
TOWARDS A PATTERN LANGUAGE FOR STABLE SOFTWARE PATTERNS

Copyright © 2003 Haitham Hamza, and Mohamed E. Fayad.
Permission is granted to copy for the PLoP 2003 conference. All other rights reserved.

1

Towards A Pattern Language for Developing
Stable Software Patterns- Part I

Haitham Hamza1 and Mohamed Fayad2

1Computer Science and Engineering Dept., University of Nebraska-Lincoln
Lincoln, NE 68588, USA

hhamza@cse.unl.edu
2Computer Engineering Dept., College of Engineering, San José State University

One Washington Square, San José, CA 95192-0180
m.fayad@sjsu.edu

ABSTRACT

In previous work we have discussed some of the problems that face the contemporary
analysis patterns, and proposed the new concept of “Stable Analysis Patterns” as a
solution to these problems [2,3,5]. Since that time we have applied the same
concepts to design as well as analysis, resulting in the broad concept of
Stable Software Patterns, with specialized concepts for Stable Analysis
Patterns and Stable Design Patterns. Stable software patterns is a new approach for
developing patterns based on software stability concepts [6]. Our long term goal is to
develop a pattern language that deals with all the aspects related to the concept of stable
patterns (such as stable patterns construction, documentation, and applications). This
paper presents our second step towards this goal by presenting part of the ultimate
pattern language. In this paper we first provide an overview of the concept of stable
patterns. Second, we provide the big picture of the overall pattern language. Finally, we
present five patterns as part of the pattern language.

1. INTRODUCTION

In a previous work, we have discussed different problems in contemporary analysis
patterns, and as a solution to these problems, we have proposed the concept of Stable
Analysis Patterns [2,3,5]. Stable analysis patterns are kinds of patterns that are built
using the software stability concepts introduced in [6,7]. The main objective of stable
analysis patterns is to provide a model that captures the core aspects of the problem.
Capturing the core of the problem is mandatory to designing the right solution. A brief
overview of stable analysis patterns is given in the next section.

Later on, we have generalized the concept of stable analysis patterns to accommodate
design patterns as well (Stable Design Patterns). This generalization has led to the new
broad concept of Stable Software Patterns. For the purpose of this paper, we do not need
to differentiate between analysis and design; thus, we just use the general term stable
patterns.

mailto:hhamza@cse.unl.edu
mailto:m.fayad@sjsu.edu

TOWARDS A PATTERN LANGUAGE FOR STABLE SOFTWARE PATTERNS

Copyright © 2003 Haitham Hamza, and Mohamed E. Fayad.
Permission is granted to copy for the PLoP 2003 conference. All other rights reserved.

2

Based on the number of EBTs, stable patterns can be categorized into two main groups:
architectural stable patterns, and stable atomic knowledge (SAK) patterns. An
architectural pattern consists of more than one EBT whereas SAK pattern consists of only
one EBT. Figure 1 illustrates the different categorizes of stable patterns.

Figure 1. Stable software patterns concepts and categorizes

The set of patterns presented in [4] presents our first attempt towards the development of
the pattern language for stable patterns. Some of the patterns presented in [4] can be
applied in the broader context presented in this paper.

2. SOFTWARE STABILITY AND STABLE PATTERNS: AN OVERVIEW

Software stability concept [6] is a layered approach for developing software systems. In
this approach, the classes of the system are classified into three layers: the Enduring
Business Themes (EBTs) layer [1], the Business Objects (BOs) layer, and the Industrial
Objects (IOs) layer. Figure 1 depicts the three layers of software stability approach.

Based on its nature, each class in the system is classified into one of these three layers.
EBTs are the classes that present the enduring and core concepts of the underlying
industry or business. BOs are the classes that map the EBTs of the system into more
concrete objects. BOs are semi-conceptual and externally stable, but they are internally
adaptable. IOs are the classes that map the BOs of the system into physical objects. For
instance, the BO “Agreement” can be mapped in real life as a physical “Contract”, which

Software Stability Concepts

Stable Software Patterns

Stable Analysis
Patterns

Stable Design
Patterns

Stable Atomic Knowledge (SAK)
Patterns

Stable Architectural Patterns

TOWARDS A PATTERN LANGUAGE FOR STABLE SOFTWARE PATTERNS

Copyright © 2003 Haitham Hamza, and Mohamed E. Fayad.
Permission is granted to copy for the PLoP 2003 conference. All other rights reserved.

3

is an IO. The detailed properties that characterize EBTs, BOs, and IOs can be found in
[7].

Figure 2. Software stability approach layers

Stable analysis pattern introduced in [2,3,4], is a new approach for developing patterns by
utilizing software stability concepts. Stable analysis pattern was proposed as a solution
for the limitations of contemporary analysis patterns we have discussed in [2]. The goal
of stable analysis pattern was to develop models that capture the core knowledge of the
problem and presented it in terms of the EBTs and the BOs of that problem.
Consequently, the resultant pattern will inherent the stability features and hence can be
reused to capture the essence the same problem whenever it appears.

