
08/17/97

Page 1 of 13

Copyright 1997, James Newkirk. Permission is granted to copy for the PloP-97 conference

Private Interface Class Structural

James Newkirk

newkirk@oma.com

Intent
Provide a mechanism that allows specific classes to use a non-public subset of a class
interface without inadvertently increasing the visibility of any hidden member variables
or member functions.

Also Known As
I finally found a use for private inheritance.

Motivation
Some applications benefit from the use of multiple threads in order to accomplish various
tasks. For example, a user interface is better implemented using threads because it allows
the application to respond to the user even when some processing-intensive-task is
executing. Nothing can be more frustrating than initiating a processing-intensive-task
(i.e. incremental backup of a document) and having the whole application freeze while
that task is going on. Figure 1 is a UML1 class diagram that describes a potential
solution to this problem.

In this solution there is a class called Document, which is responsible for holding the
data that the program is working on. This class also has a public member function called
Backup() which clients use to save the Document’s data. In order to insure that the
saving of the data is performed in a different thread than the calling thread the Backup()
member function creates a SaveHandler object. The SaveHandler object is
responsible for creating the new thread and then calling SaveData() in the
Document class to save the data. The SaveData() member function needs to be
inaccessible to the clients of Document otherwise they could short circuit this

1 Grady Booch, James Rumbaugh, and Ivar Jacobson. Universal Modeling Language V1.0: The Notation.
http://www.rational.com

+ Backup()
- SaveData()

Document

+ Execute()

- : Document

SaveHandler

{ friend }

Figure 1: Initial Solution

08/17/97

Page 2 of 13

Copyright 1997, James Newkirk. Permission is granted to copy for the PloP-97 conference

mechanism and call SaveData() directly. This would be unacceptable because then
the saving of the data would be done in the context of the Client’s thread.

The mechanism employed to control visibility in this manner is specific to the
programming language that is used. For example, in C++ the SaveData() member
function can be declared private. Since the SaveHandler class must be able to call the
SaveData() member function, SaveHandler must be declared a friend of the
Document class. This allows the SaveHandler class to call the private
SaveData() member function.

The positive aspects of this approach are that for each Backup() request that a
Document object receives it creates a new object that spawns a separate thread and then
runs the call to the SaveData() member function in this newly created thread. This
moves an almost certain dependency on a thread library or a particular OS out of the
Document class and into the SaveHandler class. This allows the Document class
to potentially be reused in different environments without change related to this activity.

The downside of this approach is related to the break in encapsulation that is required to
allow the SaveHandler class access to the private member function SaveData().
This break in encapsulation could be justified since these two classes (Document and
SaveHandler) are intimately associated with one another. However, when friendship
is declared access to all member variables and member functions is allowed. This can
lead to maintenance problems in the future. In this example, not only can a
SaveHandler object call SaveData() it can also access any member variable or any
other member function inside of Document. These maintenance problems are often not
foreseen by the original designer. Maintenance programmers, who are often chartered
with task of fixing difficult problems without the benefit of understanding the
architecture of the application, exploit such loopholes. Once the door has been open to
allow classes to be defined as friends it becomes easy to start adding more and more
friends. What is left over are classes whose encapsulation boundaries are severely
compromised.

The Private Interface pattern describes how to retain the positive aspects of the above
solution while eliminating the negative aspects. Figure 2 describes the class structure for
the above mentioned problem recast utilizing the Private Interface pattern.

08/17/97

Page 3 of 13

Copyright 1997, James Newkirk. Permission is granted to copy for the PloP-97 conference

In Figure 2 a new class has been introduced called SaveInterface. The
SaveInterface class is a <<type>> (i.e. a class with no implementation, all its
methods are abstract). It has one public member function called SaveData(). The
Document class from the initial solution now implements the SaveInterface type
in a manner which keeps the SaveData() method from being accessible to clients of
Document. For example, in C++ the Document class would privately inherit from
SaveInterface.

