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Abstract

This paper presents the Distributed Proxy pattern, a de-
sign pattern for distributed object communication. The Dis-
tributed Proxy pattern decouples distributed object com-
munication from object specific functionalities. It further
decouples logical communication from physical communi-
cation. The Distributed Proxy pattern enforces an incre-
mental development process, encapsulates the underlying
distribution mechanisms, and offers location transparency.

1 Intent
The Distributed Proxy pattern decouples the communi-

cation between distributed objects by isolating distribution-
specific issues from object functionality. Moreover, dis-
tributed communication is further decoupled into logical
communication and physical communication parts.

2 Motivation

An example motivates for the problems and respective
forces involved in distributed object communication.

2.1 Example

A distributed agenda application has several users which
manipulate agenda items, either private (appointments) or
shared (meetings). A meeting requires the participation of
at least two users. When an agenda session starts, it receives
an agenda manager reference from which the agenda user
informationcan be accessed. It is simple to design a solution
ignoring distribution issues. The Booch[1] class diagram
in Figure 1 shows the functionalities design of the agenda
application, where distribution issues are ignored.

Enriching this design with distribution is complex. For
example we must consider different address spaces. In
terms of our agenda application this means, that opera-
tion getUser in Agenda Manager should return to
the remote Agenda Session a User object across the
network. Another source of complexity is need to im-
plement distributed communication. For instance, the
communication between Agenda Session andAgenda
Manager is implemented using sockets. From a user’s per-
spective, however, all distribution issues should be hidden.
They just want to manipulate agenda items.
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Figure 1: Agenda Functionalities Design.

2.2 Problem

Construct a design solution for distributed object com-
munication is hard due to the complexity inherent to dis-
tributed communication. It is necessary to deal with the
specificities of the underlying communication mechanisms,
protocols and platforms. Furthermore, distributed commu-
nication spans several nodes with different name spaces such
that names may not have the same meaning in each of the
nodes. In particular, invoking an object reference belonging
to another node results in an error.

2.3 Forces

The design solution for distributedobject communication
must resolve the following forces:

� Complexity. The problem and respective solution is
complex. Several aspects must be dealt: the specifici-
ties of the underlying communication mechanisms;
and the diverse name spaces.

� Object distribution. Object references may be trans-
parently passed between distributed nodes.

� Transparency. The incorporationof distributedcom-
munication should be transparent for functionality
classes by preserving the interaction model, object-
oriented interaction, and confining the number of
changes necessary in functionality code.
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Figure 2: Layered Distributed Object Communication.

� Flexibility. The resulting applications should be flex-
ible in the incorporation and change of distribution
issues. The underlying communication mechanisms
should be isolated and it should be possible to provide
different implementations.

� Incremental development. Distributed communica-
tion should be introduced incrementally. Incremental
development allows incremental test and debug of the
application.

2.4 Solution

Figure 2 shows a layered distributed object communi-
cation which constitutes a design solution for the previous
problems. In this example the Agenda Session object
invokes operation getUser on Agenda Manager.

The solution defines three layers: functional, logical, and
physical. Functional layer contains the application function-
alities and interactions that are normal object-oriented invo-
cations. At the logical layer, proxy objects are introduced
between distributed objects to convert object references into
distributed names and vice-versa. This layer is responsible
for the support of an object-oriented model of invocation,
where distributed proxies are dynamically created whenev-
er an object reference from another node is contained in
a distributed message. Finally, the physical layer imple-
ments the distributed communication using the underlying
communication mechanisms.

This solution takes into account the forces previously
named:

� Complexity is managed by layered separation of
problems. Logical layer supports name spaces and
physical layer implements the underlying communi-
cation mechanisms.

� Object distribution is achieved because proxy ob-
jects convert names into references and vice versa.

� Transparency is achieved since logical and physi-
cal layers are decoupled from the functional layer.
Functionality code uses transparently the logical lay-
er, Client Proxy and Agenda Manager have
the same interface.

� Flexibility is achieved since the physical layer, which
contains the underlying communication mechanisms
particularities, is decoupled from logical layer.

� Incremental Development is achieved since
Client Proxy and Agenda Manager have the
same interface, and the incorporation of the logi-
cal layer is done after the functional layer is devel-
oped. Moreover, Server Proxy and Client
Communicator have the same interface, and the
physical layer can be incorporated after the logical
layer is developed. This way, the application can
be incrementally developed in three steps: functional
development, logical development, and physical de-
velopment. In the same incremental way we define
the interaction between the participating components
of the pattern. First we define the interactionF1 at the
functional level, as if no distribution is present. Then,
when adding the logical layer we define interactions
L1 - L3. Finally, when implementing the physical
layer we establish the interaction chain P1 - P6.

