybe available for a certain operation to be completed by selecting from
a range of policy elements.

3. User-defined policy rules: The client should be able to implement and customise
business rules easily.

4. Central Policy Handling: Policies should be stored in a repository and managed
by a central instance.

5. Efficiency: Runtime implementation of customizable and dynamic systems often
decreases the efficiency because runtime indirections, lookup mechanisms, and
plain text parsing/interpretation place an overhead on the system.

6. Solution
The Policy Enforcement pattern (Figure 3) provides a uniform way to enforce a variety of
business and management policies with flexibility and adaptability. With policy elements,
policy processes, configuration policies and scripted policy rules, clients can customise
their own policies and later register them in the repository that may be either centralised
or distributed depending on the particular demands of the operation environment.

Architecture Overview

Figure 3: Policy Enforcement Pattern

As shown in Figure 3, clients request an operation on a target object. The Policy Factory
creates the corresponding policy and related policy elements in the pool. Policy Decision
decides whether or not the client’s request is allowed. Policy Enforcement enforces the
policy and executes the requested operation on the target object.

Participants

The following participants form the structure of the policy enforcement pattern:

• Common clients may request an execution on a targeted object. There may
also be administrative clients to grant the privileges for clients, and to define
and register the administrative policies. Some clients, who are developers, can
define and register business rules as Policies, or they can develop and register
policy modules into the Policy Repository.

• The Policy Factory creates runtime Policy instances and puts them into the
Policy Pool.

• The Policy Pool provides efficient runtime storage for the policy instances. If
a policy that a client request is already in the pool, it can be used directly
without instantiating it again.

• A Parser parses the plain text format of policies, and then queries the policy
element specifications from Policy Registry and in doing so helps create
runtime Policy instances.

• The Policy Registry is a lightweight storage for specifications of policy
element interface.

• Pre-Defined Policies are rules that can be applied to the clients’ request.
There are two kinds of policies, Configuration Policy and Policy Rule.

• Policy Elements are implemented modules used in policies, including
Privilege, Condition and Action.

• A Policy Decision decides whether or not a certain request is allowed.
• The Policy Enforcement component evaluates the required policy conditions

and invokes the corresponding policy actions. Depending on the type of the
policy, the enforcement process may vary.

• The Policy Repository provides storage for the pre-defined policies, and
policy elements. It supplies the references of Policy Element to Policy
Decision and Policy Enforcement, and helps them both find the appropriate
modules at runtime. The new functions and optimised elements can be
integrated into it at a later date.

• The Target Object is the object that the client requests.

Structure

Figure 4: Class Diagram of Policy Enforcement Pattern

Figure 4 illustrates a class diagram of this Policy Enforcement pattern. There are two
important interactions in this diagram: PolicyObject interacts with
ConfigurationPolicy, and PolicyRuleInterpreter interacts with
PolicyRule. The three kinds of PolicyElement, which are Privilege,
Condition and Action, along with PolicyObject, ConfigurationPolicy
and PolicyRule, can be defined, developed and delivered independently.

The PolicyDecision assesses the privileges based on the client, the target object,
and corresponding policies. It queries the pre-built policy decision modules, and provides
the security functions, such as authentication, access control, non-repudiation, and
software license control.

PolicyEnforcement enforces the policy in two ways, through invoking either
PolicyObject or PolicyRuleInterpreter , which are related to
ConfigurationPolicy or PolicyRule respectively.

• PolicyObject is pre-defined policy process that interacts with
ConfigurationPolicy. Some popular and well-known rules in certain
target domain may be pre-defined as policy processes. These policy processes
can be integrated into the system and be invoked when necessary.

• The PolicyRuleInterpreter interprets PolicyRule at runtime. Both
kinds of PolicyEnforcement evaluate the required policy conditions and
invoke the corresponding policy actions.

PolicyElement includes Privilege, Condition and Action:
• Privilege is module for PolicyDecision to help determine, according

to its policy, whether or not the client’s request on the required target object is
legal.

• Condition is used to decide how a given policy will be carried out on a
certain step.

• Actions are the operations that will be executed depending on different
situations.

PolicyFactory creates runtime Policy instances and put them into the Policy Pool.
There are two kinds of policies, ConfigurationPolicy and PolicyRule:

• ConfigurationPolicy contains the configuration information in a plain
text format, which is used by both PolicyDecision and PolicyObject
to choose proper policy elements.

