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Abstract

This paper presents the Distributed Proxy pattern, a de-
sign patternfor distributed object communication. TheDis-
tributed Proxy pattern decouples distributed object com-
munication from object specific functionalities. It further
decouples logical communication from physical communi-
cation. The Distributed Proxy pattern enforces an incre-
mental development process, encapsulates the underlying
distribution mechanisms, and offers location transparency.

1 Intent

The Distributed Proxy pattern decouples the communi-
cation between distributed objects by isolating distribution-
specific issues from object functionality. Moreover, dis-
tributed communication is further decoupled into logica
communication and physical communication parts.

2 Motivation

An example motivates for the problems and respective
forces involved in distributed object communication.

2.1 Example

A distributed agenda application has several users which
manipulate agenda items, either private (appointments) or
shared (meetings). A meeting requires the participation of
at least two users. When an agenda session starts, it receives
an agenda manager reference from which the agenda user
information can beaccessed. Itissimpletodesignasolution
ignoring distribution issues. The Booch[1] class diagram
in Figure 1 shows the functionalities design of the agenda
application, where distributionissues are ignored.

Enriching this design with distribution is complex. For
example we must consider different address spaces. In
terms of our agenda application this means, that opera
tion get User in Agenda Manager should return to
the remote Agenda Sessi on aUser object across the
network. Another source of complexity is need to im-
plement distributed communication. For instance, the
communicationbetween Agenda Sessi onand Agenda
Manager isimplemented using sockets. From auser’s per-
spective, however, all distribution issues should be hidden.
They just want to manipulate agenda items.
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Figure 1: Agenda Functiondities Design.

2.2 Problem

Construct a design solution for distributed object com-
munication is hard due to the complexity inherent to dis-
tributed communication. It is necessary to ded with the
specificities of the underlying communication mechanisms,
protocols and platforms. Furthermore, distributed commu-
ni cation spans several nodeswith different name spacessuch
that names may not have the same meaning in each of the
nodes. In particular, invoking an object reference belonging
to another node resultsin an error.

2.3 Forces

The design solutionfor distributed object communication
must resolve the following forces:

o Complexity. The problem and respective solutionis
complex. Several aspects must be dealt: the specifici-
ties of the underlying communication mechanisms,
and the diverse name spaces.

¢ Object distribution. Object references may betrans-
parently passed between distributed nodes.

e Transparency. Theincorporationof distributed com-
munication should be transparent for functionality
classes by preserving the interaction model, object-
oriented interaction, and confining the number of
changes necessary in functionality code.
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Figure 2: Layered Distributed Object Communication.

o Flexibility. Theresulting applicationsshould be flex-
ible in the incorporation and change of distribution
issues. The underlying communication mechanisms
should beisolated and it should be possibleto provide
different implementations.

¢ Incremental development. Distributed communice-
tion should be introduced incrementally. Incremental
development allowsincremental test and debug of the
application.

2.4 Solution

Figure 2 shows a layered distributed object communi-
cation which constitutes a design solution for the previous
problems. In this example the Agenda Sessi on object
invokes operation get User on Agenda Manager .

The solution definesthreelayers. functional, logical, and
physical. Functional layer containsthe application function-
alitiesand interactionsthat are normal object-orientedinvo-
cations. At the logical layer, proxy objects are introduced
between distributed objectsto convert object referencesinto
distributed names and vice-versa. This layer isresponsible
for the support of an object-oriented model of invocation,
where distributed proxies are dynamically created whenev-
er an object reference from another node is contained in
a distributed message. Finadly, the physical layer imple-
ments the distributed communication using the underlying
communi cation mechanisms.

