
The Shared Resource Pattern
An Activity Parallelism Architectural Pattern for Parallel Programming

Jorge L. Ortega-Arjona
Departamento de Matemáticas, Facultad de Ciencias, UNAM

México, D.F. 01000, México
jloa@fciencias.unam.mx

Abstract
The Shared Resource pattern is an architectural pattern for parallel programming used when a design
problem can be understood in terms of activity parallelism. This pattern proposes a solution in which
different operations are performed simultaneously by sharers on different pieces of data contained in a
shared resource. Operations carried out by each sharer are independent of operations by other sharers.

1. Introduction

Parallel processing is the division of a problem, presented as a data structure or a set of actions, among
multiple processing components that operate simultaneously. The expected result is a more efficient
completion of the solution to the problem. The main advantage of parallel processing is its ability to
handle tasks of a scale that would be unrealistic or not cost-effective for other systems [CG88, Fos94,
ST96, Pan96]. The power of parallelism centres on partitioning a big problem in order to deal with
complexity. Partitioning is necessary to divide such a big problem into smaller sub-problems that are
more easily understood, and may be worked on separately, on a more "comfortable" level. Partitioning
is especially important for parallel processing, because it enables software components to be not only
created separately but also executed simultaneously.

Requirements of order of data and operations dictate the way in which a parallel computation has to be
performed, and therefore, impact on the software design [OR98]. Depending on how the order of data
and operations are present in the problem description, it is possible to consider that most parallel
applications fall into one of three forms of parallelism: functional parallelism, domain parallelism, and
activity parallelism [OR98]. Examples of each form of parallelism are pipeline processing [VBT95],
representing functional parallelism; communicating sequential elements [OR00], as an example of
domain parallelism; and shared resource, which is an instance of activity parallelism.

2. The Shared Resource Pattern

The Shared Resource pattern is a specialization of the Blackboard pattern [POSA96], lacking a
control component and introducing aspects of activity parallelism. In the Shared Resource pattern,
computations could be performed without a prescribed order on ordered data. Commonly,
components perform different computations on different data pieces simultaneously [OR98].

Activity parallelism is the form of parallelism that involves problems that apply independent
computations (as sets of non-deterministic transformations and perhaps repeatedly) on values of a data

 Copyright  2003 Jorge Luis Ortega-Arjona. Permission is granted to copy for the PLoP 2003 conference. All
other rights reserved.

structure. Activity parallelism can be considered between the extremes of allowing all data to be
absorbed by the components (as in domain parallelism) or all processes to be divided into components
(as in functional parallelism) [CG88, OR98, Pan96]. Many components share access to pieces of a data
structure. As each component performs independent computations, communication between
processing components is often not required. However, the amount of communication is not zero:
communication is still required between each processing component and a component that controls the
access to the data structure [OR98].

Example: A Token Space

Consider the case of a token space [Gray99]. In its simplest form, a token space is merely a passive
storage structure for tokens, placed there by active processes named clients. A token may be a
specialised data structure, a list, a data tuple, or any data type defined via inheritance from some base
token class. Particularly, in this example a token is considered as a data tuple whose first element is a
typed field and whose other elements are name-value pairs, each one referred as a token item.
Moreover, a token may have one or more token items that contain identification information. The
objective is that one or more token items will contain data that are being transferred between parallel
clients.

The token space supports two operations: “put” and “request” [Gray99]. A “put” operation places a
token in the token space, and it is capable of blocking for flow-control. If a “put” operation cannot be
blocked, every data source has the potential to saturate the token space. A “request” operation can only
succeed if its tokens are matched. The matching of a token from a request requires matching of each of
the token items that it includes. If a request does not match, it is blocked. Requests from different
processes are handled by separate threads, operating on the token space. The blocking of any one
request does not affect request or put operations from other processes. A simple token space with such
characteristics is illustrated in Figure 1.

Figure 1. Overview of a simple token space.

Notice that the token space problem is more likely to be considered as an example for concurrent
programming (where processes execute simulating concurrency on a single processor) rather than for
parallel programming (in which processes execute simultaneously on a group of processors). However,
it is simple to explain, and it could be an example of activity parallelism, if the clients would execute
in parallel.

Client 1 Client 2 Client N

TokenSpace

Considering the token space as a parallel computation, it should be divided and distributed among a set
of processors. Clients send messages to a server running the token space. The server receives messages
from the clients, organises and maintains the token space keeping its order and integrity, and sends its
contents back to the clients.

Context

Start the design of a software program for a parallel system, using a particular programming
language for a certain parallel hardware. Consider the following context constraints:

� The problem lends itself to be solved using parallelism, and involves tasks of a scale that would be
unrealistic or not cost-effective for other systems to handle.

