
1

The Capsule Pattern

A design pattern that reduces coupling between application

layers.

Robert C. Martin

Introduction

Sometimes you need the lowest levels of your application to communicate with the
highest levels, without the intervening levels knowing much about that communications.
For example, the functions at the lowest software levels may experience errors that they
need to communicate to the topmost layers. If these errors require complex data structures
to describe, and if these structures are passed as return values or reference arguments,
then all intervening layers of the software will have to know about those data structures.
Then, when the internals of those data structures change, all the intervening modules will
have to be recompiled.

This is a traditional problem in software engineering that goes back to the days when
we put a bunch of #defines in a file named error.h and returned those values from our
functions. Everybody #included error.h, so adding new error types always meant that
every module would need to be recompiled1. To avoid the spectre of long compiles we
would often try to be inventive with the kind of error code we returned. After all,
returning RT_MEMERR when you tried to pop an empty stack isnÕt really that
misleading.

Nowadays, it is not just error codes that we want to pass back up the calling
hierarchy; we also want to pass up complex data structures that describe the error. This
allows our complex human interfaces to describe the low- level problem in precise detail.
                                                          

1. We used to shoot people who tried to thwart the make system by touching all the
ÒunaffacedÓ .o files.



2
$paranum[CHAP #s]: $paratext[CHAP TITLE]

This detail may be displayed to the user, or may simply be added to a log file as a
debugging aid. Or, that extra detail may be used by higher level functions as a means to
choose corresponding remedial action.

So, how do we solve the problem of the dependencies? How can we rig it so that the
middle level modules do not have to #include the header files that describe the return
types that the low level modules want to pass back to the high level modules?

Exceptions

One answer is to throw exceptions. Middle layer modules can declare the types of
exceptions that they can handle. Other exceptions simply pass right by them. Thus we
could throw our complex error types from the low levels and catch them in the high levels
without the middle levels knowing anything about them.

This approach works well in some cases, but there are other cases where it presents
significant problems. First of all, the cost of using exceptions is high. Just Òturning onÓ
exceptions in some compilers causes all functions to take longer to execute.

Secondly, the act of throwing and then processing an exception can be costly in terms
of CPU time. Not all errors, indeed perhaps only a very few kinds of errors, warrant the
cost associated with throwing them as exceptions. The exceptions mechanism in C++ was
not meant to be used to communicate simple logical errors. It was meant to handle gross
errors like memory outages, or hardware failures.

Furthermore, many errors do not warrant the severity of immediately terminating the
detecting scope. Such errors may be remembered while other processing is taken care of,
and then carefully returned to the caller.

Finally, in many applications (e.g. Windows apps) the high- level modules are
separated from the low levels by a foreign stack that you cannot throw exceptions
acrossacrossaccross. That is, the high level modules written in C++ invoke APIs or
system calls that which were not written in C++. These, in turn, call back to the lower-
level C++ modules. This means that there is a foreign stack between the high level layers
and the low level layers. When an exception is thrown from the lower layers, it walks up
the stack looking for an exception handler. If it walks into the foreign stack it will not
recognize its structure, and will then call the terminate function.

So, it appears that there are cases in which using exceptions to communicate complex
errors is not a viable options, and that such errors must be passed back up the calling
hierarchy as return values or reference arguments. How do we prevent the middle layers
from having to #include the error types?

void*

Another solution might be to pass the error back as a void*. The higher layers could



3
$paratext[Title]

then cast the error back to its original type and access the data within it. The middle layers
simply pass the error around as a void* and donÕt need to #include the error header file.
This solution works well so long as the high level modules are sure of the type of the
error. Such surety can be achieved, for example, by using only one kind of data structure
for all the various types of errors. For example:

struct Error
{
  enum Code {e1,e2,e3} itsErrorCode;
  union
  {
    struct E1 itsE1;
    struct E2 itsE2;
    struct E3 itsE3;
  } itsErrorData;
};

This data structure contains a type code, plus data fields for all the data needed by
any of the various errors. This scheme works well,; however there is a disadvantage.
Whenever some new error type is needed, or whenever some low level module needs a
new field added to one of the existing error types, all the old low level modules -- and all
the old high level modules -- must be recompiled. Thus, all we have protected are the
middle layer modules. The creators and users of the errors are still strongly coupled
through the Error structure. Changes to the header file that describes this structure still
cause extensive large amounts of recompiling.