This solution takes into account the forces previoudy
named:

o Complexity is managed by layered separation of
problems. Logical layer supports name spaces and
physical layer implements the underlying communi-
cation mechanisms.

e Object distribution is achieved because proxy ob-
jects convert names into references and vice versa.

e Transparency is achieved since logica and physi-
ca layers are decoupled from the functiona layer.
Functionality code uses transparently the logical lay-
er, dient Proxy and Agenda Manager have
the same interface.

o Flexibility isachieved sincethe physical layer, which
contains the underlying communi cation mechanisms
particularities, is decoupled from logicd layer.

e Incremental Development is achieved since
Cient ProxyandAgenda Manager havethe
same interface, and the incorporation of the logi-
cal layer is done after the functiona layer is devel-
oped. Moreover, Server Proxy and C i ent
Conmmuni cat or have the same interface, and the
physical layer can be incorporated after the logical
layer is developed. This way, the application can
be incrementally developed in three steps. functional
development, logica development, and physical de-
velopment. In the same incremental way we define
the interaction between the parti cipating components
of thepattern. First we definetheinteractionF1 at the
functional level, asif no distributionispresent. Then,
when adding the logical layer we define interactions
L1 - L3. Findly, when implementing the physical
layer we establish theinteractionchain P1 - P6.

3 Applicability
Use the Distributed Proxy pattern when:

¢ An object-oriented interaction modd is required be-
tween distributed objects. Distributed objects are
fine-grained entities instead of large-grained servers
accessed by clients.

e Several distributed communication mechanisms may
be tested. Moreover, the communication mechanism
can be changed with a limited impact on the rest of
the application.
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Figure 3: Distributed Proxy Pettern Structure.

¢ Incremental development is required by the develop-
ment strategy. Incremental test and debug should be
enforced.

4 Structureand Participants

The Booch class diagram in Figure 3 illustrates the
structure of Distributed Proxy pattern.  Three lay-
es are considered: a functiona, a logica, and a
physical layer. Classes are involved in each layer.
Client and Server a the functiona layer, Cl i ent
Pr oxy,Server ProxyandName Manager atthelog-
ical layer, and Cl i ent Cormmuni cat or and Server
Conmruni cat or at the physical layer. Two abstract class
es, Server Reference Interface and Server
Nane | nterf ace, define interfaces which integrate be-
tween the functional and logical layer, and between the
logicd and physical layer.

The pattern main participants are:

e Client. Reqguires a service from Ser ver, it in-
vokes one of its methods.

e Server . ProvidesservicestoCl i ent .

e Client Proxy. Itrepresentsthe Server inthe
client node. It usesthe Nanme Manager to convert
sending object references to distributed names and re-
ceived distributed names to object references. In par-
ticular, the method convert SendRef s is respon-
sible for converting object references to distributed
names, the method convert RecNanes for con-
verting distributed names to object references. It also
getsaLocat or from Name Manager to proceed
withinvocation. A pair of conver t SendRef s and
conver t RecNanes isdefined for each method.

e Server Proxy. It provides distribution support
for the Ser ver object in the server node. It isthe
entry point for remote requests to the Ser ver . As
Client Proxy itisresponsiblefor reference and
name conversions.

Nanme Manager . Itisresponsiblefor the distribut-
ed naming policies, eg. Unique Universa Identi-
fiers (UUID). It associates object references to dis-
tributed names and vice-versa. In particular, the
method r ef 2Nan® is responsible for converting an
object reference to a distributed name, the method
nane2Ref for converting a distributed name to
an object reference. It also associates distributed
names with Locat or s. In particular, the method
r esol veNare is responsible for converting a dis-
tributed name to alocator.

Locat or . Defines an address where execution can
proceed. A Locat or canbelogical,inwhich caseit
isan object referencetoaSer ver Pr oxy, or phys
ical, in which case it includes a distributed address,
e.g. socket address.

C i ent Communi cat or and Server
Communi cat or. They are responsible for imple-
menting the distributed communication. For each
called method, mar shal i ng andunmar shal i ng
methods are defined to convert distributed names and
data to streams of bytesand vice-versa.

Server Reference Interface. Defines an
interfacecommontoSer ver andC i ent Pr oxy.

Server Name Interface. Defines an inter-
face common to Server Proxy and Cient
Conmruni cat or.
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Figure 4: Distributed Proxy Pettern Collaborations.