3. THE PATTERNS LANGUAGE: A BIG PICTURE

The objective of the overall pattern language is to cover all the essential aspects related to
concept of stable patterns. The process of developing stable patterns involves four main
steps: Developing Stable Patterns, Documenting Stable Patterns, Testing and Validating
Stable Patterns, and finally, Applying Stable Patterns. For each of these four steps there
are different sets of patterns that interact together to accomplish the goal of this step.

Figure 3 depicts the overall pattern language structure. In the figure, the main four steps
are presented in orange boxes. The blue boxes present the major issues that are needed to
accomplish the goal of the steps they belong to. For instance, the first step Developing
Stable Patterns contains two main issues: Pattern Construction and Team Dynamics. Each
issue is then accomplished and described using a set of patterns. For instance, under
Pattern Construction, we have four patterns, green boxes. Each of these four patterns
presents a step in the process of constructing the stable pattern.

 It is important to note that the pattern language will consist of the green boxes only, as
the other boxes are just used to classify patterns based on their objective. Green boxes
with the red circles in the Figure 3 represent the part of the pattern language we address

Stable
Base

Unstable Leafs- IOs Layer

System Core - EBTs Layer

Concrete Objects- BOs Layer

TOWARDS A PATTERN LANGUAGE FOR STABLE SOFTWARE PATTERNS

Copyright © 2003 Haitham Hamza, and Mohamed E. Fayad.
Permission is granted to copy for the PLoP 2003 conference. All other rights reserved.

4

in this paper. For simplification, we do not include all the detailed patterns and issues
that are involved in each of the development process steps.

Figure 3. Description of the overall pattern Language (Does not show all the patterns)

Developing
Stable Patterns

Patterns
Construction

Template Elements

Stable Patterns Composition

Integrate with other artifacts

Team
Dynamics

Documenting
Stable Patterns

Writing Template

Patterns
Composition

Reading Template Effectively

Applying Stable
Patterns

Use Your
Patterns

Testing &
Validating

Stable Patterns

Testing & Validation
Patterns

Focus on the Problem

Identifying EBTs

Identifying BOs

Abstraction Level

Patterns presented in this paper

Main developing steps of Stable Patterns

Issue related to a specific step

Pattern

TOWARDS A PATTERN LANGUAGE FOR STABLE SOFTWARE PATTERNS

Copyright © 2003 Haitham Hamza, and Mohamed E. Fayad.
Permission is granted to copy for the PLoP 2003 conference. All other rights reserved.

5

4. PATTERNS LANGUAGE DESCRIPTION: PART I

In this section we describe five patterns from the overall pattern language. These patterns
are marked in red circle in Figure 3. Table 1 below summarize the five patterns we
present in this paper and gives the page number of the solution that each pattern presents
for a quick reference.

Table 1. Summary of the Pattern Family

Pattern Problem Solution

Focusing on the Problem How to focus on a specific problem that the
analysis pattern will model?

Page 4

Identifying Enduring Business
Themes

How to identify the enduring business themes of
the problem?

Page 6

Identifying Business Objects How to identify the business objects of the
problem?

Page 7

Expressing Abstraction Levels How to assemble the problem model components
to build the stable pattern? How to define the
relations between the identified EBTs and BOs?

Page 9

Documenting Stable Patterns How to document stable patterns efficiently?

Page 10

TOWARDS A PATTERN LANGUAGE FOR STABLE SOFTWARE PATTERNS

Copyright © 2003 Haitham Hamza, and Mohamed E. Fayad.
Permission is granted to copy for the PLoP 2003 conference. All other rights reserved.

6

PATTERN 1 – FOCUSING ON THE PROBLEM

Context
The reusability of a stable pattern is related to the number of problems it addresses. For
instance if a pattern is used to model many problems, the generality of the resulting
pattern will be reduced, since the probability of the occurrence of all the problems
together is less than the probability of the occurrence of each problem individually. It is
not always easy and safe to extract portion of the pattern to use in another problem.
Focusing on a specific problem is one of the key factors that helps improve the
reusability of the pattern.
The developed pattern is not intended to represent a model for a complete system; rather
it models a specific problem that commonly appears within larger systems (these systems
could belong to same or different domains). Systems, by their nature, combine many
problems. Thus, they can be developed using a collection of patterns. Without
decomposing a system into components, the pattern size becomes unreasonably complex,
and the generality of the patterns is adversely affected. If a pattern is used to model an
overly broad portion of a system, the generality of resulting patterns is sacrificed - the
maxim holds: the probability of the occurrence of all the problems together is less than
the probability of the occurrence of each problem individually. For example, modeling
the "payment" problem with "buying a car" is not effective since the "payment" problem
may appear in unlimited number of problems.

Problem
How to focus on a specific problem that the pattern will address?