3 Applicability

Use the Distributed Proxy pattern when:

� An object-oriented interaction model is required be-
tween distributed objects. Distributed objects are
fine-grained entities instead of large-grained servers
accessed by clients.

� Several distributed communication mechanisms may
be tested. Moreover, the communication mechanism
can be changed with a limited impact on the rest of
the application.
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Figure 3: Distributed Proxy Pattern Structure.

� Incremental development is required by the develop-
ment strategy. Incremental test and debug should be
enforced.

4 Structure and Participants

The Booch class diagram in Figure 3 illustrates the
structure of Distributed Proxy pattern. Three lay-
ers are considered: a functional, a logical, and a
physical layer. Classes are involved in each layer.
Client and Server at the functional layer, Client
Proxy, Server Proxy andName Manager at the log-
ical layer, and Client Communicator and Server
Communicator at the physical layer. Two abstract class-
es, Server Reference Interface and Server
Name Interface, define interfaces which integrate be-
tween the functional and logical layer, and between the
logical and physical layer.

The pattern main participants are:

� Client. Requires a service from Server, it in-
vokes one of its methods.

� Server. Provides services to Client.

� Client Proxy. It represents the Server in the
client node. It uses the Name Manager to convert
sending object references to distributed names and re-
ceived distributed names to object references. In par-
ticular, the method convertSendRefs is respon-
sible for converting object references to distributed
names, the method convertRecNames for con-
verting distributed names to object references. It also
gets a Locator from Name Manager to proceed
with invocation. A pair of convertSendRefs and
convertRecNames is defined for each method.

� Server Proxy. It provides distribution support
for the Server object in the server node. It is the
entry point for remote requests to the Server. As
Client Proxy it is responsible for reference and
name conversions.

� Name Manager. It is responsible for the distribut-
ed naming policies, e.g. Unique Universal Identi-
fiers (UUID). It associates object references to dis-
tributed names and vice-versa. In particular, the
method ref2Name is responsible for converting an
object reference to a distributed name, the method
name2Ref for converting a distributed name to
an object reference. It also associates distributed
names with Locators. In particular, the method
resolveName is responsible for converting a dis-
tributed name to a locator.

� Locator. Defines an address where execution can
proceed. A Locator can be logical, in which case it
is an object reference to a Server Proxy, or phys-
ical, in which case it includes a distributed address,
e.g. socket address.

� Client Communicator and Server
Communicator. They are responsible for imple-
menting the distributed communication. For each
called method, marshaling and unmarshaling
methods are defined to convert distributed names and
data to streams of bytes and vice-versa.

� Server Reference Interface. Defines an
interface common toServer and Client Proxy.

� Server Name Interface. Defines an inter-
face common to Server Proxy and Client
Communicator.
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Figure 4: Distributed Proxy Pattern Collaborations.

5 Collaborations

Three types of collaborations are possible: functional
collaboration, which corresponds to the direct invocation
of Client on Server; logical collaboration, where in-
vocation proceeds through Client Proxy and Server
Proxy; and physical collaboration, where invocation pro-
ceeds through the logical and physical layers.

The Booch interaction diagram in Figure 4 shows a phys-
ical collaboration which includes the functional and logical
collaborations.

In a first phase, after Client invokes m on Client
Proxy, object references are converted into distribut-
ed names by convertSendRefs. Before invok-
ing m, instantiated with distributed names, in Client
Communicator it is necessary to get the Locator as-
sociated with Client Proxy by using resolveName.
ThisLocatorwill be used to access theServer Proxy,
if it is a logical locator, or the Server Communicator,
if it is a physical locator.

When invoked, Client Communicator marshals
data and distributednames, and sends a message toServer
Communicator which unmarshals the message and in-
vokes m on Server Proxy.

In a third phase Server Proxy converts received dis-
tributed names to object references usingName Manager.
Finally, m is invoked on the Server.

After invocation on the Server, three other similar
phases are executed to return results to Client.

In this collaboration two possible variations occur when
there is no name associated with the object reference in
the client side and when there is no reference associated
with the distributed name in the server side. The former
situation means that the object reference corresponds to a
local object, and method convertSendRefs has to cre-
ate a Server Proxy and associate it with a new dis-
tributed name in the Name Manager. In the latter situa-
tion method convertRecNames has to create a Client
Proxy and associate it with the distributed name in the
Name Manager.

The Distributed Proxy pattern has the following advan-
tages:

� Decouples object-functionality from object-
distribution. Distribution is transparent for
functionality code and clients of the distributed
object are not aware whether the object is distributed
or not.

