
1

Pattern Language for Framework
Construction

Shai Ben-Yehuda

email: shai@sela.co.il

http://www.sela.co.il/~shai

Abstract
One of the most effective form of reuse in OO technology is the framework. The pattern language
introduced in the paper tries to capture some design and architectural patterns that reoccurs while
constructing OO frameworks. The pattern language is based on a different perspective, regarding
frameworks as a tool for developers.

A Framework As A Product For Developers
A framework is mainly a product for developers used as an integrated development environment that
facilitates, supports, guides, confines, and helps the developers in building application in a well
defined domain. A framework is an environment built to reduce development costs, maintenance costs,
and implementation costs.
An OO framework is a product for developers who specially use OO constructs and methods like
abstractions and specialization, interfaces, contracts, classes, and objects. OO frameworks can support
both implementations and design reuse.

Other definitions of frameworks are:
 • “A framework is a reusable design for an application or a part of an application that is represented

by a set of abstract classes and the way these classes collaborate “ (Johnson 88)
 • According to Coplien & Schmidt [PLOP I] a framework can be characterized by the followings:

 1. A framework provides an integrated set of domain specific functionality.
 2. Frameworks exhibit an “inversion of control” at run-time.
 3. A framework is a “semi-complete” application.

 • Pree prefers to distinguish between framework and application framework: “The framework is a
collection of abstract and concrete class and the interface between them and is the design for a
subsystem ... and the term application framework is used if this set of abstract and concrete classes
comprises a generic software system for an application domain.” [Pree]

The wider perspective of frameworks allows the author to enlarge its scope. Hence, new kinds of
elements may be considered as parts of the framework; for instance, utilities and building blocks.

In the paper the framework user will be referred as both developer and framework user to distinguish
him/her from the framework constructor.

Intent
Generally, the pattern language suggests a top down approach to framework construction. Means, it is
tuned to be used to build a framework from scratch or while re-designing an existing framework. The
pattern language may be used in any phase of the framework development. The patterns classified as

2

architectural are patterns that affect the whole framework while the design patterns have only a local
effect.

General Context
The field of OO framework engineering has not matured yet. We have tasted the effectiveness of
frameworks like MacApp, MFC, ET++, InterViews, JDK, ACE and more that may speed-up the
development cycle significantly. Using these frameworks we can produce even better products
compared to conventional tailored made OO development because we get hard to implement features
for free. E.g. portability, error handling, etc.

However, many attempts to build successful frameworks have failed. Most of the failures occurred
because of lack of some framework qualities. However, framework qualities contradict each other in
many situations. The framework constructor should balance between these qualities trying to achieve
the best mixture in his/her environment. We may regard the framework qualities as the conflicting
forces drive the design of framework construction. The major qualities/forces are listed here:

 • Effectiveness- How effective is the framework for the developer (the framework user)? We can
measure framework effectiveness by the speed-up factor which weigh development cost with the
framework against the development cost without the framework. Effectiveness means also faster
time to market of the products produced by the framework.

 • Extensibility - How rigid is the framework architecture? In some cases it is almost impossible to add
a feature in a given architecture; for instance, a triangle window in a windowing framework. It is
important to state that any architecture impose constraints, when trying to evaluate framework
extensiveness we should try to look at specific domains that are likely to be covered by the
framework. In many cases, extensibility and effectiveness conflicts each other.

 • Coverage - How wide is the application space in which the framework is effective? A framework
may be extensible but have a narrow coverage.

 • Simplicity and Understandability- What is the learning curve of a typical developer? The
framework concepts may be too abstract or the architecture may be too complicated to grasp.

 • Framework Integration - Can the framework be integrated with other frameworks or libraries?

 • Application Qualities- Efficiency, Portability, Adhering to standards- Do the applications made
by the framework have some non-functional qualities? Although important, this aspect will be
disregarded in the pattern language because it affects architectural issues more than framework
issues. The author chooses to ignore this issues in order to emphasize the “tool for developer”
aspect of frameworks over the architectural aspects.