� The hardware platform or machine to be used is given, offering a reasonably good fit to the
parallelism found in the problem.

� The main objective is to execute the tasks in the most time-efficient way.

Problem

It is necessary to apply a computation on elements of a common centralised data structure. Such a
computation is carried out by several sequential processes executing simultaneously. The data
structure is concurrently shared among the processes. The details of how the data structure is
constructed and maintained are irrelevant to the processes. All the processes know is that they can
send and receive data through the data structure. The integrity of the internal representation,
considered as the consistency and preservation of the data structure, is important. However, the order
of operations on the data is not a central issue. Generally, performance as execution time is the feature
of interest.

For instance, consider the Token Space example. The whole process is based on allowing clients to
simultaneously operate, putting or requesting tokens to the token space when needed. Parallelism
results from the fact that client processes that have satisfied all their needs for data can then continue
concurrently. The processes synchronise activities as necessary by waiting for others to place tokens in
the token space. The integrity of the internal representation of the tokens and the token items is
important for obtaining a final result after the computation is carried out, but the order of operations on
the tokens or token items is not pre-determined.

Forces

Considering the problem description and granularity and load balance as other elements of parallel
design [Fos94, CT92] the following forces should be considered:

� The integrity of the data structure must be preserved. This integrity provides the base for result
interpretation. For example, in the token space example, it is important to control where and when a
token is requested or put, by synchronising these operations for such a token. This allows
preserving the overall order and integrity of the token space, so the final state of the token space is
considered as the result of the whole computation.

� Each process performs simultaneously and independently a computation on different pieces of data.
The objective is to obtain the best possible benefit from activity parallelism. In the token space
example, clients indicate their interest in a token. This is the only occasion in which they may
interact with other clients, via the token space. During the rest of the execution time, clients are
able to operate independently from the others, using the data of the token.

� Every process may perform different operations, in number and complexity. However, no specific
order of data access by processing elements is defined. In the token space example, clients are not
restricted to perform the same operation (in fact, performing the same operation is considered as a
variation of this pattern). Normally, clients operate or use the information contained in the tokens in
different ways. Moreover, as clients execute independently from each other, there is no precise or
defined order in which they request or put tokens in the token space.

� Improvement in performance is achieved when execution time decreases. Our main objective is to
carry out the computation in the most time-efficient way.

Solution

Parallelism is introduced as multiple participating sequential components, each one executing
simultaneously and capable of performing different and independent operations, accessing the data
structure when needed via a shared resource component, which maintains the integrity of the data
structure by defining the synchronising operations that the sequential components can do. Parallelism
is almost complete among components: any component can be performing different operations on a
different piece of data at the same time, without a prescribed order. Communication can be achieved
only as function calls to require data from the shared resource. Components communicate exclusively
through the shared resource, by each one indicating its interest in a certain data. The shared resource
should provide such data immediately if no other component is accessing it. Data consistency and
preservation are tasks of the shared resource. The integrity of the internal representation of data is
important, but the order of operations on it is not a central issue. The main restriction is that no piece
of data is accessed at the same time by different components. The goal is to make sure that an
operation carried out by one sharer component executes without interference from other sharer
components. The Shared Resource pattern can be considered as an activity parallel variation of the
Blackboard pattern [POSA96] without a control instance that triggers the execution of sources (the
concurrent components of the Blackboard pattern). An important feature is that the execution does not
follow a precise order of computations [Shaw95, Pan96].

Structure

In this architectural pattern, the different operations are applied in effect simultaneously to different
pieces of data by sharer components. Operations in each sharer component are independent of
operations in other components. The structure of the solution involves a shared resource that controls
the access of different sharer components to to the central data structure. Usually, the shared resource
component and several different sharer components simultaneously exist and operate during execution
time. Therefore, the solution is presented as a centralised network, being the shared resource the
central common component. An Object Diagram, representing the network of elements that follows
the shared resource structure, is shown in Figure 2.

Figure 2. Object Diagram of the Shared Resource pattern.

Participants

• Shared Resource. The responsibility of a shared resource is to co-ordinate the access of sharer
components, preserving the integrity of data. In the token space example, the token space acts as a
shared resource, containing the data structure and defining the operations needed for maintaining
and preserving the integrity of the data structure. Such operations are defined to control the request
and put operations performed on the token space by the clients.

• Sharer components. The responsibilities of a sharer component are to perform its independent
computation until requiring data from the shared resource. Then, the sharer component has to cope
with any access restriction imposed by the shared resource. Since their computations are
independent, all sharer components are able to execute in parallel. In the token space problem,
clients act as sharer elements that execute in parallel until they request or put tokens contained in
the token space. Once satisfied, clients continue their computations independently.