5 Collaborations

Three types of collaborations are possible:  functional
collaboration, which corresponds to the direct invocation
of O i ent on Server; logica collaboration, where in-
vocation proceeds through Cl i ent  Pr oxy and Ser ver
Pr oxy; and physicd collaboration, where invocation pro-
ceeds through the logical and physical layers.

The Booch interaction diagram in Figure4 showsaphys-
ical collaboration which includes the functional and logical
collaborations.

In afirst phase, after Cl i ent invokesmon C i ent
Proxy, object references are converted into distribut-
ed names by convert SendRefs. Before invok-
ing m instantiated with distributed names, in C i ent
Conmruni cat or it is necessary to get the Locat or as
sociated withCl i ent  Pr oxy by using r esol veNarre.
ThisLocat or will beusedtoaccesstheSer ver Pr oxy,
if itisalogica locator, or the Ser ver Contruni cat or,
if itisaphysical locator.

When invoked, Cl i ent Comuni cat or marshas
dataand distributed names, and sendsamessageto Ser ver
Conmmuni cat or which unmarshas the message and in-
vokesmon Ser ver Pr oxy.

Inathird phase Ser ver Pr oxy convertsreceived dis-
tributed namesto object referencesusingName  Manager .
Finally, misinvoked on the Ser ver .

After invocation on the Ser ver, three other similar
phases are executed to return resultstoCl i ent .

In this collaboration two possible variations occur when
there is no name associated with the object reference in
the client side and when there is no reference associated
with the distributed name in the server side. The former
situation means that the object reference corresponds to a
local object, and method convert SendRef s hasto cre-
ate a Server Proxy and associate it with a new dis-
tributed name in the Name Manager . In the latter situa-
tion method conver t RecNanes hasto createad i ent
Pr oxy and associate it with the distributed name in the
Nane Manager .

The Distributed Proxy pattern has the following advan-
tages:

e Decouples  object-functionality from  object-
distribution. Digtribution is transparent for
functionality code and clients of the distributed
object are not aware whether the object is distributed
or not.

¢ Allows an incremental development process. A non-
distributed version of the application can be built first
and distribution introduced afterwards. Moreover, it
is possible to simulate the distributed communica-
tion in a non-distributed environment by implement-
ing communicators which simulate the real commu-
nication. Datacan be gathered from these ssmulations
to decide on thefinal implementation.

Encapsulation of underlying distribution mecha-
nisms. Several implementations of distributed com-
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Figure 5: ACE Implementation Structure.

munication can be tested at the physical layer. More-
over, different implementations of communicators
can be tested, eg. sockets and CORBA, without
changing the application functionalities. Portability
across different platformsis also achieved.

e Location transparency. The convertion of dis
tributed names into locators, done by operation
resol veNane, gives location transparency of re-
mote objects. That way it is possible to re-configure
the application and migrate objects.

This pattern has the following drawbacks:

e Thereisan overhead in terms of the number of class-
es and performance. Four new classes are created or
extended for each distributed communi cation depend-
ing on whether the implementation uses del egation or
inheritance, respectively. The performance overhead
can bereduced if theimplementation usesinheritance,
communicators are subclasses of proxies.

6 Implementation
6.1 Variationsof Naming Policies

There are severa possibilitieswhen implementing Nane
Manager : distributed nodes can share a single Name
Manager or haveitsown Name Manager .

As described in [2] there are several naming policies.
According to name policies, names can beuniversal or locdl,
absolute or relative and pure or impure. A distributed name
isuniversal if isvalid in all the distributed nodes, it exists
inal Nane Manager s. A distributed nameis absoluteif
it denotes the same object in dl distributed nodes, method
resol veNanme returns the same Locat or in al nodes.
Finaly, a distributed name is pure if it does not contain
location information.

To support dynamic re-configuration and migration the
distributed names should be universal, absolute and pure. A

distributed name can be sent to any di stributed node, because
it is universal, and it denotes the same object everywhere,
because it is absolute. Names with such properties are
caled Unique Universal Identifiers (UUIDs). UUIDs can
besupported by asingleNane Manager shared by dl dis-
tributed nodes or by several cooperating Nane Manager s
enforcing distributed names properties.

