
The Contract Pattern

Michel de Champlain
Department of Computer Science
University of Canterbury, Christchurch, New Zealand
michel@cosc.canterbury.ac.nz
http://www.cosc.canterbury.ac.nz/~michel

12 August 1997

Abstract This paper describes the Contract pattern, an idiom that lets you apply assertions to
guarantee pre-conditions and post-conditions of methods and invariants on the state of
objects. This pattern can be used to develop reliable classes by making the Design by
Contract methodology—introduced by Meyer in the specific context of the Eiffel
language—available in Java and possibly other object-oriented languages.

Intent Provide an implementation of the Design by contract methodology [Meyer88] for
developing reliable classes and create robust objects in Java. This programming pattern
lets you apply assertions to guarantee the pre-conditions and post-conditions of
methods and invariants on the state of objects.

Also Known As Design by contract

Motivation Sometimes it’s necessary to restrict a class interface because you don’t want to provide
all the possible input combinations for all collaborators. One way to achieve this goal is
to make minimal and consistent methods that impose pre-conditions on input
parameters. Moreover, you might want to ensure the class behavior by imposing
post-conditions before methods return. You might also need to make sure that the class
is always in a stable state. Such an approach can result in reliable classes to create
robust objects.

Consider for example a bounded counter that has both a lower and upper bound. A
bounded counter object is constructed by setting these bounds. The class interface
provides two methods to increment the counter: inc() that increments the counter by
one and add(int n) that adds the counter by n.

How do we ensure that the bounded counter class is reliable, i.e., incrementing or
adding the counter is legal only when its value is less that its upper bound, and that a
class instance is correct and robust?

One way to deal with that problem is to rely on an exception handling mechanism1.
Such a mechanism provides an elegant way to handle errors by separating
error-handling code from normal code, but it neither improves the correctness of the
bounded counter class nor assures the behavior of its methods.

We can improve this situation by using assertions to establish a contract between a
class and its clients. This contract needs to take into account the concept of a class
invariant or property—lower <= count <= upper, in the case of the bounded counter

Copyright 1997, Michel de Champlain
Permission granted to copy for PLoP ’97 Conference.
All other rights reserved.

1

1 Assuming that the language has one, such as Ada, C++, Java, etc.

class—that must be satisfied by all instances of a class in every stable state.

A solution is to provide a precise definition of what constraints (input parameters) must
be satisfied by the client, and the knowledge that this behavior (functionality of each
method) will be guaranteed if it agrees to those constraints. In order to support the
above solution at run-time, exceptions can be thrown whenever a contract is violated,
that is when either a pre-condition, post-condition or invariant is not satisfied. In this
regard, the Contract pattern is a complement to exception handling.

This bounded counter class illustrates how assertions may be applied to characterize
the possible states of an object and to guard its runtime consistency, i.e. lower <=
count <= upper. For example, a bounded counter object is constructed by setting these
bounds. The method add() has:

• a pre-condition (require) stating that adding n to the counter is legal only when n is
greater than zero and its value is less that its upper bound and,

• a post-condition (ensure) promising the correct functionality of the method, and
before returning a verification (using ensure) that the class invariant is satisfied.

This diagram illustrates how the Contract pattern offers a solution. The implementation
of the bounded counter is robust, since it guards clients against possible misuse. The
advantage of using assertions, apart from providing checks to legal usage, is that they
explicitly state the requirements imposed on the client and on the supplier.

Applicability Use the Contract pattern to establish the behavior of an object. The designer develops
an interface where assertions are the basic elements of a more formal specification for
an object. Such specification of its behavior may be given by defining a pre-condition
and post-condition for each method and an invariant for each class:

• A pre-condition exception denotes a problem in the calling method: the call did not
observe the required conditions, i.e. the client’s side of the contract.

• A post-condition exception denotes a problem in the called method: the method is
not functional, i.e. fulfil the supplier’s side of the contract.

• A class invariant defines the invariant properties of the state of each instance of the
class. A class invariant ensures class instance consistency.

BoundedCounter

Assertion

ensure()
require()

add(int n)require(n > 0 && count < upper);
hold();
count += n;
ensure(valueOf() == oldCount + n);

ensure(invariant());

return lower <= count

 && count <= upper;
invariant()

PreconditionException

Client

PostconditionException

RuntimeException

2

Class invariants, pre-, and postconditions, all three work together to achieve the
purpose of design by contract; they should not be applied separately.

Structure

Participants This pattern uses:

• Supplier (BoundedCounter)
– creates a reliable class by using require() and ensure() operations and by

defining the class invariant().

• Exception
– defines a root of the exception hierarchy.

• PreconditionException
– implements and returns a message containing the class and method names

associated with the occurring exception.