Forces

• Certain groups of problems often appear together. As a result, they will be
modeled as one problem. The resultant model may or may not be correctly
modified to model these problems when they appear separately.

• In practice, not all of the small problems that we can separate are qualified to
form practical stand-alone problems. There is a tradeoff between dividing the
problem and the complexity of integrating smaller problems to model a larger
problem.

Solution
Before we start modeling the problem we need to check whether or not this problem can
be further divided into smaller, practical problems. The following questions help us to do
so: “What is the problem that we need to solve?” “Can we divide this problem further
into a list of smaller problems?” “Are there any known possible scenarios where these
smaller problems can appear?”

If we can find practical scenarios for each of the smaller problems that we have
separated, then we need to model each of them separately. If the smaller problems have
no practical use, they should be grouped together.

TOWARDS A PATTERN LANGUAGE FOR STABLE SOFTWARE PATTERNS

Copyright © 2003 Haitham Hamza, and Mohamed E. Fayad.
Permission is granted to copy for the PLoP 2003 conference. All other rights reserved.

7

Example
We consider the “account” problem to illustrate the idea of problem separation. It was not
so long ago when the word “account” was merely used to indicate banking and financial
accounts. Today, the word “account” alone becomes a vague concept if it is not allied
with a word related to a certain context. For instance, besides all of the traditional well-
known business and banking accounts, today we have e-mail accounts, on-line shopping
accounts, on-line learning accounts, subscription accounts, and many others.

One model for the account problem is the Account pattern shown in Figure 4 [9]. This
pattern models two different problems at the same time. The first problem is the
“account” problem and the second problem is the “entry” problem. These are two
independent problems. Even though they appear together in many applications, there is a
possibility of having entries without an account or accounts without entries. Figure 5 and
Figure 6 show some examples of accounts without entries and entries without accounts,
respectively. We have developed a separate model for each of these problems. The
developed models for both the Account and the entry can be found in [3].

Figure. 4 Account pattern provided by Fowler [9]

(1) Free on-line services account: There are many on-line companies that provide free goods or
services. For example, some companies provide learning software packages or instructional
documents. In order to access these materials, these providers require you to create an account with
the company. This account is simply a passport provided to enable you to access their service; you do
not have anything in this account that can be considered to be your property. In fact, the only things
that you can do with this account are the limited functions prescribed by the company that issued the
account.

(2) Access account to the copy machine: Suppose that you have an account to access the copy
machine in your school or work. This account is no more than a passport for you to use the copier.
There are no entries in this case. (Note that in this example it is possible to use Fowler’s pattern by
changing the names of the behaviors in his patterns).

Figure. 5 Accounts without entries

Entry

Account

balance()
withdrawel()
deposits()

 1 *

TOWARDS A PATTERN LANGUAGE FOR STABLE SOFTWARE PATTERNS

Copyright © 2003 Haitham Hamza, and Mohamed E. Fayad.
Permission is granted to copy for the PLoP 2003 conference. All other rights reserved.

8

The following table contains information about class schedules, at the University of Nebraska-
Lincoln, Spring 2002. In this table, each piece of information forms an entry to the table. Here we do
not need accounts in which to keep these entries.

Call # Course Title Cr Hrs Time Day Room

2850 Computer
Architecture

003 0230-0320p M W F Freg 112

2855 Software
Engineering

003 0930-1045p T R Freg 111

Figure. 6 Entries without accounts

TOWARDS A PATTERN LANGUAGE FOR STABLE SOFTWARE PATTERNS

Copyright © 2003 Haitham Hamza, and Mohamed E. Fayad.
Permission is granted to copy for the PLoP 2003 conference. All other rights reserved.

9

PATTERN 2 – IDENTIFYING ENDURING BUSINESS THEMES

Context
When developing a stable pattern, first we need to identify the core elements of the
problem. These core elements present the enduring themes of the problem.

Problem
How to identify the Enduring Business Themes (EBTs) of the problem?

Forces

• EBTs should capture the core aspects of the problem; however, some EBTs
capture the core knowledge of the problem within a specific context. Such EBTs
should be discarded from the model.

• Being expert in the domain does not always guarantee an accurate generation for
the relevant EBTs. For instance, a professional chef might mistakenly identify
pots, pans, and refrigerator as an enduring business theme for modeling the
kitchen while they are in fact Industrial Objects (IOs) [7]. Thus, experience is
essential but not sufficient condition for extracting the correct EBTs in the
problem we analyze.

• Even though many of the selected EBTs might appear strongly related to the
problem at first glance, many of them in fact have nothing to do with the problem
being modeled.

• Some of the EBTs might lack one or more of the EBTs essential properties [7]. In
this case, we should re-identify them as BOs or IOs.