Dynamics

A typical scenario to describe the basic run-time behaviour of this pattern is described, where all
participants (shared resource and sharer components) are active at the same time. Every sharer
component performs different operations, requiring the shared resource for data. If data is not
available, the sharer can request another piece of data. As soon as data is made available from the
shared resource, the requesting sharer component continues its computations. Communications
between sharers are normally not allowed. The shared resource is the only common component among
the sharers (Figure 3). The processing and communicating scenario is as follows:

• For this scenario, consider a simple Shared Resource which is able to perform a couple of actions,
Op.R and Op.W, in order to respectively allow reading or writing data. Each sharer starts
processing, performing different, independent operations, and requesting the Shared Resource to
execute a read or write operations.

• Consider the basic operation: a sharer component, Sharer A, is performing Op.A1, requests the
Shared Resource to perform a read operation Op.R. If no other sharer component contests for
reading or writing data, the Shared Resource is able to immediately serve the operation request
from Sharer A, without interference.

:SharedResource

:Sharer 1 :Sharer 2 :Sharer 3 :Sharer n

• Things become more complex when one sharer component is reading or writing data of the Shared
Resource, and another sharer component requires to read or write the same piece of data. Consider,
for example, that Sharer B is performing Op.B2, which requires a writing operation Op.W of a
particular data piece to the Shared Resource. If while the Shared Resource is serving this request,
one or more other sharer components (in this scenario, Sharer C or Sharer D) issue calls to the
Shared Resource requesting for a read or write operation of the same data piece, the Shared
Resource should be able to continue until completion of its actual operation, deferring the calls for
later execution, or even ignoring them. If this is the case, any sharer component should be able to
re-issue its call, requesting for service of the same or other data piece until the Shared Resource
makes it available.

• Another complex situation that may arise is if two or more sharer components issue calls requesting
the same data piece to the Shared Resource at precisely the same time. Consider, for example, the
previous situation in the scenario: as the Sharer C and Sharer D calls could not be serviced by the
Shared Resource, they have to re-issue their calls, doing it at the very same time. In this particular
case, the Shared Resource should be able to resolve the situation by servicing one call (in this
scenario, the writing request from Sharer C), and deferring or ignoring all other requests for the
same data piece for later (as it is the case of the reading request from Sharer D). Again, the sharer
components whose calls were deferred or ignored, should be able to re-issue them, contesting again
for the data piece serviced by the Shared Resource.

Figure 3. Interaction Diagram of the Shared Resource pattern.

Sharer A Sharer B Sharer C Sharer D Shared Resource

Op.A1

Op.A2

Op.A3

Op.B1

Op.B2

Op.B3

Op.C1

Op.C2

Op.C3

Op.D1

Op.D2

Op.R

Op.W

Op.W

Op.R

Call

Call

Call

Call

Call Call

Call

Return

Return

Return

Return

Implementation

An architectural exploratory approach to design is described below, in which hardware-independent
features are considered early, and hardware-specific issues are delayed in the implementation process
[Fos94]. This method structures the implementation process of parallel software based on four stages
[OR98]. During the first two stages, attention is focused on concurrency and scalability characteristics.
In the last two stages, attention is aimed to shift locality and other performance-related issues.
Nevertheless, it is preferred to present each stage as general considerations for design instead of
providing details about precise implementation. These implementation details are pointed more
precisely in the form of references to design patterns for concurrent, parallel, and distributed systems
of several other authors [Sch95, Sch98a, Sch98b, POSA00].

1. Partitioning. The computation to be performed can be viewed as the effect of different
independent computations on the data structure. Each sharer component is defined to perform an
independent computation on data from the shared resource. Sharer components can be executed
simultaneously due to their independent processing nature. However, the shared resource
implementation should reflect a division and integrity criteria of the data structure, following the
basic assumption that no piece of data is operated at the same time by two or more different sharer
components. Therefore, sharer components may be implemented by a single entity (for instance, a
process, a task, and object, etc.) that performs a defined computation, or a sub-system of entities.
Design patterns in general [GHJV95, POSA96, PLoP94, PLoP95] may help with the
implementation of the sharer components as sub-system entities. Also, patterns used in concurrent
programming like the Object group pattern [Maf96], the Active Object pattern [LS95, POSA00],
and Categorize Objects for Concurrency pattern [AEM95] can help to define and implement
sharer components.

