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Abstract

The Communicating Sequential Elements pattern is an architectural pattern for parallel programming,
used when a design problem can be understood in terms of domain parallelism. This pattern proposes a
solution in which the same operations are performed simultaneously on different pieces of regular data,
and operations in each component depend on partial results of neighbour components. Usually, this
pattern is presented as a network or logical structure, conceived from the regular data.

1. Introduction

Parallel processing is the division of a problem, presented as a data structure or a set of actions, among
multiple processing components that operate simultaneously. The expected result is a more efficient
completion of the solution to the problem. The main advantage of parallel processing is its ability to
handle tasks of a scale that would be unrealistic or not cost−effective for other systems [CG88, Fos94,
ST96, Pan96]. The power of parallelism centres on partitioning a big problem in order to deal with
complexity. Partitioning is necessary to divide such a big problem into smaller sub−problems that are
more easily understood, and may be worked on separately, on a more "comfortable" level. Partitioning
is especially important for parallel processing, because it enables software components to be not only
created separately but also executed simultaneously.

Requirements of order of data and operations dictate the way in which a parallel computation has to be
performed, and therefore, impact on the software design [OR98]. Depending on how the order of data
and operations are present in the problem description, it is possible to consider that most parallel
applications fall into one of three forms of parallelism: functional parallelism, domain parallelism, and
activity parallelism [OR98]. Examples of each form of parallelism are pipeline processing [VTB95],
representing functional parallelism; communicating sequential elements, as an example of domain
parallelism; and master−slave [POSA96], which is an instance of activity parallelism.

2. The Communicating Sequential Elements Pattern

The Communicating Sequential Elements pattern is a domain parallelism pattern in which each
component performs the same operations on different pieces of regular data. Operations in each
component depend on partial results in neighbour components. Usually, this pattern is conceived as a
logical structure, reflecting the particular order present in the problem [OR98].
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Domain parallelism is the form of parallelism that involves problems in which a set of operations is to
be performed on a data structure that exhibits a specific order. Each component in the solution executes
a semi−autonomous computation influenced by the computations on its neighbours. The amount of
communication between all components can be variable, following fixed and predictable paths that can
be represented as a network. In this form of parallelism, it is difficult to conceive the computation as a
flow of data among processing stages or sequential steps in an algorithm [CG88, Fos94, OR98,
Pan96].

Example: the Heat Equation

Heat is a level of energy present in any physical body, perceptible by its particular temperature.
However, even though we can measure an average temperature, in general heat is not evenly
distributed throughout all the body. Observing more carefully, it is noticeable that in different parts of
the body it is possible to find different temperatures, and hence, different levels of heat. Moreover,
these different temperatures vary through time, tending to increase or decrease depending on the
interchange of heat between parts of the body. Thus, in a body, different parts expose a different
temperature, determining a particular distribution at different times.

In physical and engineering areas, this distribution of heat is particularly important to determine
particular thermal properties of materials. The main objective is to obtain a proper representation of the
overall effect that allows scientists and engineers to analyse such thermal properties in a more time−
efficient way. However, the difficulty of this problem resides in the time to operate on a large number
of data pieces and the number of operations per data piece.

For example, let us consider the simplest case, in which the Heat Equation is used to model the heat
distribution on a one−dimensional body, a thin substrate, such as a wire, divided in n segments
representing different temperatures (Figure 1).

Figure 1. An example of a wire divided in n segments with different temperatures.

The heat diffusion is modelled using a function representing temperature variations depending on time
and position in the body. This function is obtained as the solution of a differential equation, known as
the Heat Equation [GBDJMS94]. For our example, a function A(t,x) represents the heat diffusion
through the wire. A simple method developed for deriving a numerical solution to the Heat Equation is
the method of finite differences. The finite differences method cuts the length of the wire into equal
parts of length ∆x, and divides the time in discrete segments of length ∆t. Approximating the
continuous Heat Equation by its values at the end points of the sub−segments at the discrete time
points 0, ∆t, 2∆t,..., the discrete form for obtaining the heat distribution at the following time step is: 
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where i represents time steps, and j represents the position of segments in the wire.
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The initial and boundary conditions needed to solve the difference equation numerically are:
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The numerical solution is now computed simply by calculating the value for each segment j at a given
time step i, considering the temperature from both its previous and its next segments. The total time
required to execute this numerical solution sequentially depends directly on the number of segments
and the number of time steps needed to describe the heat distribution through time. The larger number
of segments and number of time steps, the longer it takes to compute the solution. A sequential
approach that obtains a single temperature value for each segment at each time step is not the most
time−efficient way to compute the heat diffusion. However, we can potentially carry out this
computation more efficiently by