Solution
The following steps help in extracting the appropriate EBTs of the problem:

Step 1 Create Initial EBTs List
To create the initial list of the EBTs of the problem, answer the question: “What is the
“problem” for?” In other words: “What are the reasons for the existence of the
“problem”?”
The output of this step is the list of the initial EBTs of the problem. These EBTs are still
tentative and some of them are not as strongly related to the problem as they might
appear.
Step 2 Filter the EBTs List
Eliminate the redundant and irrelevant EBTs from the initial list. People usually
unintentionally construct the initial EBTs list with a specific context in mind. The output
of this step is a modified EBTs list, which is usually smaller than the initial list.
Step 3 Check the Main EBTs Properties
Examine the EBTs obtained in previous steps against the main essential properties of the
EBTs. The typical procedure is to answer the following questions for each EBT in the
list. The desired answer is written in bold beside each question:

TOWARDS A PATTERN LANGUAGE FOR STABLE SOFTWARE PATTERNS

Copyright © 2003 Haitham Hamza, and Mohamed E. Fayad.
Permission is granted to copy for the PLoP 2003 conference. All other rights reserved.

10

• Can we replace this EBT with another one? No.
• Is this EBT stable internally and externally? In other words, does this EBT reflect

the core aspects of the problem we are trying to model? Yes.
• Can we directly represent this EBT physically? No.

It is important to note that the EBTs should not have direct physical representations (IO);
otherwise they should be considered BOs instead. (Refer to the software stability model
architecture shown in Figure 2). For example: “Agreement” is a concept and one can see
it as an EBT. However, “Agreement” also has a direct physical representation (for
instance “Contract”). Therefore, “Agreement” is not an EBT, it is a BO. Any EBT that
does not satisfy one of these properties should be eliminated from the list.

TOWARDS A PATTERN LANGUAGE FOR STABLE SOFTWARE PATTERNS

Copyright © 2003 Haitham Hamza, and Mohamed E. Fayad.
Permission is granted to copy for the PLoP 2003 conference. All other rights reserved.

11

PATTERN 3 – IDENTIFYING BUSINESS OBJECTS

Context
When developing a stable analysis pattern, and after identifying the EBTs of the problem,
we need to identify the Business Objects (BOs) of the problem.

Problem
How to identify the business objects of the problem?

Forces

• In some cases, it is not obvious whether the object is an EBT or BO. For instance,
“Agreement” can be considered an EBT since it presents a concept. However, it is
a BO.

• After the EBTs of the problem have been identified, the conceptualization
becomes more involved since the BOs of the problem must be based on the
defined EBTs. This makes it difficult to extract the BOs.

• There is rarely a one to one mapping between the EBTs of the problem and its
BOs. It is possible for EBTs to have no direct mapping to the BOs and for the
BOs to have no direct mapping to the EBTs. Often one EBT can be mapped into
several BOs.

• In addition to the main BOs that we can identify for the problem, it is possible to
have some hidden BOs that have no direct relationship with the defined EBTs.
Instead, they are related to the main BOs and to the other hidden BOs in the
problem.

Solution
One approach that helps extract the appropriate BOs of the problem is to follow the
following four steps:

Step 1 Identify the main BOs of the problem
 In this step we identify the main set of BOs that are directly related to each of the EBTs
we have in the problem. There could be one or more BOs corresponding to each EBT in
the problem. However, some of the EBTs may have no corresponding BOs.

The main set of BOs of the problem can by identified by answering one or more of the
following questions for each EBT: [Note: some questions do not apply for some of the
EBTs. This depends on the nature of each EBT]

• How can we approach the goal that this EBT presents?
[For example: To achieve the goal of the EBT Organization, we can use, the BO
Schedule. Another example: for the EBT Negotiation we need the BOs
AnyContext, and AnyMedia to perform the negotiation].

TOWARDS A PATTERN LANGUAGE FOR STABLE SOFTWARE PATTERNS

Copyright © 2003 Haitham Hamza, and Mohamed E. Fayad.
Permission is granted to copy for the PLoP 2003 conference. All other rights reserved.

12

• What are the results of doing/using this EBT?
[For example: for the EBT Negotiation, the eventual result is to reach an
Agreement so this is one possible BO that maps this EBT].

• Who should do/use this EBT?
[For example: The BO Party does/ uses Negotiation. This Party can be a person, a
company, or an organization. Therefore, Party is one possible BO that maps the
EBT Negotiation].