2. Communication. The communication to co-ordinate the interaction of sharer components and
shared resource is represented by an appropriate communication interface that allows access to the
shared resource. This interface should reflect the form in which requests are issued to the shared
resource, and the format and size of the data as argument or return value. In general, an
asynchronous coordination schema is used, due to the heterogeneous behaviour of sharer
components whose requests can be deferred or ignored by the shared resource. The
implementation of a flexible interface between sharer components and shared resource can be
done using design patterns for communication, like the Service Configurator pattern [JS96], the
Composite Messages pattern [SC95], and the Compatible Heterogeneous Agents and
Communication between Agents patterns [ABM96]. Other design patterns, like the Double-
Checked Locking pattern [SH96, POSA00], the Thread-Specific Storage pattern [HS97, POSA00]
and patterns presented dealing with issues about safe use of threads, synchronisation and locks
[McKe95, POSA00], can provide help to implement the expected behaviour of the shared resource
component.

3. Agglomeration. The components and communication structures defined in the first two stages of a
design are evaluated and compared with the performance requirements. If necessary, operations
can be recombined and reassigned to create different sets of sharer components with different

granularity and load-balance. Usually, due to the independent nature of the sharer components, it
is difficult to achieve a good performance initially, but at the same time, it is easy to make changes
on the sharer components without affecting the whole structure. A conjecture-test approach can be
used intensively, modifying both granularity and load-balance between sharer components to
observe which combination can be used to improve performance. However, especial care should
be taken with the load-balance between sharer components and a shared resource. The operations
of the shared resource should be lighter then any sharer computation, to allow a fast response of
the shared resource to requests. Most of the computation activity is meant to be performed by the
sharer components.

4. Mapping. In the best case, trying to maximize processor utilization and minimize communication
costs, each component should be assigned to a different processor. As the number of components
is usually expected to be not too large, enough parallel processors can be commonly available.
Also, the independent nature of sharers allows for each sharer component to be executed on a
different processor. The shared resource also is expected to be executed on a single processor, and
all sharers should have communication access to it. However, if the number of processors is
limited and less than the number of components, it tends to be difficult and complex to load-
balance the whole structure. To solve this, mapping can be determined at run-time by load-
balancing algorithms. As a "rule of thumb", systems based on the Shared Resource pattern are very
difficult to implement for a SIMD (single-instruction, multiple-data) computer. However, when
executed on a MIMD (multiple-instruction, multiple-data) computer, systems based on the Shared
Resource pattern tend to have an acceptable performance [Pan96, Pfis95].

Example Resolved

A version of the token space that incorporates mechanisms for process creation has been implemented
as a Java class, named class TokenSpace [Gray99, CN01]. In particular, this version uses threads
rather than parallel processes. In the time when this class was developed, in most standard Java
runtime systems, the thread packages were unable to use multiple processors, so the token space
system of this example is simply a demonstration in which concurrency is simulated. Furthermore, in
such a threaded example there is a further simplification: there is no need for a thread in the shared
resource itself; the put() and request() functions are executed by the threads that simulate the
quasi-parallel processes [Gray99].

In this example, an instance of the class Token contains a name string and a collection of token items.
Client processes use instances of a class Request to retrieve required tokens. A Request instance
contains vectors specifying the required tokens, and their dispositions. Also, a Request instance may
specify a “termination token”. After a failed attempt to match a request for tokens, the matching
checks for any specified termination token. Such a token is normally left in the TokenSpace. Its
presence may affect the operation of many other processes, allowing a process (like, for instance, a
data source) to mark the end of data with a token.

A simple parallel sorting program is used to test the TokenSpace implementation, which controls the
instantiation of processes (more likely, threads) and sequences the phases of a computation. The
program includes data generation (a single instance of a class Source), sorting of subsets of the data

(one or more instances of a class Sorter), merging of sorted subsets of data (one or more instances of
a class Merger), and a final reporting element that uses the sorted data (an instance of a class
Reporter). Notice that the computation is comparable to a pipeline processing. Nevertheless, it is
considered that decomposing a sorting task into several smaller sorting and merging tasks will have a
large enhancement for a an O(N2) sort, and a slight enhancement for a more realistic O(NlogN) sort
[Gray99]. Distributing subtasks does add to the computational cost, but if multiprocessors are
available, many of the separate sort and merge steps can proceed in parallel, resulting in a shorter
elapsed time which is the main interest here, as it is mentioned in the context.