Common Base Class

Yet another solution to this problem is to create something similar to the following
base class:

class Error
{
  public:
    virtual ~Error() {}
};

We can then derive the different error types from this Error class. This allows the low
level functions to create an error object, upcast it to an Error, and return it. The middle
layers all #include Òerror.hÓ,; however, this is not harmful since this class is virtually
empty. It will never change, and so the middle layers will never change. The high levels
can then downcast the Error to the appropriate derivative by using RTTI.

Error* e = f(); // function returns Error
if ((MyError* me = dynamic_cast<MyError*>(e)))
{
    // process the MyError.
}



4
$paranum[CHAP #s]: $paratext[CHAP TITLE]

This method works quite well but has two disadvantages. Firstly, dynamic_cast has
unknown timing characteristics. We donÕt know how long it will take to execute.
Moreover, the time it takes may well be related to the width and depth of the inheritance
hierarchy for Error.

The second disadvantage is a bit more severe. It presumes that there is only one client
at the higher levels that needs to access the information supplied by the lower levels.
However, in many systems such an assumption would be a bit naive. In such systems,
error messages from the lower levels are passed along to many different clients;, each
having of whom have different needs, and placeing independent requirements on the data
contained within the error message.

One could imagine, for example, that among the clients interested in the error
information are a GUI that displays the error, and an intelligent module that analyses the
error and takes remedial action. The GUI is going to want to know the type, location, and
severity of the error so that it can create messages, icons, and colors that reflect that
information. The remedial function may not care about severity or location, but may need
an IO address and/or the address of some object X that it can use to take remedial action.

If we use the above solution, the error class must be written so such that all the data
that any of its clients need is present in the error. Thus when any of those clients needs
new data to be added, all the clients must be recompiled. In many systems, this kind of
coupling between otherwise independent clients is unacceptable.

Cross Casting

The dynamic_cast feature of C++ affords another kind of solution -- cross casting.
Consider the following code.

class A {public: virtual ~A();};
class B {public: virtual ~B();};
class C : public A, public B {};

A* ap = new C;
B* bp = dynamic_cast<B*>(ap);

Notice that classes A and B are completely unrelated. Now when we create an
instance of C we can safely upcast it to an A*. However, we can now take that pointer to
A and cross cast it to a pointer to a B. This works because the A pointer ÔapÕ really
points at a C object; and C derives from B.

Thus, we have cast acrossaccross the inheritance hierarchy between completely
unrelated classes. It should be noted that this will not work with regular casts since they
will not be able to do the address arithmetic to get the pointer to B correct. For example:

B* bp = (B*)ap;



5
$paratext[Title]

While this will compile without errors2, it will not generate working code. The value
of ÔbpÕ will not actually point to the B part of C. Rather it will still point at the A part of
C. This will lead to undefined behavior3.

The same argument holds true for reinterpret_cast;: undefined behavior will ensue.
And static_cast will give you a compiler error since there is no implicit conversion from
B* to A*.

So, of the various forms of casts, only dynamic_cast gives us the power to properly
cast acrossaccross an inheritance hierarchy.

Now, how can we use this ability to solve the problem of hiding the error data
structure from the middle layers of the application as well as keeping the clients of the
errors isolated? We can employ the Interface Segregation Principle4 (ISP). Consider the
following code:

class Capsule
{
  public:
    virtual ~Capsule() {};
};

class GUIError
{
  virtual ~GUIError();
  virtual int GetErrorCode() = 0;
  virtual Severity GetSeverity() = 0;
  virtual Location GetLocation() = 0;
};

class RemedialError
{
  virtual ~RemedialError();
  virtual int GetErrorCode() = 0;
  virtual IOAddr GetIOAddr() = 0;
  virtual X* GetX() = 0;
};

class HiddenError : public Capsule
                  , public GUIError
                  , public RemedialError
{
  // implement all the pure virtuals to return
  // the error data needed.
};

Now the low level level functions that detect the error can build a HiddenError object
and then pass it up the calling chain as a Capsule*. The higher levels can cross-cast the

                                                          
2. A good compiler might give you a warning.
3. The true meaning of Òundefined behaviorÓ is: ÒWorks in the lab.Ó
4. See ÒThe Interface Segregation PrincipleÓ, C++ Report, August, 1996.

Or http://www.oma.com/Publications/publications.html



6
$paranum[CHAP #s]: $paratext[CHAP TITLE]

Capsule* to the kind of error that they need to deal with. For example, the GUI would
cross-cast the Capsule* to a GUIError*; while the remedial function would cross-cast the
Capsule* to a RemedialError*.

