
Tabular Code Generation:
Write Once, Generate Many

Joel Jones
Department of Computer Science

University of Alabama
jones@cs.ua.edu

1 Intent

Provide a way of encoding information only once and deploying it in two or more
environments. Code for the environments is generated programmatically from a data
file.

2 Motivation

PressPot is a system that adds annotations to Java.class files. [3] These annotations
are used by an “annotation-aware” Java Virtual Machine (JVM) which uses these an-
notations to generate high-quality machine code quickly. If these annotated.class
files are sent to a normal JVM, they are ignored and the program runs normally. One
of the annotations, used for assigning machine registers, is called the virtual register or
VR annotation. In the PressPot system, there are two components, the annotator (the
front-end) and the annotation-aware Java Virtual Machine (the back-end). The Press
Pot back-end is based upon kaffe, an open-source JVM. [6] These two components
both need information about the semantics of the Java bytecodes, as well as informa-
tion about the associated VR annotation. Although the annotator (the front-end) and

.class
annotated
.class

Java

(annotated)
.class

C

Annotator Annotation-aware JVM

Figure 1: T-Diagram for Annotator and Annotation-Aware JVM

the annotation-aware Java Virtual Machine (the back-end), are not tightly coupled, they

1

do share a need for detailed information about the detailed definition of Java byte code
and its relation to the associated annotation.

However, the front-end is written in Java and the back-end is written in C. The
normal solution to the problem of information sharing between two applications is to
write a data structure or object (or a sets of such) and use this common code in both
applications. In the PressPot system, this would be possible. There is a natural choice
in the PressPot system of writing the common code either in Java or in C. If the common
code was written in C, then the front-end could use a native calling interface to access
the code in a C version of the software. If the common code was written in Java,
then the kaffe JVM could use its Java code execution mechanisms to execute the Java
version of the common code. However, there are two disadvantages to this approach.
First, there is the conceptual distance. The maintainer of the annotation-aware version
of kaffe may be thoroughly familiar with C and Java bytecode, but may not be familiar
with the Java programming language. To understand the behavior of the program, it is
better if the source language is the same. The same argument applies to the maintainer
of the annotator. They would rather see the source code in Java, rather than in C. The
second disadvantage is performance. Calling C code from a Java program requires the
additional overhead that calling Java code does not. Data formats must be converted,
garbage collection potentially frozen while the C code is being executing, etc. Calling
Java code from a C program involves similar additional overhead.

We solve the problem of keeping information centralized and expressing that in-
formation in homogeneous manner by generating code from data. By expressing the
information as data, we keep the information in a single place, the data file. By pro-
grammatically generating source code for a particular environment, we keep the main-
tainer visible code homogeneous.

3 Applicability

Use this pattern when the following conditions hold:

• There are two (or more) environments (applications) that share a need for infor-
mation.

• These environments have dissimilar programming languages or infrastructure.

• The information to be shared has a structure that is static during execution of an
application.

Expanding on the last point above, this pattern should not be used as a substitute for
input to an application.

The typical (wrong) solution, when there are two environments that share common
information, is to have two parallel representations of the information, one per environ-
ment. Any changes to the information must be made in both places and is therefore hard
to keep consistent. By generating environment specific code from common source, we
trade maintaining consistency between two environments for maintaining consistency
between the common source file and the generated files.

2

The applicability of this pattern when two different programming languages are
used is easy to see. However, when the same programming language is used, but code
is needed for different operating systems or APIs, it’s use is less obvious. A common
solution for dealing with differing infrastructure is to use Adapter and Factory Method
to hide the system differences. [2] Tabular code is appropriate when the infrastructures
are profoundly different, such as systems where one of the environments is an embed-
ded system with a strict memory allocation discipline and the other environments have
a less constrained memory allocation discipline. Tabular code is appropriate here, as
the code may need to be different on almost every line.