Notice that, in this solution, SaveHandler does not have a navigable association with
the Document class. This has been replaced with a navigable association to the
SaveInterface class. Since SaveData() is declared publicly in the
SaveInterface class SaveHandler no longer needs to be declared as a friend of
the Document class.

Since the SaveHandler class is no longer a friend of the Document class it does
not have the ability to change any of its private member variables or call any of its private
member functions. So the encapsulation of the Document class has been preserved.
The SaveHandler class no longer even needs to know about the Document class
since it now depends on an interface called SaveInterface. This reduces the overall
dependencies in the design and creates a potential for reuse.

+ Backup()
- SaveData()

Document

+ Execute()

- : SaveInterface

SaveHandler

+ SaveData()

<<type>>
SaveInterface

{ private }

Figure 2: Private Interface Solution

08/17/97

Page 4 of 13

Copyright 1997, James Newkirk. Permission is granted to copy for the PloP-97 conference

Applicability
Apply the Private Interface pattern when any of the following are true:
• In C++, a class A has declared that another class F as a friend so that class F can

access a private or protected member function of A.
• In Java, when a member function has been declared protected in order to allow other

classes in the package to call it.

Structure

+ Request()
- PrivateRequest()

Target

+ Execute()

- : RequestInterface

RequestHandler

+ PrivateRequest()

<<type>>
RequestInterface

<<private interface>>

+ Execute()

<<type>>
Command

Client

08/17/97

Page 5 of 13

Copyright 1997, James Newkirk. Permission is granted to copy for the PloP-97 conference

Participants

• Target (Document)
− defines the public interface for the client.
− constructs the RequestHandler (SaveHandler) object and passes to the

RequestHandler an instance of the RequestInterface
(SaveInterface) class.

− in the motivating example, the Document class exports an interface that allows
clients to start asynchronous saves.

• Client
− clients use the exported Target interface to perform specific functions.

• Command2

− the Command interface is employed because it is likely that the Target
interface will want to create many different kinds of RequestHandler objects.
If all of these objects implement the Command interface then a Factory2 could be
used to create the individual RequestHandler objects.

• RequestHandler (SaveHandler)
− created with a reference to the RequestInterface.
− implements the Command interface so the Target class can call the

Execute() member function to perform the request.
− in the motivating example, the SaveHandler class is used to create a separate

thread of execution and then call a member function defined in the
SaveInterface to actually save the data in the Document in the newly
created thread.

• RequestInterface (SaveInterface)
− specifies an abstract interface for a particular request.

2 Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns: Elements of Reusable
Object-Oriented Software. Reading, MA: Addison-Wesley, 1995.

08/17/97

Page 6 of 13

Copyright 1997, James Newkirk. Permission is granted to copy for the PloP-97 conference

Collaborations

• The client directs the Target class to perform the request.
• The Target class creates the RequestHandler object and passes an instance of

Target’s private interface, RequestInterface.
• Target calls Execute() to perform the request.
• RequestHandler performs any local operations (i.e. creation of a thread) and then

calls the PrivateRequest member function defined in the
RequestInterface.

The following sequence diagram illustrates how Target and RequestHandler
cooperate in order to perform the request.

RequestInterfaceClient Target RequestHandler

new RequestHandler

Execute

Request

A reference to the
RequestInterface
is passed as a
construction
parameter.

PrivateRequest

08/17/97

Page 7 of 13

Copyright 1997, James Newkirk. Permission is granted to copy for the PloP-97 conference

Consequences

1. Preserves the encapsulation of the Target class. When a class is granted friendship or
a member function is declared protected it potentially allows other classes to access
hidden members of the class. This pattern hides the Target internals, thereby
preserving the encapsulation boundary.