Partitioning

Partitioning refers to define the computations to be performed on the data contained in the shared
resource. In the TokenSpace example, a typical client (as a thread) has a run() function that may
initially submit a number of requests for special initialization tokens. Then, it loops processing further
data tokens until some termination condition is met. The run() function must end with a call to the
TokenSpace, notifying the termination of this thread. This allows the record of threads to be
maintained correctly. The data identifying a class include information on any token that should be
added to the TokenSpace when the last instance of a client class is removed. Such tokens can mark
the completion of particular phases in a computation and can also trigger the instantiation of objects
that will perform a subsequent phase. As it is mentioned above, the parallel sorting example considers four
types of clients: a class Source for data generation, a class Sorter for sorting subsets of the data, a
class Merger for merging sorted subsets of data, and a class Reporter as a reporting element.

Communication

The communication is represented by a communication interface that allows access to the shared
resource In the TokenSpace implementation, The simple Java implementation of the token space is
based on the modifier synchronized, which causes that the method is only invoked when there is no
lock held on the TokenSpace. If the TokenSpace is locked, the client that invoked the method is
temporary halted till the TokenSpace is unlocked. So, the TokenSpace is is locked by the invocation
of a synchronized method, and unlocked when the method is exited. Additionally, in this
implementation, the placement of a token in the TokenSpace triggers a check against a table of data
that relate token names to the Java classes that may need to be instantiated.

Agglomeration and Mapping

The main process starts and initiates processing. After creating the TokenSpace object, it declares
data structures that must be instantiated to handle them. In the present example, the class Source
handles a StartToken (only a single instance of this class is allowed), the class Sorter handles
sort tokens (it can be created as many instances of this class as seem to be useful), the class Merger
handles merge tokens (again, there can be more than one instance of this class), and the class
Reporter responds to the token marking the end of the merging process. Also, an endData token
should be considered, so it marks the end of data processing in the TokenSpace. Figure 4 shows a test
program for the token space example [Gray99].

Figure 4. Class Test for testing the TokenSpace Example.

A more detailed operation of this program is described as follows:

1. The action of placing a StartToken in the TokenSpace triggers the creation of a Source object
with associated thread (or Source process). The main thread can now terminate leaving the
TokenSpace object in existence with running Source objects.

2. Each Source takes a very large array of randomly ordered doubles, and partitions it into subarrays;
each subarray forms the token_item of a separate sort token placed into the TokenSpace. Flow
control limits each Source from leaving more than ten unprocessed sort tokens in the
TokenSpace. Each put() action on the TokenSpace results in a re-evaluation of the state of
known processes against the data provided in the TokenHandlerIdentifiers. The first
appearance of a sort token in the TokenSpace triggers the creation of a Sorter; as this class is
marked as a VAR_LOAD_HANDLER (“variable load handler”), further instances of the class Sorter
may get created in response to subsequent put(sort) actions.

public class Test{
public static void main (String[] args) {

TokenSpace tSpace = new TokenSpace();

TokenHandlerIdentifier thi = new
TokenHandlerIdentifier(

“Source”,
“StartToken”,
“sort”,
“endData”,
TokenHandlerIdentifier.SINGLETON_HANDLER);

tSpace.addTokenHandlerInfo(thi);

thi = new TokenHandlerIdentifier(
“Sorter”,
“sort”,
“merge”,
“endSort”,
TokenHandlerIdentifier.VAR_LOAD_HANDLER);

tSpace.addTokenHandlerInfo(thi);

thi = new TokenHandlerIdentifier(
“Merger”,
“merge”,
“merge”,
“endMerge”,
TokenHandlerIdentifier.VAR_LOAD_HANDLER);

tSpace.addTokenHandlerInfo(thi);

thi = new TokenHandlerIdentifier(
“Reporter”,
“endMerge”,
null,
“endReport”,
TokenHandlerIdentifier.SINGLETON_HANDLER);

tSpace.addTokenHandlerInfo(thi);

Token t = new Token();
t.fTokenName = “StartToken”;
t.fItems = null;

tSpace.put(t,false);
}

}

3. The function Sorter.run() builds a Request object that specifies the need for a sort token
(this requires no identification or other token_items), or the alternative of an endData
termination token. This request is repeatedly reissued from a loop; if a sort token is returned, its
subarray is sorted and placed back in the TokenSpace as a merge token. The loop ends if this
termination token is matched.

4. The placement of a merge token triggers the creation of a Merger. The Merge.run() function is
similar to that of the Sorter, save that its Request object involves two merge tokens, or an
endSort termination token. The Merger combines the data in the two merge tokens that it
removes from the TokenSpace, and puts back another merge token containing an array with their
combined data.

5. A Reporter object is created when an endMerge token appears in the TokenSpace. It removes
the last remaining merge token from the TokenSpace. This token contains all elements of the
original array (partitioned by the Source) and outputs the sorted array or performs any other
processing required.