4 Structure

Code Generator Code Generator

Lang. 1 Source Code Lang. 2 Source Code

Common Information

Figure 2: Code Generation from Data

5 Participants

As shown in Figure 2, there are three kinds of participants in this pattern.

Common Information The data file that has the information that is common to mul-
tiple environments and which is to be encoded as programming language text
specific to those environments. The format of this repository may be as simple
as a single line in a text file to a complicated binary, self-referential format stored
in an object-database.

In PressPot, this data file takes the format of a multi-line, tab-separated text file.

Code Generator The code that takes as input the Common Information and converts
it into programming language source code.

In PressPot, this takes the form of awk[1] scripts that read in tab-separated files.
There is one awk script for every type of code structure to be generated.

Source CodeThe programming language source code that is incorporated into the
source code of the application that is specific to each environment.

In PressPot, this takes the form of source code in Java, used by the annotator,
and source code in C, used by the annotation-aware version of kaffe.

3

6 Collaborations

Each Code Generator takes the same Common Information as input, where the Com-
mon Information is stored in a single file. When a Code Generator is executed, it
produces output for a specific environment/language. This output is typically stored in
one or more files. These files are then compiled and linked into separate applications.

A single file for Common Information is the most common case, but multiple files
may be used if the information is used for more than code generation and is more
naturally stored in separate files.

7 Consequences

There are several consequences of using this pattern. First, the data cannot be tested
directly for its correctness in a programmatic fashion. If code was duplicated to achieve
the same effect as this pattern, the code could be tested easily. Second, this pattern has
a reliance on a scripting language, in addition to the two (or more) languages of the
target environment. Such scripting languages can be replaced by a programs written
in one of the target languages, thereby eliminating the need for a programmer profi-
cient in some scripting language. Third, there is a potential for a slight performance
penalty by using generated code versus hand-crafted code. However, we do get a per-
formance speed-up by generating code, as opposed to reading the data used as logic
at run-time and building objects more dynamically. Such a use of run-time interpreted
code might be entail use of the Interpreter. [2] Fourth, having logic as data makes using
the information for other purposes more convenient. For example, during the imple-
mentation of the virtual machine, we used the bytecode data files as input to generate
a LATEX table which was used to track which bytecodes had been implemented in the
annotation-aware code generator.

8 Implementation

There are several issues that are important or useful to consider when implementing
this pattern. We consider here consistency management, input language design, testing,
debugging, and error correction, as well as source readability and data file management.

The use of this pattern trades one consistency maintenance problem for another.
The first case is to have parallel implementations of the shared information. There, the
two implementations in the two different languages must be kept consistent with each
other. The second case is the structure described by this pattern. The first consistency
maintenance problem is difficult to automate, as configuration management tools such
asmakecan not do a simple check on file modification dates. The second consistency
maintenance problem, as described here, is easy to automate, as the file modification
date of the source file can be checked against the file modification dates of the generated
files.

In implementing this pattern, one of the implementation issues to be considered
is the design of the input data file format. The input data file format used in in Press

4

Pot is just one kind of format that can used. There, we used a file that consisted of
lines of tab-separated values. Such a format is easy to write and easy to read, either
programmatically or by a human.

A more complicated input language may be used—one which may require a full-
blown parser. One example is the interface definition language (IDL) used by the Com-
mon Object Request Broker Architecture (CORBA). An IDL file describes an interface
(service) that a distributed program may implement, much like what may be contained
in a “.h” file in a C program. A “stub” generator takes as input an IDL description and
can generate the client side interface in multiple high-level source languages such as
C++ and Java. These stubs are then compiled and linked into the different client pro-
grams that access the service. With a more complicated language, what can be “said”
is broader than in a simple language, but it is more complicated to read. In such a situa-
tion, a hand-written parser, such as recursive descent might be used. Another approach
is to use a parser-generator, such as yacc. [4]

As mentioned in the Consequences section, testing becomes more difficult using
this pattern than otherwise, as errors in the data file can’t be tested directly. Rather,
the error symptoms are propagated to multiple places in the source code. Additionally,
errors in the data file are hard to distinguish from errors in the translation software.