� Allows an incremental development process. A non-
distributed version of the application can be built first
and distribution introduced afterwards. Moreover, it
is possible to simulate the distributed communica-
tion in a non-distributed environment by implement-
ing communicators which simulate the real commu-
nication. Data can be gathered from these simulations
to decide on the final implementation.

� Encapsulation of underlying distribution mecha-
nisms. Several implementations of distributed com-
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Figure 5: ACE Implementation Structure.

munication can be tested at the physical layer. More-
over, different implementations of communicators
can be tested, e.g. sockets and CORBA, without
changing the application functionalities. Portability
across different platforms is also achieved.

� Location transparency. The convertion of dis-
tributed names into locators, done by operation
resolveName, gives location transparency of re-
mote objects. That way it is possible to re-configure
the application and migrate objects.

This pattern has the following drawbacks:

� There is an overhead in terms of the number of class-
es and performance. Four new classes are created or
extended for each distributedcommunication depend-
ing on whether the implementation uses delegation or
inheritance, respectively. The performance overhead
can be reduced if the implementation uses inheritance,
communicators are subclasses of proxies.

6 Implementation
6.1 Variations of Naming Policies

There are several possibilities when implementing Name
Manager: distributed nodes can share a single Name
Manager or have its own Name Manager.

As described in [2] there are several naming policies.
According to name policies, names can be universal or local,
absolute or relative and pure or impure. A distributed name
is universal if is valid in all the distributed nodes, it exists
in all Name Managers. A distributed name is absolute if
it denotes the same object in all distributed nodes, method
resolveName returns the same Locator in all nodes.
Finally, a distributed name is pure if it does not contain
location information.

To support dynamic re-configuration and migration the
distributed names should be universal, absolute and pure. A

distributed name can be sent to any distributed node,because
it is universal, and it denotes the same object everywhere,
because it is absolute. Names with such properties are
called Unique Universal Identifiers (UUIDs). UUIDs can
be supported by a singleName Manager shared by all dis-
tributed nodes or by several cooperating Name Managers
enforcing distributed names properties.

When performance is a requirement Name Managers
can support impure names with the price of loosing re-
configuration. Impure distributed names avoid the locator
conversion. The distributed name is itself a locator.

6.2 Implementation of Communicators

The physical layer is implemented using the underlying
communication mechanisms. In this section it is described
a possible implementation of Communicators on top of the
ACE [3] framework. ACE (Adaptive Communication Envi-
ronment) is an object-oriented network programming frame-
work that encapsulates operating system concrete mecha-
nisms with C++ classes. In this implementation the ACE
features for interprocess communication will be used.

This physical architecture implementation considers a
pair of (unidirectional) sockets between two communicating
distributed nodes. One socket – called in-socket – is used
to receive service request messages and the other – called
out-socket – to send service request messages. Sockets are
encapsulated by the ACE Service Handler objects.

Figure 5 presents some relevant ACE classes used in
this implementation. The Reactor class from ACE’s Re-
actor pattern [4] is used to register, remove and dispatch
Service Handler objects. Two reactors are needed,
one for each node. In the client node a Node Connector
object, subclass of ACE’s Connector [5], is used to es-
tablish the communication with server node, it generates
a Client Handler object which encapsulates the out-
socket to the server node. The Client Handler is used
to send messages associated with invocations and to receive
its results. In the server node a Node Acceptor object,
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subclass of ACE’s Acceptor [5], is used to accept connec-
tions from calling nodes, it generates aServer Handler
object which encapsulates the in-socket from the client node.
The Server Handler is used to receive messages asso-
ciated with invocations and to return its results.

Figure 6 shows the ACE implementation of the collabo-
rations between communicators.

In a first phase Client Communicator creates
a message with the Server Proxy name, method
name and arguments. The message includes the
Client Communicator identification. The method
marshaling is responsible for marshaling all the da-
ta. Afterwards, it uses the locator to identify the
Client Handler where method send sends the mes-
sage. When the message is received in the server node,
server :Reactor dispatches the Server Handler
object by invoking handle input. Server Handler
identifies the Server Communicator, using method
unmarshalIdt. Method unmarshaling is respon-
sible for unmarshaling the message. Finally, method m is
invoked on Server Proxy.

In a second phase, after invocation execution on
Server Proxy, the results are returned back in a sim-
ilar manner. Client Handler identifies the Client
Communicator, using method unmarshalIdt, be-
cause its identification is included in the sent mes-
sage. To simulate a synchronous call, the Client
Communicator blocks in a condition which is signaled
by Client Handler. The method returnResult is
responsible for signaling the condition.