On an uniprocesor computer and for a particular size of the data set, tests employed one or two
Sorters and a Merger as “parallel” (concurrent) objects. In general, measured computation times
were just a little longer than using a simple quicksort of the entire data set. These increased times
reflect the cost of the more elaborated data ordering (the creation of the various dynamically allocated
tokens and subarrays) and the overheads of switching amongst threads.

Known uses

� The Dining Philosophers problem, originally presented by E.W. Dijkstra [Dijk72] and discussed by
many others, is considered an initial example of the Shared Resource pattern for concurrent
programming. Even though it is more whimsical than practical, it describes processes that require
synchronised access to a common resource. Five philosophers sit around a circular table. Each
philosopher spends his life alternately thinking and eating spaghetti. Because spaghetti is long and
tangled, a philosopher must use two forks to eat it. Unfortunately, the philosophers can only afford
five forks. One fork is placed between each pair of philosophers, and they agree that each uses only
the immediate left and right forks. A philosopher is allowed to eat as long as he is able to get both
left and right forks. Hence, at a single moment, more than one philosopher can be eating, but
neighbouring philosophers cannot eat at the same time. The problem is to simulate the behaviour of
five philosophers. The program must avoid the unfortunate situation in which all philosophers are
hungry but none is able to acquire both forks. In this problem, the shared resource is represented by
the five forks on the table, and each philosopher is represented by a sharer. The synchronised
operations that the philosophers (as sharers) can carry out on the forks (as a shared resource) are
take-a-fork and put-a-fork.

� Mobile robotics control is another concurrent application example of the Shared Resource pattern.
The software functions for a mobile robotics system has to deal with external sensors for acquiring
input and actuators for controlling its motion and planning its future path in real-time. Unpredictable
events may demand a rapid response, for example, imperfect sensor input, power failures, and
mechanical limitations in the motion. An examples system, the CODGER system, uses the Shared
Resource pattern to model the cooperation of tasks for coordination and resolution of uncertain

situations in a flexible form. CODGER is composed of a "captain", a "map navigator", a "lookout", a
"pilot" and a perception system, each one sharing information through a common shared resource
[SG96].

� A real-time scheduler is another concurrent application of the Shared Resource pattern. The
application is a process control system, in which a number of independent processes are executed,
each having its own real-time requirements, and therefore, no process can make assumptions about
the relative speed of other processes. Conceptually, they are regarded as different concurrent
processes coordinated by a real-time scheduler, accessing, for instance, computer resources
(Consoles, printers, I/O devices, etc.) which are shared among them. The real-time scheduler is
implemented as a shared resource component to give processes exclusive access to a computer
resource, but does not perform any operation on the resource itself. Each different process performs
its activities, requiring from time to time the use of computer resources. The shared resource grants
the use of resources, maintaining the integrity of the data read from or written to a resource by each
different process [Han77].

� A Tuple space, used to contain data, presents the parallel programming structure of the Shared
Resource pattern. Sharers can generate asynchronous requests to read, remove and add tuples. The
tuple space is encapsulated in a single shared resource component that maintains the set of tuples,
preventing two parallel sharers from acting simultaneously on the same tuple [Fos94].

� JavaSpaces is a distributed object-sharing structure, constituted as a set of abstractions for
distributed programming, which together compose a shared resource structure. In a distributed
application, the JavaSpaces structure acts as a virtual space between providers and requesters of
network resources or objects, allowing participants in a distributed solution to exchange tasks,
requests and information in the form of Java technology-based objects. Briefly, a JavaSpace is an
environment that provides object persistence and facilitates the design of distributed algorithms.
Basically, JavaSpaces are client/server systems, with clients calling one set of interfaces - those of
the JavaSpace. Clients are encapsulated from details of object-transfer and distributed-function calls.
Clients may write and read objects to JavaSpaces and look up the JavaSpace for objects that match
some template. JavaSpaces provide developers with the ability to create and store objects with
persistence, which allows for process integrity. For a more detailed technical overview of
JavaSpaces, refer to [FHA99].

Consequences

Benefits

� Integrity of data structure within the shared resource is preserved.

� From the perspective of a parallel designer, this pattern is the "simplest" to design and execute, due
to the minimal dependence between sharer components. Fundamentally, the operations on each data
element are completely independent. That is, each piece of data can be operated in different
machines, running independently as long as the appropriate input data are available to each one. It is
relatively easy to achieve significant performance in an application that fits the pattern [Pan96].

	 As its components (the shared resource and the sharers) are strictly separated, the Shared Resource
pattern supports changeability and maintainability [POSA96, Pan96].

 The Shared Resource pattern supports several levels of granularity. If required, the shared resource
can provide operations for different data sizes.