1. Using a group of parallel components that exploit a one−dimensional logical structure representing
the wire, and

2. Calculating simultaneously at a given time step the value of A(i+1, j) for all segments.  

Context

Start the design of a software program for a parallel system, using a particular programming
language for certain parallel hardware. Consider the following context constraints:

• The problem involves tasks of a scale that would be unrealistic or not cost−effective for other
systems to handle and lends itself to be solved using parallelism. Consider the Heat Equation
example: suppose that it is needed to obtain the temperature values for a wire divided into 1,000
segments, considering time steps of 5 milliseconds, during a time frame of 10 seconds. The total
number of operations required is 2,000,000.

• The hardware platform or machine to be used is given, offering a reasonably good fit to the
parallelism found in the problem. 

• The main objective is to execute the tasks in the most time−efficient way.

Problem

A parallel computation is required that can be performed as a set of operations on regular data.
Results cannot be constrained to a one−way flow among processing stages, but each component
executes its operations influenced by data values from its neighbouring components. Because of this,
components are expected to intermittently exchange data. Communications between components
follow fixed and predictable paths.

For instance, consider the Heat Equation example. A one−dimensional body, a wire, can be
represented as a data structure, in which the temperature of an segment influences the temperature on
adjacent segments and to a different extent, those on either side. Over time, the effects propagate to
other segments extending in both directions; even the source segment may experience reverberations



due to temperature changes from neighbouring segments. If this example would be executed serially, it
would require that the whole computation is performed across every piece of all the data structure to
obtain some intermediate state, and then, a new iteration should begin.

Forces

Considering the problem description and granularity and load balance as other elements of parallel
design [Fos94, CT92] the following forces should be considered:

• The precise order of data distributed among processing elements must be preserved. This order
provides the base for result interpretation. For example, in the Heat Equation, it is important to
control where and when temperature changes happen, by situating them by segment and time step.
This allows obtaining that overall effect expected by scientists and engineers.

  
• Computations must be performed semi−autonomously, on local pieces of data. The objective is to

obtain the best possible benefit from domain parallelism. In the Heat Equation example, the wire is
divided into segments to operate on them as "autonomous" sub−wires, with similar properties to the
original wire, but in a smaller scale.

• Every element performs the same operations, in number and complexity. In the Heat Equation
example, the same operation must be performed on each segment to obtain its temperature at the
next time step. All segments are operated on simultaneously.

 
• Partial results must be communicated among neighbour processing elements. The reason is that

operations on each element are influenced by partial results from its neighbouring elements. In the
Heat Equation example, it can be noticed that the temperature of an segment at the next time step
(A(i+1,j)) results from operating the temperature of the segment at a present time (A(i,j)) with the
temperatures from its previous and next segments ( A(i,j−1) and A(i,j+1), respectively).

• Improvement in performance is achieved when execution time decreases. Our main objective is to
carry out the computation in the most time−efficient way.

Solution

Parallelism is introduced as multiple participating concurrent components, each one applying the
same operations on a data subset. Components communicate partial results by exchanging data,
usually through communication channels. No data objects are directly shared among components, but
each one may access only its own private data subset.

A component communicates by sending data objects from its local space to another. This
communication may have different variants: synchronous or asynchronous, exchange of a single data
object or a stream of data objects, and one to one, one to many, many to one or many to many
communications. Often the data of the problem can be conceived in terms of a regular logical structure.
The solution is presented as a network that may reflect this logical structure in a transparent and natural
form [CG88, Shaw95, Pan96].