2. It provides a mechanism to reduce overall dependencies in the implementation. In the
Document example the Target class depends on the SaveHandler class. And
the SaveHandler class depends on the Document class. Also, in the motivating
example the SaveHandler class runs the call to SaveData in a newly created
thread. Had this been implemented inside the Document class there would have
been a dependency on a threads package. In order to manage the dependencies in this
design the introduction of the SaveInterface class provides the opportunity to
move the thread dependency out of the Document class and place it in the
SaveHandler class. Also, the SaveHandler class does not depend on the
Document class, it depends on the SaveInterface class. This isolates the
SaveHandler from the Document class and allows the Document class to
change without adverse impact on the SaveHandler.

3. Increases the use of multiple inheritance. In programming languages that implement
the pattern using private inheritance (Like C++) there is an increase in the use of
multiple inheritance. Each request needs a corresponding interface for the specific
member function. In C++ this leads the Target class to multiply and privately
inherit each of the interfaces. Since this is inheritance of interface and not
implementation there is no need for virtual inheritance. One alternative is to create a
single interface class to represent all of the private interface member functions.
However, this allows all of the clients of the interface to access any of the other
member functions, which decreases the overall benefit of the pattern.

08/17/97

Page 8 of 13

Copyright 1997, James Newkirk. Permission is granted to copy for the PloP-97 conference

Implementation and Sample Code
The following are two implementations of the Private Interface pattern. Each is an
implementation of the Document/SaveHandler example described in the Motivation
section. These examples each demonstrate a distinct approach to the implementation of
the private interface pattern. The C++ example implements the interface using private
inheritance. The Java example implements the private interface using anonymous
classes, which are part of Java 1.1.

C++ Example
The following example provides the C++ code for the Document/SaveHandler
example described in the Motivation section. This example has removed the thread
creation code in the SaveHandler to show only the collaboration between the classes.
The place where the thread creation code would be is commented in the example.

Interfaces
First we define the SaveInterface class which provides the interface that the
SaveHandler will use to call the SaveData() member function.

class SaveInterface
{
 public:

SaveInterface();
virtual ~SaveInterface();

virtual void SaveData() const = 0;
};

This class has one pure virtual member function SaveData() which must be
implemented by derived classes. Notice that the SaveData() member function is
declared in the public area of the class definition.

The Command class is defined in a similar manner:

class Command
{
 public:

Command();
virtual ~Command();

virtual void Execute() = 0;

};

Implementers of this interface must provide a definition of the Execute() member
function.

08/17/97

Page 9 of 13

Copyright 1997, James Newkirk. Permission is granted to copy for the PloP-97 conference

SaveHandler

#include "Command.h"
class SaveInterface;

class SaveHandler : public Command
{
 public:

SaveHandler(SaveInterface*);
virtual ~SaveHandler();

void Execute();
 private:

SaveInterface* itsInterface;
};

There are a number of interesting items in this header declaration. The first is that the
constructor argument is a pointer to SaveInterface rather than a pointer to
Document. This pointer is saved in a private member variable called itsInterface,
which is shown in the constructor code shown below.

SaveHandler::SaveHandler(SaveInterface* anInterface)
: itsInterface(anInterface)
{}

The second item of interest is the code in the Execute() member function. This is the
declaration that satisfies the Command interface. The Command pattern is useful in this
situation because it is likely that we would use the Factory pattern to create these
commands if there were more than one. This code, shown below, indicates where the
thread creation would occur and then the call to the SaveData() member function
which would take place in the context of the newly created thread.

void SaveHandler::Execute()
{
 // Here is where the thread would be created in
 // in order to perform the call to SaveData().

 itsInterface->SaveData();
}

08/17/97

Page 10 of 13

Copyright 1997, James Newkirk. Permission is granted to copy for the PloP-97 conference

Target Class
The last item of interest is the Document class definition and implementation. The class
definition is as follows:

#include "SaveInterface.h"
class SaveHandler;

class Document : private SaveInterface
{
 public:

Document();
virtual ~Document();

void Backup() const;

 private:
void SaveData() const;
SaveHandler* itsSaveHandler;

};