Several ways of ameliorating the testing difficulty can be useful. One is to write
consistency checks in the Code Generators. When using a simple tabular data format,
one might check that the number of columns on the line matches the number expected,
that column values are in range (particularly on numeric columns,) and that the number
of lines is within bounds. If a more complicated input format is used, such that a full-
blown parser is used for reading the data file input, then syntax errors detected will
indicate a problem with the input data file.

Another implementation issue when writing the translators from the data file for-
mat to the source code format is to generate source code that is readable. This involves
several implementation tasks. First, formatting is important. Generated source code
should follow normal coding conventions in terms of indentation, line breaking, spac-
ing, etc. Furthermore, it is also useful to generate two kinds of comments unique to
generated code. The first kind of comment is to place at the beginning of the generated
code something to the effect of “Don’t modify; this code is auto-generated.” This will
point out to the maintenance programmer that any changes to the generated code will
be lost the next time the code generator is run. The second kind of comment is to place
information about the generation process itself—most useful is the name of the data
file, along with information about time, date, option flags, etc.

The last implementation issue we consider is data file management. The instantia-
tion of this pattern in PressPot utilizes a table-like data format, rather than something
more complicated. If such a table-like structure to the data file is evident, then the
use of a spreadsheet facilitates manipulation and error-prevention. In this context, the
equational facilities of the spreadsheet are not used, only the data manipulation aspect.

5

9 Sample Code

In figure 3, we see a portion of the spreadsheet used by Press Pot for handling infor-
mation about Java bytecodes. We show only a portion of the information in this figure.
The first row is header information, describing the contents of each column. The sec-
ond and subsequent rows contain information about the bytecode named in the first
column. Column “B” gives the length of the bytecode in bytes. Column “C” gives
the way that the bytecode uses the operand stack. Whenever a change is made to the

A B C D E
A33 fx

1
2
3
24
5

Name
nop
aconst_null
iconst_m1
iconst_0

Length
1
1
1
1

TypeString {A,I,J,F,D,L,[}
... -> ...
... -> ... L
... -> ... I
... -> ... I

IsBranch
N
N
N
N

index
-1
-1
-1
-1

Figure 3: Spreadsheet from PressPot

spreadsheet, typically when some error is found, a several step process is performed to
generate source code. First, the spreadsheet is saved as a tab-separated file, wherein
each row in the spreadsheet becomes a line in the file and every column in the spread-
sheet is separated by tab characters. Then, several awk scripts are run to generate both
Java and C source code. The Java source code is:

public static final int lengths[]= {
1, 1, 1, 1, /* 0 1 2 3 */

...

This source code is generated by the awk script:

#! /bin/nawk -f
BEGIN {

IFS = "\t" # set field separator to tab
getline # skip header in input

}
{

lengths[NR-2] = $2
}

END {
printf(" public static final int ",

"lengths[] = {\n");
for (i = 0; i < 256; i+=4) {

6

printf(" %d, %d, %d, %d, ",
lengths[i], lengths[i+1],
lengths[i+2], lengths[i+3])

printf("/* %d %d %d %d */\n", i, i+1,
%i+2, i+3)

}
printf(" };\n");

}

The C code generated is similar to the Java code above:

int lengths[] = {
1, 1, 1, 1, /* 0 1 2 3 */
1, 1, 1, 1, /* 4 5 6 7 */

...

The source code for generating C source code is very similar.

#! /bin/nawk -f
BEGIN {

IFS = "\t" # set field separator to tab
getline # skip header in input

}
{

lengths[NR-2] = $2
}

END {
printf("int lengths[] = {\n");
for (i = 0; i < 256; i+=4) {

printf(" %d, %d, %d, %d, ",
lengths[i], lengths[i+1],
lengths[i+2], lengths[i+3])

printf("/* %d %d %d %d */\n", i, i+1,
%i+2, i+3)

}
printf("};\n");

}

The differences are the removal of leading spaces and in the declaration of the int array.
The output of running these awk scripts is then incorporated into a Java or C source

file. The complete source file is generated by a script that runs various similar scripts
for each table, as well as incorporating any static code needed.