Structure

In this architectural pattern, the same operation is applied in effect simultaneously to different pieces of
data. However, operations in each element depend on the partial results of operations in other
components. The structure of the solution involves a regular logical structure, conceived from the data
structure of the problem. Therefore, the solution is presented as a network of elements that follows the
shape imposed by this structure. Identical components simultaneously exist and process during the
execution time. Consider our Heat Equation example. An Object Diagram, representing the network of
elements that follows the one−dimensional shape of the wire and its division into segments is shown in
Figure 2.

Figure 2. Object Diagram of Communicating Sequential Elements for a One−dimensional case.

Participants

• Sequential Element. The responsibilities of a processing element are to perform a set of operations
on its local data, and to provide a general interface for sending and receiving messages to and from
other elements. In the Heat Equation example, identical sequential elements are expected to perform
the actual heat calculations and to communicate partial results exchanging values with their
neighbours.

• Communication Channels. The responsibilities of a communication channel are to represent a
medium to send and receive data between elements, and to synchronise communication activity
between them. In the Heat Equation problem, channels are expected to handle the communication
and synchronisation of temperature values through neighbouring elements.

Dynamics

A typical scenario to describe the basic run−time behaviour of this pattern is presented, where all the
Sequential Elements are active at the same time. Every Sequential Element performs the same
operations, as a piece of a processing network. In the most simple case (a one−dimensional structure),
each one communicates only with a previous and next others (Figure 3). The processing and
communicating scenario is as follows:

• Initially, all components Element N−1, Element N, Element N+1, etc. read different sub−sets of
data. Then, every component communicates its edge data through the available communication
channels (Here, Channel A and Channel B). Then all components synchronise and receive the
edge data from their previous and next neighbours.

• The computation is started when all components Element N−1, Element N, Element N+1, etc.
perform Op.1 at the same time.

:Element 1 :Channel:Channel :Element 2 :Channel :Element n :Channel



• To continue the computation, all components send their partial results through the available
communication channels (Here, Channel A and Channel B). Then all components synchronise
again, and receive the partial results from their previous and next neighbours.

• Once synchronisation and communications are finished, each component continues computing the
next operation (in this case Op.2). The process repeats until each component has finished its
computations.

Figure 3. Interaction Diagram of Communicating Sequential Elements for a One−dimensional case.

Implementation

An architectural exploratory approach to design is described below, in which hardware−independent
features are considered early, and hardware−specific issues are delayed in the implementation process.
This method structures the implementation process of parallel software based on four stages [OR98].
During the first two stages, attention is focused on concurrency and scalability characteristics. In the
last two stages, attention is aimed to shift locality and other performance−related issues. Nevertheless,
it is preferred to present each stage as general considerations for design instead of providing details
about precise implementation. These implementation details are pointed more precisely in the form of
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references to design patterns for concurrent, parallel, and distributed systems of several other authors
[Sch95, Sch98a, Sch98b].

1. Partitioning. In general, partitioning is concerned with analysing the data structure and algorithm
used, searching for a potential parallelism. However, because the Communicating Sequential
Elements pattern deals with domain parallelism, the regular logical structure of data is a natural
candidate to be straightforward decomposed into a network of data substructures or pieces.

In general, we can initially consider dividing the data structure into a set of data pieces in an
arbitrary way, as the regular logical structure is usually considered "homogeneous" (all its parts
expose the same properties), and its importance relies only on its order. Thus, data pieces may
have different size and shape. However, as we are aiming for an efficient computation, we
normally divide the regular data structure into a set of data pieces with similar size and shape. The
objective is to load−balance the processing among all the sequential elements.

Trying to expose the maximum concurrency, we define a basic sequential element that processes a
unique sequence of operations on its assigned piece of data. We devise this basic sequential
element to perform the same operations on different data pieces, so that all sequential elements
share the same processing nature and structure. Hence, computations on each sequential element
present the same complexity per time step, and the total number of sequential elements is equal to
the number of data pieces. Therefore, a sequential element is represented as a single processing
element (for instance, a process, task, function, object, etc.) or a subsystem of processing
elements, which may be designed using design patterns [GHJV95, POSA96, PLoP94, PLoP95].
Some design patterns that can be considered for implementing sequential elements are the Active
Object pattern [LS95], and the "Ubiquitous Agent" pattern [JP96].