� As sharer components perform different and independent operations, they can be reused in different
structures. The only requirement for reuse is that the sharer to be reused is able to perform certain
operations on the data type in the new shared resource [POSA96, Pan96].

� A shared resource can provide fault tolerance for noise in data [POSA96, SG96].

Liabilities

 Due to the different nature of each component, load-balance is difficult to achieve, even when
executing each component on a different processor. The difficulty increases if several components
run together on a processor [Pan96].

� The trace of stages for producing a result in a shared resource application is difficult to reproduce.
Inherently, computations are not necessarily ordered following a deterministic algorithm [POSA96].
Furthermore, the parallelism of its components introduces a non-deterministic feature to the
execution [Pan96].

� Even when parallelism is straightforward, often the shared resource does not consider the use of
control strategies to exploit the parallelism of shared and to synchronise their actions. In order to
preserve its integrity, the design of the shared resource must consider extra mechanisms or
synchronisation constraints to access its data. An alternative is using the Blackboard pattern
[POSA96].

Related patterns

The Shared Resource pattern is considered a specialization of the Blackboard pattern [POSA96]
without control component, and introducing aspects of activity parallelism. Also, it is related to the
Repository architectural style [Shaw95, SG96]. Other patterns that can be considered related to this
pattern are the Compatible Heterogeneous Agents pattern [ABM96] and the Object Group pattern
[Maf96].

3. Summary

The goal of the present paper is to provide software designers and engineers with an overview of a
common structure used for activity parallel software systems. The architectural pattern described here
can be linked with other current pattern developments for concurrent, parallel and distributed systems.

Work on patterns that support the design and implementation of such systems has been addressed
previously by several authors [Sch95, Sch98a, Sch98b, POSA00].

4. Acknowledgement

I would like to express my acknowledgements and gratitude to Berna Massingill, who shepherded this
paper, always providing insights and comments for its improvement. Also, I would like to thank Ralph
Jonhnson, for his accurate comments during the shepherding of this paper.

5. References

[ABM96] Amund Aarsten, David Brugali and Giuseppe Menga. Patterns for Cooperation. Pattern Languages of
Programming Conference (PLoP'96). Allerton Park, Illinois, USA. September 1996.

[AEM95] Aarsten, A., Gabriele Elia, G., and Giuseppe Menga, G. G++: A Pattern Language for the Object
Oriented Design of Concurrent and Distributed Information Systems, with Applications to Computer Integrated
Manufacturing. Department of Automatica e Informatica, Politecnico de Torino. In J. Coplien and D. Schmidt
(eds.) Pattern Languages of Program Design. Reading, MA: Addison-Wesley, 1995.

[CG88] Nicholas Carriero and David Gelernter. How to Write Parallel Programs. A Guide to the Perplexed. Yale
University, Department of Computer Science, New Heaven, Connecticut. May 1988.

[CN01] Peter Carmichael and Joyce Ng. DSpace Workflow Design Description. DSpace Durable Digital Documents
project, MIT Libraries, 2001. http://www.dspace.org/

[CT92] K. Mani Chandy and Stephen Taylor. An Introduction to Parallel Programming. Jones and Bartlett
Publishers, Inc., Boston, 1992.

[Dijk72] Edsger W. Dijkstra. Hierarchical Ordering of Sequential Processes. In Operating Systems Techniques,
C.A.R. Hoare and R.H. Perrot (Editors), Academic Press, New York, 1972.

[Fos94] Ian Foster. Designing and Building Parallel Programs, Concepts and Tools for Parallel Software
Engineering. Addison-Wesley Publishing Company, 1994.

[FHA99] Freeman, E., Hupfer, S., and Arnold K. JavaSpaces. Principles, Patterns and Practice. Addison Wesley
Publishing Co., 1999.

[GHJV95] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns: Elements of
Reusable Object-Oriented Systems. Addison-Wesley, Reading, MA, 1994.

[Gray99] Neil Gray. Architectural Patterns for Parallel Programming. Personal communication, 1999.
[Han77] Brinch Hansen, P. The Architecture of Concurrent Programs. Series in Automatic Computetion. Prentice-

Hall, Inc. Englewood Cliffs, New Jersey, 1977.
[HS97] Harrison, T., and Schmidt, D. C. Thread-Specific Storage, An Object Behavioral Pattern for Efficiently

Accesing per-Thread State. Department of Computer Science, Washington University. 2nd annual European
Pattern Languages of Programming Conference, in Kloster Irsee, Germany, 1997.

[JS96] Prashant Jain and Douglas C. Schmidt. Service Configurator. A Pattern for DynamicConfiguration and
Reconfiguration of Communication Services. Third Annual Pattern Languages of Programming Conference,
Allerton Park, Illinois. September 1996.