• PostconditionException
– implements and returns a message containing the class and method names

associated with the occurring exception.

• Assertion
– implements the require() and ensure() operations where each of them can throw

the corresponding Precondition and Postcondition exceptions if the boolean
expression (expr) is false.

Collaborations The following interaction diagram illustrates the collaborations between a client and a
supplier:

PostconditionException

PreconditionException

Assertion

ensure()
require()

Client

if (expr == false)

if (expr == false)
 throw new PreconditionException()

 throw new PostconditionException()

Supplier

operation()

invariant()

RuntimeException

aClient

ensure()

ensure()

require()

invariant()

aSupplier aPreconditionException aPostconditionException

operation()

3

Consequence The Contract pattern offers the following benefits:

Contracts may be used to document the method interface of a class. For example, the
Java language supports special doc comments that can be extracted and automatically
turned into HTML documentation.

Assertions and exception handling are two complementary mechanisms. Assertions
declare constraints and exceptions prescribe actions. The presence of assertions
contributes to a more formal specification by expressing semantic properties of classes.

Design by contract is better than defensive programming—which tries to make every
method responsible to every kind of possible input. Contractual obligations ensure that
every component is characterized by a precise definition of what constraints must be
satisfied by the client to guarantee correct functioning. This is a better approach to
software reliability since it requires less work to do so and less likelihood of forgetting
something.

The Contract pattern can be a simple extension for several object-oriented languages
such as C++ [Stroustrup91], Java [Gosling+96], Smalltalk [Goldberg+83] that handle
exceptions but do not support assertion mechanisms. Consider for example the assert
macro in C++ that does not benefit from the flexibility of its exception mechanism. It
uses the same approach as ANSI C, that is, an interrupt handler invoking the exit()
function. All these languages can control execution in the case of exceptional
situations, but don’t have the capability of specifying assertions. One way to solve the
problem would be to define an interface that combines assertions with exception
handling so that pre- and post-conditions of methods and class invariants can be
defined (see implementation section). This would allow the application of the design by
contract methodology in the context of these languages.

Implementation A class annotated with an invariant and pre- and post-conditions for its methods may
be regarded as a contract, since it specifies precisely the behavior of its instances and
the constraints imposed on the interactions between the object and its clients.

In terms of implementation, an assertion is a simple boolean expression that we expect
to be true. In practice, assertions come in pairs: a pre-condition and a post-condition.
The pre-condition requires the correct specification at the method’s entry; the
post-condition ensures that the method’s specification and object state are correct at
exit. The following illustrates how assertions are localized in a method:

public void aMethod() {
 Assertion.require(booleanExpression); // pre-condition

 // statements of the method...

 Assertion.ensure(booleanExpression); // post-condition
 Assertion.ensure(invariant()); // invariant
}

4

• How do you observe that the required (input) conditions are not respected? By
using a pre-condition to denote a problem in the client software. The pre-condition
of a method specifies what restrictions the client invoking a particular method is
obliged to comply with. For example, the following is a method first() with a
pre-condition requiring a non-empty list before returning the reference of the first
node in a circular singly-linked list:

public Node first() {
 Assertion.require(count != 0);
 return last.next;
}

Note that a missing pre-condition is equivalent to require(true).

• How do you make sure that the method fullfills the supplier’s side of the contract?
By using a post-condition to denote a problem in the called method. The
post-condition of a method states what obligations the supplier object has when
executing the method, provided that the client’s request satisfies the method’s
precondition. For example, the following is a method clear() with a post-condition
promising an empty circular singly-linked list before returning:

public void clear() {
 Node n;

 while ((n = getFirst()) != null)
 n = null; // delete (return it to GC)

 Assertion.ensure(count == 0 && last == null);
}

Note that a missing post-condition is equivalent to ensure(true).

• How do you make sure that a class is always in a stable state? By defining the
invariant properties—via a protected method—of the state of each instance of the
class and possible subclasses.

public void dec() {
 Assertion.require(count > 0);
 count--;
 Assertion.ensure(invariant());
}

protected boolean invariant() {
 return lower <= count && count <= upper;
}

Known Uses Eiffel [Meyer92] is a pure strong-typed object-oriented language supporting the
concepts of assertions and exception mechanisms. Meyer [Meyer88] has proposed the
Design by Contract methodology in the context of the Eiffel language. That
methodology aims at improving software reliability through correctness and
robustness.

With several extensions in C++ [Cline+90, Eliens95], Smalltalk [Carillo-Castellon+96]
and Java [deChamplain97], the contract pattern is not anymore exclusive to Eiffel.