• PolicyRule is an executable script file also containing the configuration
information. In the execution of PolicyRule, the script is interpreted and
the configuration information inside it provides the proper option of module
choice.

The PolicyRepository provides storage for these pre-defined policies
(PolicyRule and ConfigurationPolicy), policy processes (PolicyObject),
and policy elements (Privilege, Condition, and Action). It supplies the

references of required policy element to P o l i c y D e c i s i o n and
PolicyEnforcement, and helps both of them find the appropriate modules at
runtime.

Dynamics

Figure 5: Collaboration for PolicyObject

Figure 5 shows the collaboration when dealing with ConfigurationPolicy and
PolicyObject.

• The PolicyFactory checks if the policy for current client is running. If
found, it will obtain the references of policy instance and use them directly.

• If not found, P o l i c y F a c t o r y will create the correct
ConfigurationPolicy instances. In this way, the run-time costs, such as
speed and storage space, are reduced.

• The PolicyDecision uses the ConfigurationPolicy instances as
the configuration commands to obtain the runtime references of the pre-built
Privilege modules. It can use these modules to check the authorisation and
access control information, and then make the final decision.

• If the decision is positive, the PolicyEnforcement will invoke
PolicyObject . Depending on the configuration policy, the
PolicyObject gets the runtime references of the pre-built Condition
modules and Action modules; then it evaluates the Conditions and invokes the
Actions directly.

Figure 6: Collaboration for PolicyRule

When handling the scripted PolicyRule, as shown in Figure 6, the collaboration is
slightly different from that for ConfigurationPolicy:

• The PolicyFactory will create the correct PolicyRule instances.

• The PolicyDecision uses the PolicyRule instances as the
configuration commands to obtain the runtime references of the pre-built
Privilege modules.

• If the result of Policy Decision is positive, Policy Enforcement will invoke
PolicyRuleInterpreter that interprets and executes the policy rule.
While interpreting, PolicyRuleInterpreter also evaluates the
conditions and invokes the actions modules.

7. Example Resolved
Applying the Policy Enforcement pattern to a license management system, as shown in
Figure 7, solves the problems we discussed in the example section.

Figure 7: Example Resolved Using Policy Enforcement Pattern

If the license type of a client changes, we need only to assign another policy related to the
new license type to this client and delete the old one. The Policy Decision and Policy
Enforcement of the new policy will execute when the client sends a request.

If some more optimised policy elements are developed according to the published
common interfaces, they can be integrated into the licensing system due to the plug-in
mechanism and be used right away without affecting existing policies and other policy
elements.

If a rule inside a policy does not fit into a given situation and needs to be changed, the
scripted policy rule provides a convenient way to generate new policies utilising existing
policy elements.

As noted above, the Policy Enforcement Pattern helps to easily maintain these varying
licensing modules and policies and allows for future upgrades.

8. Consequences
Benefits

• Flexibility: The application of this pattern allows end users to define their own
policies to meet specific situations.

• Customizability: This pattern facilitates customization of policy enforcement
process by providing configuration information in policies.

• Adaptability: The policy elements can be independently developed and
delivered. This ensures that new functions and more optimised elements can
always be integrated into the system.

• Universality: This pattern can be applied in a wide variety of environments
where there are clients in a policy-controlled situation.

Drawbacks

• Performance: This framework allows the plain text as a policy description,
which needs to be parsed and interpreted at runtime. This will slow down the
policy execution.

The Policy pool and pre-built modules provide partial solutions to this
performance problem. The Policy pool saves some time in policy
instantiation. Pre-built modules provide time-optimised modules that can
accelerate the execution time and improve performance dramatically.

• Higher Complexity: This pattern might increase the complexity of some target
systems.

• Understandability: To implement the framework discussed in this study
would not be trivial. It will require a relatively sound system design, which in
turn will depend on detailed and thorough studies of the domain.

9. Variants
• Access Control Policy Enforcement: Policy Enforcement Pattern can be used

to control the access to protected resources, such as in a membership-based
digital library.

• Reporting Policy Enforcement: Policy Enforcement Pattern can be used to
report the event that matches the pre-defined situation and to take
corresponding actions, such as in a billing system.