The patterns listed in the paper suggest some known compromises between these conflicting forces.
Some of the patterns tend to be more risky (non extensive) and effective, and some are safer and less
powerful. The starts attached to each pattern reflect author confidence in the pattern.

3

The Patterns in a nutshell
Category Pattern Problem Solution

Structural,
architectural

1) Conceptual
Layering

Lack of understandability and
problems with framework
Integration.

Divide framework elements into
two layers: product level and
building block level.

Coupling,
architectural

2) Collaborating
Product
Concepts

The framework is not effective.
Even with the framework it takes
a long time to build an
application.

Define abstract behavior for the
framework that defines the
collaboration between the
product concepts

Coupling,
architectural

3) Independent
Building blocks

General framework components
in the building blocks level can
be used only within the
framework. We would like to
use them in other frameworks to
enhance code reuse and promote
framework integration.

Make the building blocks
independent. E.g. string, date,
matrix, point and math class

Structural,
architectural

4) Multi-level
Framework

The framework becomes too
complex because the developer
wants to build new building
blocks.

Create a new framework that
produces building blocks and let
each framework to develop by
its own forces.

Structural,
architectural

5) Nested
Framework

We need both a general purpose
abstract framework with a wide
coverage and an effective
framework in a more specialized
field.

Build a general framework with
abstract product concepts and
general building blocks, and
build the specialized framework
inside it.

Design 6) Developer
Contracts

The developer does not have a
clear contract with the
framework when specializing a
product concept.

Define half baked
implementation classes that
adhere to the pre-defined
collaborating behavior and
externalize a useful interface
(contract) to the developer.

Design 7) Multiple
Developer
Contracts

The developer is confined to
only one contract when
specializing a product concept.

Define some half baked
implementation classes, each of
them should adhere to the pre-
defined collaborating behavior
and externalize a different
interface (contract) to the
developer.

Design 8) Framework
Utilities

Classes alone do not deliver the
speed up factor.

Add utilities to the framework to
enhance developer effectiveness.
Utilities are products which are
given to the developer but will
not be installed or used in the
end user site.

4

(1) *** Conceptual Layering
Product Concepts and Building Blocks

Problem
The developer does not have a clear understanding about the kinds of products he/she can produce
using the framework, and the means the framework gives him/her to produce them.

Forces
 • Understandability- Products and means to create them should be clear to the developer.

 • Effectiveness versus Simplicity- Uncoupling between framework elements may improve
simplicity but reduce effectiveness.

 • Extensibility- New kinds of products should be easily supported by the framework.

 • Framework integration- We should look for common elements between frameworks.

Solution
Divide Framework elements (classes, in most cases) into two layers:

 • Product level- High level concepts that define products that may be created using the framework.
These products are known to the developer and he/she has chosen the framework in order to
produce them.
E.g: Document is a product level concept in a MFC and ET++. Shape and surface are product level
concepts in a CAD framework.
The developer (framework user) uses the framework to specialize pre-defined product level
concepts.

 • Building block (part) level- Concepts/classes that may be used as parts in the construction of the
product level concepts. These concepts conceptually resides in a lower level than the product level.
The framework user assembles building blocks to constructs product level concepts.
E.g: Edit box, list box and buttons building blocks in graphical framework are used to build dialog
boxes products.
Line, arc and matrix building blocks in CAD framework are used to build shape products.

Building Blocks - Used to build product concepts.
Also called parts.

confine,
design reuse

aggregation

The
Developer
Zone

inheritance

choice of implementation,
implementation reuse

Product Concepts

According to the regular definition of a framework, building blocks may be regarded as a
supporting class library. The wider definition of framework allows the author to consider
building blocks as part of the framework.

5

Examples
In MFC we use containers, strings, fonts, threads, and controls in the building blocks level to build
documents and views at the product level.

In Java we use the general building blocks in java.util classes like vector, dictionary, calendar, random,
math, etc. to build applets in the product domain.