2. Communication. The communication issues are related to the form in which processing
components exchange messages. In the particular case of the Communicating Sequential Elements
pattern, the sequential elements are connected using communication channels to compose a
network that follows the shape of the data structure. Each sequential element is expected to
exchange partial results with its neighbours through channels. Thus, channels must perform data
exchange and coordinate the operation execution appropriately. An efficient communication
depends on the amount and format of the data to be exchanged, and the synchronisation schema
used. Both synchronous and asynchronous schemes can be found in several domain parallel
systems. However, a synchronous schema is commonly preferred in this pattern because all
sequential elements are designed to perform the same operation on the same amount of data during
a time step, in a synchronous way.

An important issue to consider here is how communication channels are defined. In general, this
decision is linked with the programming language used. Some languages define a type "channel"
where it is possible to send and to receive values. Any sequential element is defined to write on the
channel, and to read from it. No further implementation is necessary. Conversely, other languages
do not define a channel type, or precise ways of data exchange. Thus, we must design and
implement channels in such a way that allows data exchange between elements. As the use of
channels depends on the language, decisions regarding their implementation can be delayed to
other refining design stages.

From an architectural point of view, channels are defined, whether they are implicit in the
language, or whether they must be explicitly created. Design patterns that can help with the



implementation of channels are the Composite Messages pattern [SC95] and the Service
Configurator pattern [JS96].

3. Agglomeration. The structure of sequential elements and channels defined in previous steps are
evaluated with respect to performance. Often, in this kind of structures, agglomeration is directly
related with the way data is divided among the sequential elements, this is, the granularity. As each
sequential element performs the same operations, changes in the granularity involve only the size
of the amount of data pieces in the network to be processed per component. In the case of this
pattern, performance is impacted due to redundant communications and the amount of
communications in a dimension or direction. 

4. Mapping. Components are assigned to real processors. Mapping can be done statically or
dynamically, depending directly on hardware availability and its characteristics. 

In the most optimistic case, each sequential element is assigned to a processor. However, the
number of processors is usually less than the number of processing elements. Thus, a number of
processing elements must be assigned to a processor. To maximise processor utilisation and
minimise communication costs, the important feature to consider is load−balance. In domain
parallelism, computational efficiency decreases due to load imbalances. If the design is to be used
extensively, it is worthwhile to improve its load balance. Approaches include cyclic mapping or
dynamic mapping.

As a "rule of thumb", systems based on the Communicating Sequential Elements pattern will
perform best on a SIMD (single−instruction, multiple−data) computer, if array operations are
available. However, if the computations are relatively independent, a respectable performance can
be achieved using a shared−memory system [Pan96]. Further reference about features of parallel
hardware platforms and parallel languages can be found in [CSG97, Fos94, Para98, Perr92,
Pfis95, Phil95, ST96]. Also, good advice and guidelines about platform and language selection for
performance, related with speed−up and scalability, can be found in [Pan96, PB90].

Example Resolved

In this section we continue the Heat Equation example, developing its numerical solution by using a
representation of parallel components that reflects the one−dimensional logical structure of the wire,
and simultaneously calculating the value of A(i+1,j) for all segments, at a given time frame. The main
idea is that data representing the heat in the wire is divided and assigned to a group of communicating
elements. In general, elements carry out computations on pieces of data, and channels only allow
exchange of data from the boundaries (Figure 4).



Figure 4. Object Diagram for the Heat Equation Problem, dividing the wire in three segments and
assigning them to three sequential elements.

The channels at both extremes just keep track of the values in both extremes, so each communicating
element has two channels at both sides.

For this example, we use the UC++ programming language [WRP96] to implement the participant
classes. UC++ is an extension of C++ that allows the creation of active objects and different kinds of
synchronisation on a PVM environment [GBDJMS94]. 