Step 2 Filter the main BOs List
Purify the main BOs identified in the previous step. The objective of this step is to
eliminate the redundant and irrelevant BOs from the initial list. One way to achieve this
goal is to debate the listed BOs with a group.
Step 3 Identify the hidden BOs of the problem
Identify the hidden BOs of the problem. These BOs are named “hidden” because they
have no direct relationships with any of the EBTs of the problem. Thus, we cannot
extract them in the first two steps we have performed.
For example, suppose we need to model a simple transportation system that offers
transportation services for different types of materials (for example, gas, water, etc.). One
possible EBT is Transportation. One possible BO that maps this EBT is Transport. A
possible IO that can physically represent this BO is Trucks. In this problem, one possible
hidden BO is Materials. We do not have a direct EBT that the BO Materials can be
mapped to; however, there is a clear relationship between the two BOs Transport and
Materials.
Before thinking about the hidden BOs in the problem, visualize a provisional scenario for
each EBT and its corresponding BOs. Then answer the question “What is still missing in
the problem?” Usually the answer to this question is the list of the hidden BOs of the
problem. Some problems do not have any hidden BOs, especially in the case of the small-
scale problems.
Step 4 Check the characteristics of the BOs
This step is to make sure that the identified BOs satisfy the main BOs characteristics.
BOs are:

• Partially tangible.
• Externally stable and should remain stable throughout the life of the problem.
• Adaptable (thus, they might change internally).
• Physically represented by IOs.

TOWARDS A PATTERN LANGUAGE FOR STABLE SOFTWARE PATTERNS

Copyright © 2003 Haitham Hamza, and Mohamed E. Fayad.
Permission is granted to copy for the PLoP 2003 conference. All other rights reserved.

13

Pattern 4 – Expressing Abstraction Levels

Context
Stable patterns can be generally classified into two main categories: simple and
composite patterns. A simple analysis pattern is a pattern that just consists of classes and
no sub-patterns exist. On the other hand, composite stable analysis pattern consists of
both classes and sub-patterns. Simple patterns are said to have one level of abstraction
(such as the conventional class diagram), while composite analysis patterns might have
several levels of abstraction depending on the structure of its sub-patterns.

Problem
How to express the abstraction levels of the composite stable pattern?

Forces

• Stable patterns can be either simple or composite. Differentiating between both
kinds is essential to differentiate between both kinds when they are used in the
development. Current modeling tool and techniques does not support stable
patterns and, hence, we have to deal with this challenge to express our new
concept clearly using the existing modeling tools.

• There is a tradeoff between the complexity and the clarity of the stable pattern.
That is, some composite patterns may involve several sub-patterns and hence
expressing the detailed structure of each sub-pattern in the first abstraction level
yields a large pattern structure that complicates the understanding of that pattern.

Solution
In stable patterns, we differentiate between two main participants in the pattern model,
classes and patterns. Classes are defined as in any traditional Object-Oriented class
diagram. On the other hand, patterns present a second level of abstraction in the model,
where each pattern is by itself another model that contains classes and, in some cases,
other patterns (our practical experience shows that going beyond two abstraction levels
would unnecessarily complicate the pattern, and might introduce some useless classes to
the system).

A class in a stable pattern could be one of the five following kinds: an EBT, a BO, an IO,
a sub-pattern and EBT, or a sub-pattern and BO. Therefore, each class in the stable
pattern should have one of the following tags: EBTs, BOs, IOs, Pattern-EBT, or Pattern-
BO. Note that there is no need for a tag: Pattern-IO, because the nature of IO as unstable
and replaceable artifacts prevents them from being a pattern that can be reused over and
over as in the case of EBTs and BOs.

Example
The Negotiation pattern shown in appendix A is an example of the first abstraction level
of a composite stable analysis patterns. The Negotiation pattern has one class named

TOWARDS A PATTERN LANGUAGE FOR STABLE SOFTWARE PATTERNS

Copyright © 2003 Haitham Hamza, and Mohamed E. Fayad.
Permission is granted to copy for the PLoP 2003 conference. All other rights reserved.

14

Negotiation and it is an EBT, and four sub-patterns: AnyMedia, AnyAgreement,
AnyContext, and AnyParty.

Each of these sub-patterns has its own separate structure and hence can be used in other
application independent of the Negotiation pattern itself. The AnyMedia sub-pattern, for
instance, presents another stable pattern and, hence, it forms a second abstraction level in
the Negotiation pattern. The structure of the AnyMedia sub-pattern is given in Appendix
B. The Negotiation pattern is a composite analysis pattern, while AnyMedia is a simple
analysis pattern.

TOWARDS A PATTERN LANGUAGE FOR STABLE SOFTWARE PATTERNS

Copyright © 2003 Haitham Hamza, and Mohamed E. Fayad.
Permission is granted to copy for the PLoP 2003 conference. All other rights reserved.

15

PATTERN 5 – DOCUMENTING STABLE PATTERNS

Context
One crucial factor in utilizing patterns in general is the proper documentation of the
pattern. Poor documentation will result in inefficient utilization of the pattern and perhaps
a complete misunderstanding of the pattern. . Several design pattern styles have been
used to document design patterns [10], [11]. On the other hand, analysis patterns do
usually use the traditional style, and sometimes a mixture of these design patterns
documentation styles. However, the difference in the nature between stable analysis and
design patterns and their traditional counterparts makes the documentation of stable
patterns an issue that that should be considered.

Problem
How to document stable patterns efficiently?