Capsule* c = f(); // function returns an error capsule.

// in the GUI
if ((GUIError* ge=dynamic_cast<GUIError*>(c)))
{
  // process GUIError ge.
}

// in remedial function
if ((RemedialError* re=dynamic_cast<RemedialError*>(c)))
{
  // process RemedialError re.
}

Notice that this also allows a crude form of query that the clients can use to
determine if they need to process an error. For example, those errors for which no
remedial action can be taken can simply not inherit from RemedialError. This will prevent
the remedial function from paying any attention to the error.

The high- level clients of the error simply #include those header files that describe
the specific error types that they are interested in. The low- level creators of the errors
simply #include those error types that they need to create. Intermediate modules #include
nothing more than capsule.h. When new types of errors are created, or old types of errors
are modified, only those modules that are truly affected need to be recompiled. Modules
that donÕt care about the changes are left unaffected and do not need to be recompiled.

Deferred Function Invocation

Once the client module has determined that the Capsule can be downcast to an error type
that it is interested in, it still has the problem of parsing the error. Consider the following
code:

class GUIError
{
  public:
    enum code {deviceFailure,
               logicalError,
               communicationsError} itsCode;
    int moduleNumber;
    int systemState;
}

Capsule* c = f(); // function returns an error capsule.

// in the GUI
if ((GUIError* ge=dynamic_cast<GUIError*>(c)))



7
$paratext[Title]

{
  switch (ge->itsCode)
  {
  case GUIError::deviceFailure:
    DeviceFailure(ge->moduleNumber,ge->systemState);
  break;

  case GUIError::logicalError:
    LogicalError(ge->moduleNumber, ge->systemState);
  break;

  case GUIError::communicationsError:
    CommunicationsError(ge->moduleNumber,
                        ge->systemState);
  break;
  }
}

Here the client has determined that the error conforms to the type GUIError, and then
proceeds to parse the error and marshall its contents to the appropriate error handling
functions. We can easily imagine that these functions are declared pure virtual in the high
level client class, and then implemented in derivatives to display the various errors in
different language, formats, or technologies.

This parsing code is problematic. It must change every time a new kind of error code
is created. Moreover, if a new error type is added, there is no way to enforce that the
parsing code selects for it. For example, if the code controllerError is added to the
GUIError::Code enumeration, there is no way to enforce that the appropriate case
statement is added to the parsing code.

We can address this problem with an interesting technique. Consider the following
code:

class GUIErrorHandler
{
  public:
    virtual void DeviceFailure(int, int) = 0;
    virtual void LogicalError(int, int) = 0;
    virtual void CommunicationsError(int, int) = 0;
};

class GUI : private GUIErrorHandler
{
  public:
    void DoSomething();
  private:
    virtual void DeviceFailure(int, int);
    virtual void LogicalError(int, int);
    virtual void CommunicationsError(int, int);
}

class GUIError
{
  public:



8
$paranum[CHAP #s]: $paratext[CHAP TITLE]

    virtual ~GUIError() {}
    virtual void Handle(GUIErrorHandler&) = 0;
};

class GUIDevErr : public GUIError
{
  public:
    GUIDevErr(int module, int state)
    : itsModule(module), itsState(state) {}
    virtual void Handle(GUIErrorHandler& eh)
    {eh.DeviceFailure(itsModule, itsState);}
  private:
    int itsModule;
    int itsState;
};

class GUILogicErr : public GUIError
{
  public:
    GUILogicErr(int module, int state)
    : itsModule(module), itsState(state) {}
    virtual void Handle(GUIErrorHandler& eh)
    {eh.LogicError(itsModule, itsState);}
  private:
    int itsModule;
    int itsState;
};

class GUIComErr : public GUIError
{
  public:
    GUIComErr(int module, int state)
    : itsModule(module), itsState(state) {}
    virtual void Handle(GUIErrorHandler& eh)
    {eh.CommunicationsError(itsModule, itsState);}
  private:
    int itsModule;
    int itsState;
};

void GUI::DoSomething()
{
    //do a bunch of stuff and then
    //call a function that returns a Capsule:
    Capsule* c = f();
    if ((GUIError* ge = dynamic_cast<GUIError*>(c)))
    {
      ge->Handle(this);
    }
};

You probably recognize this scheme as a variation of dual dispatch. Actually this has
certain similarities to the Visitor5 pattern,; and its cousin,also the Acyclic Visitor6 pattern.