Partitioning 

The Communicating Sequential Elements pattern is used to obtain a Software Structure that deals with
the Heat Equation problem, describing the actual processing as a cooperation between identical
sequential elements, which perform calculations and communicate partial results exchanging values
through channels with their neighbours. As the actual heat calculations are done in the sequential
elements, we present their code first. The prototype of an element for the case study of the Heat
Equation is shown in Figure 5.

For this implementation, we take advantage of the characteristics of UC++, making the communicating
elements all active objects (as subclass of the class Activatable), aiming to improve performance.
We do not show the complete Element() constructor implementation, but essentially, each element
copies only its segment of interest into the subwire data structure, determining where on the wire the
actual element is operating.

Figure 5. Class Element for the Heat Equation Problem.

class Element: Activatable {
public:

Element();
Element(Channel* f, Channel* g, int pos, int nElem);
virtual void startWork();
...

private:
int nElements;
int timeStep;
Wire *wire;
Wire *subwire;
Channel *previous;
Channel *next;
...

};

Wire

Segment 1
(Temperature 1)

Segment 2
(Temperature 2)

Segment n
(Temperature n)

:Element 1 :Channel:Channel :Element 2 :Channel :Element n :Channel



Communication

During construction, each element establishes connection with its neighbours through the channels
previous and next, which precisely refer to the previous and next sequential element (see Figure
5). All other class attributes represent the parameters required to perform the computation of the Heat
Equation.

The function startWork() is called by main()on elements immediately after constructing them.
It is here that the parallelism of the algorithm occurs, as this function is executed on each element in
parallel, exchanging at each timeStep temperature values representing heat with their neighbours,
via the channels previous and next. During this cycle, when all the computations have been
carried out, each elements writes a partial result to the wire data structure, repeating until the whole
process has covered the time frame of the simulation. It is then when the function printResults()
is called, sorting the result and writing it to a file.

Next we present the code for the channel class in Figure 6. This class handles the communication and
synchronisation of temperature values through neighbouring elements. The code for the constructor is
not shown: it just initialises the buffer values for temporarily store the exchanging values from the
previous and next sequential elements. Notice that we again take advantage of the characteristics of
UC++, defining the channels also as active objects (a subclass of Activatable). The key functions
sendToPrevious(), sendToNext(), receiveFromPrevious() and receiveFromNext() have
a similar functionality, retrieving heat values from the sequential elements, and writing them to their
neighbours.

Figure 6. Class Channel for the Heat Equation Problem.

Agglomeration and Mapping

Finally, we present the main() function for a Communicating Sequential Elements system in Figure
7. This function initiates and manages the synchronisation of the active objects. Each element is given
two pointers of channels to exchange partial results with its neighbours. Active objects are instantiated
from the defined classes Element and Channel, by the activenew_Element and
activenew_Channel respectively, as defined by UC++. A non−blocking function call to
startWork() is then made on each active object, which starts them. Once all elements are active, a
blocking function call to blockWait() is done on each of them after the loop for startWork()
calls is finished, allowing all elements to complete their computations. The final loop requests to all
elements to print their results.

class Channel: Activatable {
public:

Channel();
virtual void sendToPrevious(Heat& h);
virtual void sendToNext(Heat& h);
virtual Heat* receiveFromPrevious();
virtual Heat* receiveFromNext();

private:
Heat* first;

           Heat* last;
};



The actual program was developed in UC++ and executed on a PVM environment [GBDJMS94], using
a cluster of computers.

Figure 7.  main() function for the Heat Equation Problem.

Known uses

� Consider as a non−programming example the case of a hive of honey bees. The workers act as
constructors, harvesters, soldiers, and nursemaids. Each individual bee can eventually perform any of
these activities in cooperation with the others during its short lifetime. Minute−to−minute control of
the hive’s behaviour is dispersed. Changes, like many shifts in foraging patterns of honey bees come
from signals among the workers, whose success or failure at various tasks can rise hive−permeating
hormone levels that then brings about changes in the whole hive [OR98]. 