• Filter Policy Enforcement: If we need to inspect a data flow, Policy
Enforcement Pattern is able to check this flow and filter out the contents that
are not allowed by policies.

• Quality of Service (QoS) Policy Enforcement: In QoS management, Policy
Enforcement Pattern can be used to specify different types of service and to
take corresponding actions.

• Network Management Policy Enforcement: When managing network, the
rules of access control to network resource are specified as policy and are
enforced using Policy Enforcement Pattern.

• Business Policy Enforcement: In a large enterprise, there can be many
business policies involving all aspects of running that enterprise. To achieve

an efficient management, Policy Enforcement Pattern is needed in the
management software.

10. Known Uses
Some examples of the use of the Policy Pattern are:

• Clients apply policies to network services, such as Quality of Service (QoS).
Policies for QoS help in regulating distinct data packages, and to provide the
specific services described in the service level agreements (SLAs) or service
level specifications (SLSs).

• The Internet Engineering Task Force (IETF) Policy Core Information Model
[Moo2001] provides a good example of model for representing policy
information and classes that could use the pattern described here. It can be a
QoS variant of this pattern.

• Clients apply policy to network management. Policies for network
management help to control the access to network resources and to avoid
illegal use.

• The Ponder [Dam2001] and Policy Framework for Management of
Distributed Systems [Dam2002] address the implementation of managing
network systems based on policies. They constitute Network Management
Policy Enforcement.

• Clients apply policy to software license management. License policies help to
simplify the management of different types of licenses and to detect the
violation of these licenses. The Access Control Policy Enforcement,
Reporting Policy Enforcement, and Filter Policy Enforcement are used in our
software component licensing system.

• The motivation for the OASIS (Open Architecture for Securely Interworking
Services) [Bac2001] derives from a study undertaken with a view to providing
ubiquitous access to Electronic Health Records (EHRs) held within the
National Health Service in England. It adopts the idea of the policy to realise
the role based access control on the database, and employs the access control
variant of this pattern to express different local policies using the same
process.

• The core of Component-based Micro-Workflow [Man2002] is another known
use of this pattern. The process component is similar to the pre-defined
Policy. The execution component works as the Policy Enforcement. The
synchronisation component is similar to the Policy Decision.

• Adaptive Object Model [Yod2001] extracts the business rules from the
implementation code, and stores these rules separately. To achieve this,
properties and behaviors (called ‘Rules’) are separated from the entity. AOM

suggests utilising the Strategy Pattern [GOF1995] or Rule Object Pattern
[Ars2000] to implement Rules. This could be realised using the Policy
Enforcement Pattern.

• Clients apply policies to business environments. Policies are defined
according to business rules. They help to make the change from “manual”
routines to “automated” systems. This helps save time and money, as well as
introducing consistency. The Objectiva telephone billing system [And1998]
uses the Type Object [Joh1998] that is the basis of AOM [Yod2001]. It could
be implemented by using the variants of Reporting Policy Enforcement and
Business Policy Enforcement.

11. Related Patterns
The Command Dispatcher Pattern [Dup2001] is implicitly part of Policy Enforcement
Pattern described here. The configuration policy and the scripted policy rule are enforced
as the Command Dispatcher Pattern.

The Policy Enforcement Pattern contains the PolicyRuleInterpreter and the
PolicyObject , which are similar with the Rule Object [Ars2000].

The Abstract Factory Pattern [GOF1995] is used in this Policy Enforcement Pattern to
create the two kinds of policies.

The Command Pattern [GOF1995] separates the request for a service from its execution.
It is similar to the process of Policy Enforcement in the Policy Enforcement Pattern,
which also manages clients’ requests and schedules their execution.

The Strategy Pattern [GOF1995] defines a family of algorithms, encapsulates each, and
makes them interchangeable. Strategy lets the algorithm vary independently from the
client that uses it. It is similar to the use of flexible configuration in the Policy
Enforcement Pattern, although only for simple situations and it does not offer
scriptability.

Component Configurator Pattern [POSA2] allows an application to link and unlink its
component implementations at run-time without having to modify, recompile, or
statically relink the application. In the pattern described in this paper, the Policy Element,
Enforcement and Policy are typical uses of Component Configurator Pattern.

Role Object Pattern [Bau1997] adapts an object to different clients’ needs through
transparently attached role objects, with each representing a role the object has to play in
a particular client’s context. The clients in this Policy Enforcement Pattern are also
organised into different roles, such as common client, administrative client, developer
and so on. Each role has its different policies, privileges, conditions and actions.