7 Sample Code

The code below shows the distributed communica-
tion associated with method getUser of class Agenda
Manager which given the user’s name, returns a User

object. The code emphasizes the logical layer of communi-
cation.

A client proxy of Agenda Manager,
CP Agenda Manager, which creates client proxies
of User, CP User, is defined. Also their server
proxies, SP Agenda Manager and SP User are
defined. Methods getUserConvertSendRefs
of CP Agenda Manager and
getUserConvertRecNames of
SP Agenda Manager do not need to be defined
since the only entity sent, string name, is not an object.
However, method getUserConvertSendRefs of
SP Agenda Manager converts the object reference of
User to a distributed name. If a distributed name does not
exist it creates a server proxy and a distributed name for
User.

void SP_Agenda_Manager::
getUserConvertSendRefs(User *user,DName **dnameUser)
{
// obtains user distributed name associated
// with user object
*dnameUser = nameManager_->ref2Name(user);

// a distributed name does not exists,
// it is not distributed
if (!*dnameUser) {
// creates new server proxy
SP_User *spUser = new SP_User(user);

// creates new distributed name
// server proxy argument serves for future location
*dnameUser = nameManager_->newDName(spUser)

// associates user object with distributed name
nameManager_->bind(user,*dnameUser);

}
}

Method getUserConvertRecNames of
CP Agenda Manager converts the received distributed
name into a CP User reference. It may be the case that the
CP User does not exist and has to be created.

6



void CP_Agenda_Manager::
getUserConvertRecNames(DName *dnameUser,CP_User **cpUser)
{

// obtains user client proxy associated
// with distributed name
*cpUser = nameManager_->name2Ref(dnameUser);

// a client proxy does not exists
if (!*cpUser) {
// creates new client proxy
*cpUser = new CP_User(dnameUser);

// associates client proxy with distributed name
nameManager_->bind(*cpUser, dnameUser);

}
}

The redefinition of Client Proxy’s access method
is also operation specific. Client proxy uses its distributed
name to obtain a logical Locator object. Afterwards it
accesses the object. The logical Locator object includes
the address of the Server Proxy object.

DName *CP_Agenda_Manager::
getUserAccess(const String* name)
{

// obtains logical locator
Locator *loc =
nameManager_->resolveName(dnameAgendaManager_);

// accesses server proxy
// returns a distributed name
return loc.sp->getUser(name);

}

In the physical layer a physical Locator object
is returned by the resolveName method. Client
Communicator knows the internal Locator’s structure
and uses its information to proceed with access across the
network. In this case method getUserAccess is rede-
fined in a subclass of CP Agenda Manager.

DName *P_CP_Agenda_Manager::
getUserAccess(const String* name)
{

// obtains logical locator
Locator *loc =
nameManager_->resolveName(dnameAgendaManager_);

// sets locator at client communicator
communicator_->setLocator(loc);

// invokes communicator which returns a distributed name
return communicator_->getUser(name);

}

8 Known Uses
CORBA [6] uses the Distributed Proxy pattern. Im-

plementation of distributed communication is encapsulated
by an IDL and object references are dynamically created
and passed across nodes. Moreover, CORBA implementa-
tions support co-location for the purpose of debugging. Co-
location implements the logical layer of Distributed Proxy
pattern because code executes in a centralized node.

In the DASCo pattern language [7] the Distributed Proxy
patterns is integrated with other design patterns, Compo-
nent Configurer [8] and Passive Replicator [9], to provide
component distribution and replicated object distribution,
respectively.

9 Related Patterns

The Proxy pattern [10, 11] makes the clients of an ob-
ject communicate with a representative rather than to the
object itself. In particular the Remote Proxy variation in
[11] corresponds to the logical layer of Distributed
Proxy. However, Distributed Proxy allows dy-
namic creation of new proxies and completely decouples
the logical layer from the physical layer.

The Client-Dispatcher-Server pattern [11] supports lo-
cation transparency by means of a name service. The
Distributed Proxy pattern also provides loca-
tion transparency when the Name Manager supports
unique universal identifiers.

The Forwarder-Receiver pattern [11] supports the en-
capsulation of the underlying distributed communication
mechanisms. This pattern can be used to implement the
Distributed Proxy physical layer.

The Reactor pattern [4], Acceptor pattern and Connec-
tor pattern [5] can be used in the implementation of the
Distributed Proxy physical layer as shown in the im-
plementation section.

The Component Configurer pattern [8] decouples com-
ponent configuration from component functionality. It de-
scribes reconfigurable communication entities called Plugs.
These Plugs are an implementation of Distributed
Proxy.
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