The Document class privately inherits from the SaveInterface class. It also
implements the SaveData() member function declared in SaveInterface. Even
though the SaveData() member function is declared in the public section of
SaveInterface it is declared privately here so clients of Document cannot call
SaveData() directly. The implementation of the constructor and the Backup()
member function are shown below:

Document::Document()
{
 itsSaveHandler = new SaveHandler(this);
}

void Document::Backup() const
{
 itsSaveHandler->Execute();
}

The constructor creates the SaveHandler object. It passes itself as the parameter.
Since this expression is inside the Document class it is possible to up-cast the this
pointer to the private base class, SaveInterface. In the Backup() member function
we simply call Execute() to have the backup sequence started in a different thread.

08/17/97

Page 11 of 13

Copyright 1997, James Newkirk. Permission is granted to copy for the PloP-97 conference

Java Example
The main point of this example is to demonstrate that, in Java, the private interface can be
implemented without forcing the Target class to inherit from many different interfaces.
Also Java does not permit the overloading of visibility that is required in order to
implement the solution in a similar way to the C++ implementation. For a detailed
understanding of Inner Classes and Anonymous Classes see the Java 1.1 Documentation3.
An additional advantage of Java is that the Target class does not have to retain the
created instances of the SaveHandler object since it will be garbage collected when it
is no longer required.

Interfaces
The SaveInterface and Command interface are implemented as follows:

interface SaveInterface
{
 public void SaveData();
}

interface Command
{
 public void Execute();
}

SaveHandler
The SaveHandler class implements the Command interface. It is created with a
reference to the SaveInterface object. Upon construction the object saves this
reference in the variable named itsInterface.

import SaveInterface;
import Command;

class SaveHandler implements Command
{
 private SaveInterface itsInterface;

 SaveHandler(SaveInterface anInterface)
 {
 itsInterface = anInterface;
 }

3 Sun Microsystems, “Inner Classes in Java 1.1,”
http://www.javasoft.com/products/jdk/1.1/docs/index.html, 1996, for an excellent discussion of Inner class
see: Shur J. “Exploring Inner Classes in Java 1.1,” C++ Report 9(5): May 1997

08/17/97

Page 12 of 13

Copyright 1997, James Newkirk. Permission is granted to copy for the PloP-97 conference

The Execute() member is defined as follows:

 public void Execute()
 {
 Runnable aRunnable = new Runnable()
 {
 public void run()
 {
 itsInterface.SaveData();
 }
 };

 Thread t = new Thread(aRunnable, "SaveData");
 t.start();
 }
}

The first thing that is performed in here is that an anonymous class of type Runnable is
created and held in a variable named aRunnable. When run() is called on
aRunnable it will call the SaveData() member function. The reason for doing this
is that the Thread class needs an object of type Runnable as a construction parameter.
Once aRunnable is created we then create a new thread and pass in aRunnable
which will eventually execute the call to SaveData() in the newly created thread.

Target Class
The Target class is defined as follows:

import SaveHandler;
import SaveInterface;

 class Document
{
 private void Save()
 {
 // this is where the actual data would be
 // saved
 }

The member function Save() is declared as private and does not have to conform to
any specific interfaces.

08/17/97

Page 13 of 13

Copyright 1997, James Newkirk. Permission is granted to copy for the PloP-97 conference

The exported member function Backup() is implemented in this manner:

 public void Backup()
 {
 SaveInterface si = new SaveInterface()
 {
 public void SaveData()
 {
 Document.this.Save();
 }
 };

 (new SaveHandler(si)).Execute();
 }
}

The first object that is created is an instance of the anonymous class that implements
SaveInterface. The implementation of the SaveData member function specifies
the call to the private member function Save().

The last task to perform is the creation of the SaveHandler object passing in the newly
created SaveInterface object and calling Execute() in order to perform the actual
request.

Known Uses
This pattern is used extensively in an embedded real-time environment at Xerox. It is
employed in order to break the thread of execution in classes that perform various
services for their clients.