When performance is a requirement Nane Manager s
can support impure names with the price of loosing re-
configuration. Impure distributed names avoid the locator
conversion. The distributed name isitself alocator.

6.2

The physical layer isimplemented using the underlying
communication mechanisms. In this section it is described
apossible implementation of Communicators on top of the
ACE [3] framework. ACE (Adaptive Communication Envi-
ronment) isan object-oriented network programming frame-
work that encapsulates operating system concrete mecha
nisms with C++ classes. In this implementation the ACE
features for interprocess communication will be used.

Implementation of Communicators

This physical architecture implementation considers a
pair of (unidirectional) socketsbetween two communicating
distributed nodes. One socket — called in-socket — is used
to receive service request messages and the other — called
out-socket — to send service request messages. Sockets are
encapsulated by the ACE Ser vi ce Handl er objects.

Figure 5 presents some relevant ACE classes used in
thisimplementation. The React or class from ACE's Re-
actor pattern [4] is used to register, remove and dispatch
Servi ce Handl er objects. Two reactors are needed,
onefor each node. Intheclient nodeaNode Connect or
object, subclass of ACE's Connect or [5], isused to es-
tablish the communication with server node, it generates
aCdient Handl er object which encapsulates the out-
socket to the server node. Thed i ent Handl er isused
to send messages associated with invocationsand to receive
itsresults. In the server node aNode Accept or object,
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Figure 6: ACE Implementation Collaboration.

subclassof ACE'sAccept or [5], isused to accept connec-
tionsfrom calling nodes, it generatesaSer ver Handl er
object which encapsul atesthein-socket fromthe client node.
The Server Handl er isused to receive messages asso-
ciated with invocations and to return its results.

Figure 6 shows the ACE implementation of the collabo-
rations between communicators.

In a first phase Client Conmuni cator crestes
a message with the Server Proxy name, method
name and arguments. The message includes the
Cient Communi cator identification. The method
mar shal i ng is responsible for marshaling al the da
ta  Aftewards, it uses the locator to identify the
Cient Handl er where method send sends the mes-
sage. When the message is received in the server node,
server : Reactor dispatchesthe Server Handl er
object by invoking handl e_i nput . Server Handl er
identifies the Ser ver Conmuni cat or, using method
unmar shal 1 dt . Method unmar shal i ng is respon-
sible for unmarshaling the message. Finally, method mis
invoked on Ser ver Proxy.

In a second phase, after invocation execution on
Server Proxy, the results are returned back in a sim-
ilar manner. Cl i ent Handl er identifies the Cl i ent
Conmuni cat or, using method unnar shal | dt, be
cause its identification is included in the sent mes
sage. To simulate a synchronous cal, the O i ent
Conmuni cat or blocks in a condition which is signaled
by i ent Handl er. Themethodr et ur nResul t is
responsible for signaling the condition.

7 Sample Code

The code below shows the distributed communice
tion associated with method get User of class Agenda
Manager which given the user’s name, returns a User

object. The code emphasizes thelogical layer of communi-
cation.

A client proxy of Agenda Manager,
CP_Agenda_Manager, which creates client proxies
of User, CP.User, is defined. Also their server

proxies, SP_Agenda_Manager and SP_User are

defined. Methods get User Convert SendRef s
of CP_Agenda_Manager and
get User Convert RecNanes of

SP_Agenda_Manager do not need to be defined
since the only entity sent, string namne, is not an object.
However, method get User Convert SendRefs of
SP_Agenda_Manager converts the object reference of
User to adistributed name. If a distributed name does not
exist it creates a server proxy and a distributed name for
User.

voi d SP_Agenda_Manager: :
get User Convert SendRef s(User *user, DNane **dnaneUser)
{

/1 obtains user distributed nane associ ated

/1 with user object

*dnaneUser = naneManager _- >r ef 2Nane(user);