                                                          
5. Design Patterns, Gamma, et. sl., Addison Wesley, 1995
6. Pattern Language of Program Design 3, Martin,Rhiele,Buschmann, Addison Wesley, 1997



9
$paratext[Title]

The client GUI is in the midst of executing GUI::DoSomething., In the course of this
execution it callings a function f that returns an error as a Capsule. As before, the GUI
uses dynamic_cast to determine whether or not it can process the error as a GUIError. If it
can, then it passes itself to the Handle function of the GUIError class. Note that this is
done by upcasting the this pointer to a pointer to its private base GUIErrorHandler. We
want GUIErrorHandler to be a private base so that only GUI can upcast itself to a
GUIErrorHandler and thereby make its error handling functions available.

The three different kinds of errors are coded as derivatives of GUIError rather than
as enumerators in an enumeration. Each derivative implements the Handle function such
that it calls the appropriate GUIErrorHandler function;, passing it the appropriate data
elements.

Note that this decouples the GUI class from the details of the GUIError derivatives.
Lots of other elements could be placed in the GUIError derivatives without affecting the
GUI class. Note also that the actual disposition of the error is now determined by the
GUIError derivative rather than the GUI.

This is interesting. It means that we could break the one-to-one correspondence
between the error types and the error handling functions. The error types could then
implement the Handle function to invoke a sequence of calls to the error handler
functions. Thus the Handle functions of each error type would contain a kind of script for
disposing of the error.

Its not just for errors anymore.

Note that wWe have created a mechanism whereby a low level element can, by virtue of a
value that it returns, invoke a function in a high level element. Moreover, this invocation
can be deferred at the discretion of the levels that are higher than the low level element
that wants the function invoked. This is interesting. Thise scheme that we have developed
on these pages is not just for simply an reporting errors reporting scheme. It is a deferred
function calling scheme. It could be used, for example, in a system where lower levels
decide which operation that the high levels should perform. And yet the high levels are
not at the mercy of the low levels. The higher levels can decide when (not what, but
when) that function will be invoked.

Thus wWe might envision a robotic system where some low- level video controller
sees a barrier in its path and decides to inform the higher levels that is should consider
avoiding that barrier. The higher levels can defer the processing of this information until a
convenient time. (hHopefully before collision). We might envision a high- level controller
that collects a number of return values from various lower level components, and then
invokes them in the order of their priority; as determined by the higher level.

Moreover, these little capsule objects that are being passed up to the high levels from

                                                                                                                                               
also see http://www.oma.com/Publications/publicatoins.html



10
$paranum[CHAP #s]: $paratext[CHAP TITLE]

the low levels can contain be full of multivariate data. A capsule that means one thing to
one high- level element can mean something completely different to other high- level
elements.

Reversing the Direction

If the Capsule pattern can be used to provide deferred communication from the lower
levels of an application to its higher levels, it can also be used for the reverse. High- level
modules can build capsules that are eventually processed by low- level modules. These
capsules might be passed to the lower levels in one thread, before they are and then
invoked in a completely different thread.

One could envision the high- level modules creating a single Capsule to be used by
many different low- level modules. The high levels would pass the capsule to each low -
level module and then allow those lower levels to invoke their particular part of the
capsule at their convenienceconveinece. The capsule then resembles a folder of work
orders that gets passed around from agent to agent. Each agent looks in the folder (using
dynamic_cast) to see if it contains any work orders specifically for it. If so, it invokes
those work orders (by calling Handle on the downcast class). It may not invoke those
work orders immediately, it may wait for a different thread, or a special event.

The fact that all the work orders are actually contained in the same object means that
object can mediate between the agents. When one agent invokes one of the work orders,
the underlying capsule object will know it, and can make sure that the other agents are
properly coordinated.

Conclusion

In this article we have discussed a design pattern named Capsule. This pattern is used to
provide deferred invocation of functions between software elements that do not
communicate directly with each other. The pattern ensures that the intermediary
intermedary software elements are not dependent upon the contents and details of the
messages that pass between the two indirectly communicating elements.

This pattern makes use of cross- casting. Cross casting is a feature of statically typed
OO programming language such as C++, Java, and Eiffel. The Capsule pattern should be
applicable to all such languages.

The runtime cost of cross- casting is difficult to quantify. Moreover it may change as
the inheritance hierarchies it manipulates change and grow. Thus care must be taken when
using this pattern in hard real time applications. We are used to casts taking very little
time. Such may not be the case with cross- casts. Caveat Emptor!