Acknowledgements
We thank Uwe Zdun for his great comments that significantly improved the presentation
of this pattern.

References
[And1998] Francis Anderson and Ralph Johnson, “The Objectiva telephone billing
system”, MetaData Pattern Mining Workshop, Urbana, Illinois, May 1998,
http://www.joeyoder.com/Research/metadata/objectiva.pdf

[Ars2000] Ali Arsanjani, “Rule Object Pattern Language”, Proceedings of PLoP2000,
Technical Report #wucs-00-29, Dept. of Computer Science, Washington University,
October 2000, http://jerry.cs.uiuc.edu/~plop/plop2k/proceedings/Arsanjani/Arsanjani.pdf

[Bac2001] Jean Bacon, Michael Lloyd, and Ken Moody, "Translating Role-Based Access
Control Policy within Context”, Proceedings of International Workshop in POLICY
2001, Bristol, UK, 2001,
http://link.springer.de/link/service/series/0558/papers/1995/19950107.pdf

[Bau1997] Dirk Bäumer, Dirk Riehle, Wolf Siberski and Martina Wulf, "The Role Object
Pattern", Proceedings of PLoP1997, Technical Report #wucs-97-34, Dept. of Computer
Science, Washington University, 1997,
http://jerry.cs.uiuc.edu/~plop/plop97/Proceedings/riehle.pdf

 [Dam2001] N. Damianou, N. Dulay, E. Lupu and M. Sloman, “The Ponder Policy
Specification Language”, Proceedings of the Policy Workshop 2001, HP Labs, Bristol,
UK, Springer-Verlag, 29-31 January 2001, http://www.doc.ic.ac.uk/~mss/Papers/Ponder-
Policy01V5.pdf

[Dam2002] N. Damianou, “A Policy Framework for Management of Distributed
Systems”, PhD Thesis, Faculty of Engineering of the University of London, London,
England, 2002, http://www-dse.doc.ic.ac.uk/Research/policies/ponder/thesis-ncd.pdf

[Dup2001] Benoit Dupire and Eduardo B Fernandez, “The Command Dispatcher
Pattern”, Proceedings of Pattern Language of Pattern, 2001,
http://jerry.cs.uiuc.edu/~plop/plop2001/accepted_submissions/PLoP2001/bdupireandebfe
rnandez0/PLoP2001_bdupireandebfernandez0_1.pdf

[GOF1995] Erich Gamma, Richard Helm, Ralph Johnson and John Vlissides, “Design
Patterns – Elements of Reusable Object-Oriented Software”, Addison-Wesley, 1995

[Joh1998] Ralph Johnson, Bobby Wolf, “The Type Object Pattern”, Pattern Languages of
Program Design 3, Addisson Wesley, 1998, http://www.ksc.com/article3.htm

[Man2002] Dragos A. Manolescu, “An Extensible Workflow Architecture with Objects
and Patterns”, TOOLS Eastern Europe 2001, Sofia, Bulgaria, 2002, http://micro-
workflow.com/PDF/toolsee01.pdf

[Moo2001] B. Moore, E. Ellesson, J. Strassner and A. Westerinen, “Policy Core
Information Model - Version 1 Specification (RFC 3060)” 2001,
http://www.ietf.org/rfc/rfc3060.txt?number=3060

[Per2001] Mark Perry “Information Technology” Chapter 30 Lexis/Nexis Butterworths
Electronic Business Law 2001

[POSA2] Douglas C. Schmidt, Michael Stal, Hans Rohnert and Frank Buschmann,
“Pattern-Oriented Software Architecture: Patterns for Concurrent and Networked
Ojbects”, John Wiley & Sons, 2000, http://www.cs.wustl.edu/~schmidt/POSA/

[Yod2001] Joseph W. Yoder, Federico Balaguer and Ralph Johnson, "Architecture and
Design of Adaptive Object Models", Intriguing Technology Presentation at the 2001
Conference on Object-Oriented Programming Systems, Languages, and Applications
(OOPSLA '01), ACM SIGPLAN Notices, ACM Press, December 2001,
http://www.adaptiveobjectmodel.com/OOPSLA2001/AOMIntriguingTechPaper.pdf