10 Known Uses

Using data to guide code generation is a very old approach to certain problems. As
mentioned in the Implementation section, the IDL language in CORBA uses a single

7

file to generate code for multiple languages. Another contemporary example is the use
of Java source code as input to the javac compiler, which produces.class files, and
as input to the javadoc tool, which produces.html files. Admittedly, HTML is not
a programming language, but it does have a strict syntax that must be followed when
generating HTML markup codes.

Another use is in computer-aided software engineering (CASE) tools, such as Ra-
tional Rose. [5] CASE tools automate the production of requirement, analysis, and
design documentation. Many of these tools allow the production of source code from
the design documents. The design documents include class diagrams with specifica-
tions of inheritance, methods, aggregation, etc. CASE tools commonly support the
production of source code from the design documents, with the potential of producing
source code for different languages such as Java and C++.

11 Related Patterns

This pattern is similar to Adaptive Object Models in form, in that logic is represented
as data[9]. However, the motivations for applying this form are different. First, in
Adaptive Object Models, the logic is represented as code as a way of allowing a (power)
user to extend the system, without the aid of a programmer. Second, there is only a
single environment in which the logic as data is to be used.

Another related pattern is Interpreter, in that logic expressed in one language is
executed in the context of another. [2] However, the form and intent are both different.
Interpreter’s logic consists of traversals over a tree structure and this traversal occurs at
run-time. Also, there is only one language executed, the tree structure.

Program Generator is a special instance of this pattern, where the applicability is
driven more by efficiency concerns, rather than consistency between dissimilar envi-
ronments. [8] In Program Generator, high-level specifications are not directly exe-
cutable, interpretation is considered to be too inefficient, and producing a compiler to
machine-code is too be too much work. Therefore, code is generated.

Table-driven Design is another specialization of this pattern, where the applicability
is driven by the tediousness of the changing the specification into source code for a
single environment. [7] In Table-driven Design, the specification is translated into a
table (array) structure, one per every application. The general interpreter of the table is
reused in all applications.

12 Acknowledgments

Thanks to Phyllis Jones for providing the IDL/CORBA example.

References

[1] A HO, A. V., KERNIGHAN, B. W., AND WEINBERGER, P. J.The AWK Program-
ming Language. Addison-Wesley, Reading, MA, USA, 1988.

8

[2] GAMMA , E., HELM , R., JOHNSON, R., AND VLISSIDES, J. Design Patterns.
Addison-Wesley Publishing Company, Inc., Reading, Massachusetts, 1994. ISBN
0-201-63361-2.

[3] JONES, J., AND KAMIN , S. Annotating Java class files with virtual registers for
performance.Concurrency: Practice and Experience 12, 6 (2000), 389–406.

[4] L EVINE, J., MASON, T., AND BROWN, D. lex & yacc, 2nd ed. O’Reilly, 1992.

[5] RATIONAL SOFTWARE CORPORATION. Rational rose: Product information.
http://www.rational.com/products/rose/prodinfo.jsp, June 2002.

[6] TRANSVIRTUAL TECHNOLOGIES. Kaffe OpenVMTM.

[7] WAKE , W. Pattern patter: Table-driven design.
http://users.vnet.net/wwake/patterns/pat9809.shtml, September 1998.

[8] WAKE , W. Pattern patter: Program generator.
http://users.vnet.net/wwake/patterns/pat9905.shtml, May 1999.

[9] Y ODER, J. W.,AND JOHNSON, R. The adaptive object model architectural style.
Proceeding of The Working IEEE/IFIP Conference on Software Architecture(Au-
gust 2002).

9