Forces

• Analysis patterns are conceptual models that are difficult to understand by their
nature. In addition, design and analysis are very different and techniques to
understand one of them do not necessarily help in understanding the other.
Therefore, great care needs to be taken when developing a template to document
stable design pattern and stble analysis patterns.

• In stable patterns, there are no Industrial Objects (IOs) presented. IOs usually
simplify the understanding of pattern applicability. However, attaching IOs to the
pattern will limit its applicability to specific domain or application. For instance,
in the Negotiation pattern (Appendix A), the role of the sub-pattern AnyMedia
might not be obvious from just reading the first level of abstraction (i.e. the
Negotiation pattern itself); however, if we have replaced this sub-pattern by a
simple media class such as an email or a phone, the role becomes more obvious.
But, doing so will limit the pattern applicability to these applications or domains
that usually negotiate through the email and/or the phone. The abstraction of the
negotiation media is essential to broaden the scope of the pattern. The tradeoff
between simplicity and generality should be considered in stable analysis patterns.

• Presenting Sub-patterns as single class in the first abstraction level of the pattern
might make them hard to understand and document. For instance, in the
Negotiation pattern, it might not be easy from the first glance to understand what
the role of the sub-pattern AnyMedia is. Also, when we document the Negotiation
pattern, it is required that we express the role of the sub-pattern into one single
abstract role leaving the detailed role of the components of each class in the sub-
pattern to the second abstraction level of the pattern. Coming up with this single
abstract role is not always straightforward and need to be done carefully;
otherwise, the pattern will not be clear.

TOWARDS A PATTERN LANGUAGE FOR STABLE SOFTWARE PATTERNS

Copyright © 2003 Haitham Hamza, and Mohamed E. Fayad.
Permission is granted to copy for the PLoP 2003 conference. All other rights reserved.

16

Solution
We propose some addition to the conventional design pattern documentation templates.
Few adjustments have been done to the following fields: Context, Problem, Forces,
Applicability, Known uses, and Consequences.

The Solution field needed to be modified to capture the different abstraction levels
presented in composite stable patterns. In our template, the Solution consists of three
main parts:

a) Static structure. Gives the class diagram of the pattern. It also introduces briefly
each class and its role. Association classes, constraints, interfaces, tagged values,
and notes must be included in the class diagram. Static structure reveals the
structure of the pattern that contains it participants and the relationships among
them. In this paper we use UML notation and guidelines for generating the
pattern structure. However, it is possible to apply any other OO modeling
languages (Booch, Odell, etc) the developer wish to use in developing stable
patterns.

b) Participants. The participants of any stable pattern can be classified into two
main categories: Classes and Patterns.

c) CRC Cards. Summarizes the responsibility and collaboration of each participant.
The CRC names the class, responsibility, and its collaborations. The CRC card
also names a role for each class, which is useful for identifying the class
responsibility. Each class should have only one responsibility, and that
responsibility should be unique. The collaboration consists of two parts: clients
and server. Clients section contains all the classes that collaborate and have
relationships with the named class. The Server section lists all the services that the
named class can provide to its clients [8]. It is worth to point out that in
documenting CRC – cards for stable patterns we deal with any patterns that are
included within the main pattern itself as a class. That is, each sub-pattern will be
represented by a CRC-card that documents its responsibility and collaborations as
a black box. To avoid any confusion, and for simplicity, we do not care about how
the sub-pattern handles its responsibility according to its internal structure, all
what we care about here is that this sub-pattern will perform the task as a block,
leaving the other details to the second abstraction level of the pattern description.
For instance, the CRC-cards of the sub-pattern AnyMedia will show the details of
each class in the black box AnyMedia.

Class/Pattern Name (Class/Pattern Role)
Responsibility Collaboration

Clients Server A single responsibility for
this Class/Pattern should be
listed here briefly.

A list of all the
Classes/Patterns that have
a relationship with the
current Class/Pattern.

List of all the servers that
this Class/Pattern
provides.

TOWARDS A PATTERN LANGUAGE FOR STABLE SOFTWARE PATTERNS

Copyright © 2003 Haitham Hamza, and Mohamed E. Fayad.
Permission is granted to copy for the PLoP 2003 conference. All other rights reserved.

17

The following is an example of a CRC-Card for the pattern AnyMedia exists in the
context of negotiation.

Pattern :AnyMedia (Connector)-Pattern
Responsibility Collaboration

Clients Server Communicates negotiation issues
between negotiators. Negotiation

connectParties()
display()
illustrate()

As we have mentioned in the Forces listed earlier, it might be hard to understand the first
abstraction level of the stable pattern (if the pattern has more than one abstraction level).
Because of the tradeoff between pattern simplicity and generality, we have developed
some techniques to make as easier to understand the pattern. Conventional applicably
field that is used in traditional pattern templates might help but is not sufficient.
Therefore, we have introduced what we called Role-based Instance Diagram and Role-
based Scenario. For each applicability example that we state for a stable pattern these
two new artifacts were found to provide good visualization for the proposed pattern.