• The one−dimensional wave equation, used to numerical model the motion of vibrating systems, is
an example of the Communicating Sequential Elements pattern. The vibrating system is divided in
sections, and each processing element is responsible for the computation of the position at any
moment of a section. Each computation depends only on partial results of the computation at
neighbouring sections. Thus, each computation can be done independently, except when data is
required from the previous or next sections [NHST94].

• Simulation of dynamic systems, such as an atmosphere model, is another use of Communicating
Sequential Elements. The model usually is divided as a rectangular grid of blocks. The simulation
proceeds in a series of time steps, where each processing element computes and updates the
temporal state in a block with data of the previous state and updates of the state of neighbouring
blocks. Integrating the time steps and the blocks makes possible to determine the state of the
dynamic system at some future time, based on an initial state [Fos94].

• Image processing problems, such as the component labelling problem. An image is given as a
matrix of pixels, and each pixel must be labelled according to certain property − for instance,

int main(int argc, char** argv){
int nElements = 10; 

           int nChannels = nElements+1; 
Channel* channels[nChannels];
Element* elements[nElements];

 
            int i;

for (i = 0; i < nChannels; i++){
    channels[i] = activenew_Channel();
            }
            for (i = 0; i < nElements; i++){

elements[i]  = activenew_Element(channels[i],
channels[i+1], i,nElements);

    elements[i] −> startWork();
             }
             for (i = 0; i < nElements; i++){
     blockWait(elements[i]);
             }
             for (i = 0; i < nElements; i++){
    elements[i] −> printResults();
             }
             return 0;
}



connection. The image is divided in sub−images, and mapped to a network of processing elements.
Each processing element tests for connection, and labels all the non−edge pixels of its sub−image.
Edge pixels between sub−images are labelled in cooperation by the two respective processing
elements [Fos94].

Consequences

Benefits

• Data order and integrity is granted because each sequential element accesses only its own local data
subset, and there is no data directly shared among components [SG96, ST96].

• As all sequential elements share the same functional structure, their behaviour can be modified or
changed without excessive effort [SG96, ST96].

• It is relatively easy to structure the solution in a transparent and natural form as a network of
elements, reflecting the logical structure of data in the problem [CG88, Shaw95, Pan96].

• As all components perform the same computation, granularity is independent of functionality,
depending only on the size and number of the elements in which data is divided. It is easily to
change in case a better resolution or precision is required.

• This pattern can be used on most hardware systems, considering the synchronisation between
elements as the main restriction (see Liabilities below) [Pan96].

Liabilities

• The performance of systems based on communicating elements is significantly impacted by the
communication strategy (global or local) used. Usually, the processors available are not enough to
support all elements. In order to apply a computation, each processor operates on a subset of the
data. Due to this, dependencies between data, expressed as communications, can slow down the
program execution [Fos94, Pan96].

• Load balancing is a hard problem when using this pattern. Often, data is not easily divided into
same−size subsets of data and the computational intensity varies on different processors. To
maintain synchronisation means that fast processors must wait until the slow ones can catch up,
before the computation can proceed to the next set of operations. An inadequate load balance
impacts strongly on performance. The decision to use this pattern should be based on how uniform
in almost every aspect the system can be [Pan96].

• The synchronous characteristic of the application determines efficiency. If the application is
synchronous, a significant amount of effort is required to get a minimal increment in performance.
If the application is asynchronous, it is more difficult to parallelise, and probably the effort will not
be worthwhile, unless communications between processors are very infrequent [Pan96].



Related patterns

The Communication Sequential Elements pattern is based on the original concept of Communicating
Sequential Processes (CSP) [Hoare84]. Patterns that can be considered related to this processing
approach are the Ubiquitous Agent Design Pattern [JP96] and the Visibility and Communication
between Agents pattern [ABM96].

3. Summary

The goal of the present work is to provide software designers and engineers with an overview of a
common structure used for domain parallel software systems. The architectural pattern described here
can be linked with other current pattern developments for concurrent, parallel and distributed systems.
Work on patterns that support the design and implementation of such systems has been addressed
previously by several authors [Sch95, Sch98a, Sch98b].
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