[LS95] R. Greg Lavender and Douglas C. Schmidt. Active Object. An Object Behavioral Pattern for Concurrent
Programming .In Patterns Languages of Programming 2 (PLOP'95). Addison-Wesley, 1996.

[Maf96] Maffeis, S. Object Group, An Object Behavioral Pattern for Fault-Tolerance and Group Communication
in Distributed Systems. Department of Computer Science, Cornell University. Proceedings of the USENIX
Conference on Object-Oriented Technologies. Toronto, Canada, 1996.

[McKe95] McKenney, P. E. Selecting Locking Primitives for Parallel Programs. Sequent Computer Systems, Inc.
In J. Vlissides, J. Coplien and N. Kerth (eds.) Pattern Languages of Program Design 2. Reading, MA: Addison-
Wesley, 1996.

[OR98] Jorge L. Ortega-Arjona and Graham Roberts. Architectural Patterns for Parallel Programming.
Proceedings of the 3rd European Conference on Pattern Languages of Programming and Computing,
EuroPloP'98. Jens Coldewey and Paul Dyson (editors), Universitätsverlag Konstantz GmbH, 1999.

[OR00] Jorge L. Ortega-Arjona. The Communicating Sequential Elements Pattern. Proceedings of the 7th Annual
Conference on Pattern Languages of Programming, PloP'98. Eugene Wallingford and Alejandra Garrido
(editors), Washigton University Technical Report wucs-00 29, 2000.

[Pan96] Cherri M. Pancake. Is Parallelism for You? Oregon State University. Originally published in
Computational Science and Engineering, Vol. 3, No. 2. Summer, 1996.

[Pfis95] Gregory F. Pfister. In Search of Clusters. The Coming Battle in Lowly Parallel Computing. Prentice Hall
Inc. 1995.

[PLoP94] James O. Coplien and Douglas C. Schmidt (editors). Patterns Languages of Programming. Addison-
Wesley, 1995.

[PLoP95] James O. Coplien, Norman L. Kerth and John M. Vlissides (editors). Patterns Languages of
Programming 2. Addison-Wesley, 1996.

[POSA96] Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerland, Michael Stal. Pattern-Oriented
Software Architecture. John Wiley & Sons, Ltd., 1996.

[POSA00] Douglas Schmidt, Michael Stal, Hans Rohnert, Frank Buschmann. Pattern-Oriented Software
Architecture, Vol. 2 - Patterns for Concurrent and Distributed Objects. John Wiley and Sons, Ltd., 2000.

[SC95] Aamond Sane and Roy Campbell. Composite Messages: A Structural Pattern for Communication Between
Components. OOPSLA'95, Workshop on Design Patterns for Concurrent, Parallel and Distributed Object-
Oriented Systems. October 1995.

[Sch95] Douglas Schmidt. Accepted Patterns Papers. OOPSLA'95 Workshop on Design Patterns for Concurrent,
Parallel and Distributed Object-Oriented Systems. http://www.cs.wustl.edu/~schmidt/OOPSLA-
95/html/papers.html. October, 1995.

[Sch98a] Douglas Schmidt. Design Patterns for Concurrent, Parallel and Distributed Systems.
http://www.cs.wustl.edu/~schmidt/patterns-ace.html. January, 1998.

[Sch98b] Douglas Schmidt. Other Pattern URL's. Information on Concurrent, Parallel and Distributed Patterns.
http://www.cs.wustl.edu/~schmidt/patterns-info.html. January, 1998.

[SH96] Schmidt, D. C., and Harrison, T. Double-Checked Locking, An Object Behavioral Pattern for Initializing
and Accesing Thread-safe Objects Efficiently. Department of Computer Science, Washington University. 3rd
Pattern Languages of Programming Conference, Allerton Park, Illinois, February 1997.

[Shaw95] Mary Shaw. Patterns for Software Architectures. Carnegie Mellon University. In J. Coplien and D.
Schmidt (eds.) Pattern Languages of Program Design. Reading, MA: Addison-Wesley, 1995.

[SG96] Mary Shaw and David Garlan. Software Architecture: Perspectives on an Emerging Discipline. Prentice
Hall Publishing, 1996.

[ST96] David B. Skillicorn and Domenico Talia. Models and Languages for Parallel Computation. Computing and
Information Science, Queen's University and Universita della Calabria. October 1996.

[VBT95] Allan Vermeulen, Gabe Beged-Dov and Patrick Thompson. The Pipeline Design Pattern. OOPSLA'95,
Workshop on Design Patterns for Concurrent, Parallel and Distributed Object-Oriented Systems. October 1995.