A Role-based Instance Diagram is a diagram that shows how each sub-pattern/class in
the main pattern diagram can be instantiated in the examples of the pattern applicability.
It also shows how the pattern components interact with each others in the application. On
the other hand, a Role-based Scenario is a textual description of the role-based instance
diagram. Each component in the pattern plays its role in the scenario. We find this helps
reader to gain better understanding of the problem that the pattern addresses. In the
scenario, we use the exact names of the classes, sub-pattern, and roles specified on a
relationship between them in the stable object model in the solution section.

5. CONCLUSIONS AND FUTURE WORK

In this paper we have presented a collection of patterns that forms the first step towards a
pattern language for developing stable patterns. We presented five patterns: Focusing on
the Problem, Identifying Enduring Business Themes, Identifying Business Objects, Expressing
Abstraction Levels, and Documenting Stable Patterns. In the future, we will present another
part of the pattern language that address other issues related to the development of stable
patterns.

TOWARDS A PATTERN LANGUAGE FOR STABLE SOFTWARE PATTERNS

Copyright © 2003 Haitham Hamza, and Mohamed E. Fayad.
Permission is granted to copy for the PLoP 2003 conference. All other rights reserved.

18

ACKNOWLEDGEMENTS

We thank Marshall Cline, our shepherd, for his valuable comments and suggestions that
have improved this paper.
 We would like to thank Bruce Whitenack, the shepherd of our PLoP 2002 pattern
language, for his useful comments and for his valuable suggestions.
 Thanks to the members of the PLoP ’02 Workshop, Sweet Home Allerton, for taking
time to review the proposed patterns: Ahmed Mahdy, Linda Rising, Danny Dig, Joel
Jones, Shasha Wu, Toby Sarver, Masao Tomo, Joe Yoder, and. Martine Devo. Also we
would like to thank Marshall Cline for reviewing the first draft of the PLoP 2002 pattern
language.

REFERENCES

[1] Cline, M., Girou, M.: Enduring Business Themes. Communications of the ACM, Vol. 43, No.
5, May 2000, pp. 101-106
[2] H. Hamza “A Foundation For Building Stable Analysis Patterns.” Master thesis. University of
Nebraska-Lincoln, 2002
[3] H. Hamza. “Building Stable Analysis Patterns Using Software Stability”. 4th European GCSE
Young Researchers Workshop 2002 (GCSE/NoDE YRW 2002), October 2002, Erfurt, Germany.
[4] H. Hamza and M.E. Fayad. "A Pattern Language for Building Stable Analysis Patterns”, 9th
Conference on Pattern Language of Programs (PLoP 02), Illinois, USA, September 2002.
[5] H. Hamza and M.E. Fayad. “Model-based Software Reuse Using Stable Analysis Patterns”
ECOOP 2002, Workshop on Model-based Software Reuse, June 2002, Malaga, Spain.
[6] M.E. Fayad, and A. Altman. “Introduction to Software Stability.” Communications of the
ACM, Vo. 44, No. 9, September 2001, pp 95-98.
[7] M.E Fayad. “Accomplishing Software Stability.” Communications of the ACM, Vo. 45, No.
1, January 2002, pp 95-98.
[8] M.E. Fayad, V. Stanton, and H. Hamza. “A New Look At the CRC Cards.”
http://www.activeframeworks.com
[9] M. Fowler, “Analysis Patterns: Reusable Object Models”, Addison-Wesley, 1997.
[10] E. Gamma et al. “Design Patterns: Elements of Reusable Object-Oriented Software”,
Addison-Wesley Professional Computing Series. Addison-Wesley Publishing Company, New
York, 1995.
[11] Buschmann, F. et al., “Pattern-Oriented Software Architecture, A System of Patterns”, John
Wiley & Sons Ltd, Chichester, 1996.

http://www.activeframeworks.com

TOWARDS A PATTERN LANGUAGE FOR STABLE SOFTWARE PATTERNS

Copyright © 2003 Haitham Hamza, and Mohamed E. Fayad.
Permission is granted to copy for the PLoP 2003 conference. All other rights reserved.

19

APPENDIX A: NEGOTIATION PATTERN: BRIEF DOCUMENTATION

Context
Negotiation is a general concept that has many applications. In our every day life, there
are various situations where negotiation usually takes place. For instance, buying or
selling properties usually involves some sort of negotiation (e.g. buying or selling a home
or a car). In software systems, negotiation also appears frequently in the development of
different applications. Developing software for online auctions and shopping might
involve the negotiation of the price and/or the negotiation of different product aspects.

More technically, negotiation becomes an essential part in the development of next
generation Web-based devices and appliances. Today, devices that need to access the
Web diverge greatly in their capabilities so negotiation algorithms between client agent
and servers play a fundamental role in helping servers decide which representation of a
document a device should be given. Therefore, having a stable pattern that can model the
basic aspects of a negotiation problem would make it easier for the developer to build
their system by reusing and extending this pattern.