/1 a distributed nane does not exists,
/1 it is not distributed
if (!'*dnameUser) {

/1 creates new server proxy

SP_User *spUser = new SP_User(user);

/1l creates new distributed nane
/1 server proxy argument serves for future location
*dnaneUser = naneManager _- >newDNane(spUser)

/1l associates user object with distributed nane
naneManager _- >bi nd(user, *dnaneUser) ;

Method get User Convert RecNanes of
CP_Agenda_Manager converts the received distributed
nameintoaCP_User reference. It may bethe case that the
CP_User does not exist and has to be created.



voi d CP_Agenda_Manager: :
get User Conver t RecNanes(DNane *dnameUser, CP_User **cpUser)
{

/1 obtains user client proxy associated

/1 with distributed name

*cpUser = naneManager _- >nane2Ref (dnameUser) ;

/1 a client proxy does not exists
if (!*cpUser) {
Il creates new client proxy
*cpUser = new CP_User (dnaneUser);

/1l associates client proxy with distributed nane
naneManager _- >bi nd(*cpUser, dnanmeUser);
}
}

Theredefinitionof C i ent Proxy’saccess method
is aso operation specific. Client proxy uses its distributed
name to obtain alogica Locat or object. Afterwards it
accesses the object. The logical Locat or object includes
the address of the Ser ver Pr oxy object.

DNane *CP_Agenda_Manager: :
get User Access(const String* nane)

{
/1 obtains |ogical |ocator
Locator *loc =
naneManager _- >r esol veNane(dnameAgendaManager _) ;

/| accesses server proxy
/1l returns a distributed name
return | oc.sp->get User (nane);

In the physica layer a physicd Locat or object
is returned by the r esol veName method. C i ent
Conmuni cat or knowstheinterna Locat or 'sstructure
and uses its information to proceed with access across the
network. In this case method get User Access is rede-
fined in asubclass of CP_Agenda_Manager .

DNane *P_CP_Agenda_Manager: :
get User Access(const String* nane)

{
/1 obtains |ogical |ocator
Locator *loc =
nameManager _- >r esol veNane( dnaneAgendaManager _) ;

/|l sets locator at client communicator
conmmuni cat or _->set Locat or (| oc) ;

/1 invokes communi cator which returns a distributed nane
return conmuni cat or _->get User (nane) ;

}

8 Known Uses

CORBA [6] uses the Distributed Proxy pattern. Im-
plementation of distributed communication is encapsul ated
by an IDL and object references are dynamically created
and passed across nodes. Moreover, CORBA implementa
tions support co-location for the purpose of debugging. Co-
location implements the logical layer of Distributed Proxy
pattern because code executes in acentralized node.

In the DASCo pattern language [ 7] the Distributed Proxy
patterns is integrated with other design patterns, Compo-
nent Configurer [8] and Passive Replicator [9], to provide
component distribution and replicated object distribution,
respectively.

9 Redated Patterns

The Proxy pattern [10, 11] makes the clients of an ob-
ject communicate with a representative rather than to the
object itself. In particular the Remote Proxy variation in
[11] corresponds to the logica layer of Di stri but ed
Proxy. However, Di stri buted Proxy dlows dy-
namic creation of new proxies and completely decouples
thelogical layer from the physical layer.

The Client-Dispatcher-Server pattern [11] supports lo-
cation transparency by means of a name service. The
Di stributed Proxy pattern aso provides loca
tion transparency when the Narme Manager supports
unique universal identifiers.

The Forwarder-Receiver pattern [11] supports the en-
capsulation of the underlying distributed communication
mechanisms. This pattern can be used to implement the
Di stributed Proxy physicd layer.

The Reactor pattern [4], Acceptor pattern and Connec-
tor pattern [5] can be used in the implementation of the
Di stributed Proxy physica layer asshownintheim-
plementation section.

The Component Configurer pattern [8] decouples com-
ponent configuration from component functionality. It de-
scribes reconfigurable communication entitiescalled Plugs.
These Plugs are an implementation of Di stri but ed
Pr oxy.
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