5

Sample Code The following code shows how to implement the Contract pattern in Java:

// Assertion.java

package mdec.util;

class PreconditionException extends RuntimeException {
 PreconditionException() {
 super();
 }
}

class PostconditionException extends RuntimeException {
 PostconditionException() {
 super();
 }
}

public class Assertion {
 public static void require(boolean expr) {
 if (!expr) throw new PreconditionException();
 }

 public static void ensure (boolean expr) {
 if (!expr) throw new PostconditionException();
 }
}

The Assertion package defines the PreconditionException, PostconditionException,
and Assertion classes. Extending the RuntimeException allows to throw pre- or
post-condition exceptions2 without declaring them in throws clause. These two
subclasses are private to the Assertion Class. We made this implementation decision to:

• hide the exception handling mechanism, and

• catch all exceptions generated by require() and ensure()

This programming pattern has the advantages of:

• not bothering the user to handle himself his exception(s)

• not cluttering the method signature with throws clause

• offering a Eiffel’s look and feel in terms of require and ensure constructs

6

2 In the class Assertion and all classes that use the require() and ensure() methods.

Classes that uses Assertion have the ability of defining more robust classes. For
example, BoundedCounter class imports Assertion (line 8) and implements its own
invariant method (lines 59-61):

1 // BoundedCounter.java
2
3 /**
4 * A bounded counter is a counter that has a lower and
5 * upper bound that are set when constructing the object.
6 */
7
8 import mdec.util.Assertion;
9
10 class BoundedCounter {
11 public BoundedCounter(int initialCount,
12 int lower, int upper) {
13 Assertion.require(lower < upper);
14 count = initialCount;
15 this.lower = lower;
16 this.upper = upper;
17 Assertion.ensure(invariant());
18 }
19
20 public BoundedCounter(int lower, int upper) {
21 count = 0;
22 this.lower = lower;
23 this.upper = upper;
24 Assertion.ensure(invariant());
25 }
26
27 public void inc() {
28 Assertion.require(count < upper);
29 count++;
30 Assertion.ensure(invariant());
31 }
32
33 public void dec() {
34 Assertion.require(count > lower);
35 count--;
36 Assertion.ensure(invariant());
37 }
38
39 public void add(int n) {
40 Assertion.require(n > 0 && count < upper);
41 hold();
42 count += n;
43 Assertion.ensure(valueOf() == oldCount + n);
44 Assertion.ensure(invariant());
45 }
46
47 public int valueOf() {
48 return count;
49 }
50
51 private int count, lower, upper;
52
53 // Method(s) and variable(s) related to the class invariant.
54
55 private void hold() {
56 oldCount = count;
57 }
58
59 private boolean invariant() {
60 return count >= lower && count <= upper;
61 }
62
63 private int oldCount;
64 }

7

Conclusion

Meyer’s work is well documented in the Eiffel context, but unfortunately not for all the
other object-oriented languages interested to profit from Meyer’s contribution. We
have presented a programming pattern that simulates Eiffel’s design by contract
features in Java. This idiom can be implemented in other object-oriented languages that
supports exception handling, eg, Ada, C++ and Modula-3. In addition, this idiom does
not support Meyer’s more recent work that addresses the problem of design by contract
in a concurrent environment [Meyer93].

Acknowlegment

I would like to thank Liping Zhao, Doug Lea, Wolfgang Kreutzer, Paul Ashton, and
Neville Churcher for their insightful comments on this paper.

References
[Carillo-Castellon+ 96] M. Carillo-Castellon et al., Design by Contract in Smalltalk, JOOP, Nov-Dec

1996, pp. 23-28.

[Cline+ 90] M. Cline and Lea. D, The Behavior of C++ Classes, In Proc. Symp. on
Object-Oriented Programming, Marist College, 1990.

[deChamplain 97] M. de Champlain, Designing by Contract in Java, Invited Talk, Department of
Electrical and Computer Engineering, Concordia University, May 1997.

[Eliens 95] A. Eliens, Principles of Object-Oriented Software Development,
Addison-Wesley, 1995.

[Goldberg+ 83] A. Golberg. and D. Robson, Smalltalk-80: The Language and its
Implementation, Addison-Wesley, 1983.

[Gosling+ 96] J. Gosling et al., The Java Language Specification, Addison-Wesley, 1996.

[Meyer 88] B. Meyer, Object-Oriented Software Construction, Prentice-Hall, 1988.

[Meyer 92] B. Meyer, Eiffel: the Language, Prentice-Hall, 1992.

[Meyer93] B. Meyer. "Systematic Concurrent Object-Oriented Programming",
Communication of The ACM, Vol36(9), pp56-80, 1993.

[Stroustrup 91] B. Stroustrup, The C++ Programming Language, 2nd ed. Reading, MA,
Addison-Wesley, 1991.

8