Problem
The complexity of modeling generic concept such as negotiation arises from the fact that
these concept while have the same implication whenever they appear, each application
has its own specific, and sometimes unique, requirements depending on the application
nature and objective. The context section before and the forces section next illustrate how
can the requirements of the negotiation process differs from one application to another.

The fact that negotiation concept does span a wide range of spectrum of heterogeneous
applications, along with the fact that the negotiation concept itself does not change
whenever it appears, both makes the development of a model that captures the core
knowledge of the negotiation concept both desired and challenging. Developing such
generic and accurate model is not easy and this leads to the main question: How can we
build a negotiation model that can be used to model the negotiation problem in any
application?

Solution
The proposed solution is to focus on the concept of negotiation trying to extract the main
components of the negotiation concept, leaving other domain-specific and/or application-
specific components away form this core model. The basic components are represented in
generic way that allows the developer to utilize them according to the needs of his/her
applications.
Figure A.1 below shows the object diagram of the Negotiation pattern. The Negotiation
pattern consists of the following participants:
Classes:
• Negotiation: Represents the negotiation process itself. This class contains the

behaviors and attributes that regulate the actual negotiation process.

TOWARDS A PATTERN LANGUAGE FOR STABLE SOFTWARE PATTERNS

Copyright © 2003 Haitham Hamza, and Mohamed E. Fayad.
Permission is granted to copy for the PLoP 2003 conference. All other rights reserved.

20

Patterns:
• AnyAgreement: Represents the result of the negotiation. The ultimate goal of any

negotiation is to reach an agreement. Thus, this object presents a core element in any
negotiation. It is important to note that in many cases negotiation ends with no
agreement and thus it is considered to be failed (the seller of the car did not agree on
the price proposed by the buyer and vise versa), however, in this case we expect that
the agreement should provide this result by whatever mechanism. So one can view
the agreement object as the result of the negotiation, which is not necessary a
successful result.

• AnyParty: Represents the negotiation handlers. It models all the parties that are
involved in the negotiation process. Party can be a person, organization, or a group
with specific orientation.

• AnyMedia: Represents the media through which the negotiation will take place. For
instance, one can negotiate the price of a good over the phone. Others might use an
email or a mail to negotiate specific issues in their business.

• AnyContext: Represents the matters to be negotiated. If we are buying a home, many
issues could be negotiated. For instance, the price of the home, the payment
procedure, etc. Defining the issue to be negotiated is an essential element of any
negotiation process; otherwise, negotiation will have no meaning.

The prefix ‘any’ that we used herein indicates that this is another pattern that provides an
abstract model for the notion it precedes. For instance, AnyParty is a stand-alone stable
pattern that models the party notation and, hence, can be used to model any party in any
applications. The detailed structure of this pattern is out of the scope of this paper

AnyAgreement
<<Pattern-BO>>

AnyContext
<<Pattern-BO>>

AnyMedia
<<Pattern-BO>>

AnyParty
<<Pattern-BO>>

Negotiation
<<EBT>>

1.. *

1..*1..*

0.. *

negoti ate s

uses

generates

handles

Figure. A.1 Negotiation pattern stable object model

TOWARDS A PATTERN LANGUAGE FOR STABLE SOFTWARE PATTERNS

Copyright © 2003 Haitham Hamza, and Mohamed E. Fayad.
Permission is granted to copy for the PLoP 2003 conference. All other rights reserved.

21

APPENDIX B: ANYMEIDA PATTERN: BRIEF DOCUMENTATION

Problem
 How to build a model that can be used to present any media in any application?

Context
 The pattern can be used to model any media of any type and any kind. For instance, a
media type such as multimedia can be of any kinds (e.g., image, voice, etc.).

Solution and Participants
Figure B.1 shows the object diagram of the AnyMedia pattern. The shown model gives
the high abstract level of view for the proposed model.

Media_1 Media_2 Media_n

Such as:
- Desire or appeal
- Assessment
- Viewing
- Advertisment
- Mobility

Fo r exam ple :
- Insti tut ion
- T heater
- Audi ance

For exam ple:
- Broadcast media
- Aud io medi a
- Multi medi a
- Mobi le me dia

AnyParty
<<BO>>

Applicatbility
<<EBT>>

MediaType
<<BO>>

AnyMedia
<<BO>> 1..* uses

1..* uses
specific
application

specific
media
type

1..*

uses

anyMedia

specific application
type

Figure B.2. AnyMedia pattern object diagram

Participants
The participants of the AnyMedia pattern are:

Classes:

• AnyMedia. Identifies the media to be used
• MediaType. Specifies the type of the used media.
• ApplicationType. Describes the purpose of which the media is used.
• AnyParty. Represents user of a specific media