In the Xtoolkit framework the product concepts are widgets and the Xlib primitives are used as building
blocks and.

The ACE framework helps the developer to build his/her own Active Objects (product layer) using
reactors, mutexes, connector classes, and acceptors in the building blocks layer.

Consequences
+ Simplicity- The developer knows what to expect from a class according to its layer. The developer
role is clearer, she/he should define a product class by using building blocks.

+ Framework integration- frameworks can be integrated more easily if they share the same building
blocks. JDK is a good example for that. The java.util building blocks are shared between java-beans
framework and the AWT framework. See Nested framework for more.

+ Extensibility- Separating the product concepts gives the framework constructor a clearer view of
what may be developed using the framework. It gives the developer a language to define the desired
extensible axes.

- Effectiveness- Separating between these layers may reduce framework effectiveness because user-
defined products can not be used as building blocks. Furthermore, if standard building blocks are used
they can not contribute to the framework specific design. See the Independent Building Blocks Pattern
for more.

- Framework Coverage- Implementing the pattern means that the framework specializes in product
concepts construction. However, what happens when the developer wants to define or customize a
building block; for example, the developer wants to define another container in Java. Adhering to this
pattern, we must claim that the developer should work in another framework in which the former
building blocks are the product concepts. See Multi-level framework for more.

Related/Advanced issues
Building blocks by the developer choice- In many cases, building blocks are used by choice and the
product level concepts are forced .

The Composite pattern and working modes- The Composite pattern is a good example for
abstracting the product and the building block together putting them in the same layer. E.g. Control is
an abstraction of dialog box (product) and button (building block). However, working consciously in
two modes may both preserve the conceptual layers while using the composite pattern. The abstraction
should be ignored while working on a product class. But when reusing the product class as a building
block we should use the abstraction and put the product in the building blocks section.

Building Block as parameters in the product classes interface- In many cases, we use the building
block classes to define the interface of product classes. E.g. using string and date as method parameters.
We must remember that it forces the developer to use the defined building blocks. It breaks an
important principle that the framework developer should have the ability to choose the appropriate
building block.

When to implement? In many cases, we use the pattern in the first stages of the development because
of its simplicity. Then we may break the pattern to enlarge framework coverage and effectiveness.
Implementing the pattern in later phases of framework development happens if we find a better layered
model or during understandability or framework integration crises.

6

(2) *** Collaborating Product Concepts
 Conceptual Dependency

Intent
Determining dependency between framework elements is a key issue when trying to balance between
the conflicting forces, especially between effectiveness and the other forces.

The pattern tries to deal with specific dependencies between the product concepts. framework level
collaborations may support design reuse and significantly affect the speed-up factor and framework
effectiveness. However, any collaboration creates a dependency and affect understandability,
extensibility, framework integration, etc.

Problem
The framework does not deliver the expected development speed up factor.

Forces
Effectiveness versus Extensibility- To make to framework more effective me must add behavioral
coupling, doing that we loose extensibility and coverage.

Solution
Make the framework more effective and less extensible. Make the product concepts more coupled.
Define abstract behavior for the framework that defines the collaboration between the product concepts.

confine,
design reuse

The
Developer
Zone

inheritance

Collaborating Products Concepts

 Product A Product C Product B

Implementation
Define Template Methods [GoF] at the base product classes to define the collaborating behavior. The
Mediator Pattern [GoF] may be used to define the collaborating behavior in external objects or
functions that controls registered product objects.

Examples
In MFC the collaboration between the product concepts document and view, frame and document
template is hidden from the framework developer, especially the creation process and the notification
process. This collaboration defined by the framework allows the user to define document and views
without caring for these problematic design issues.

7

In Java AWT the message passing mechanism is hidden and determined by the framework. The layout
mechanism is hidden to some extent as well.

Consequences
+ Effectiveness- The framework becomes more effective because the developer should define only the
differences between his/her needs and the framework behavior.

+ Simplicity - The developer does not know about the collaboration mechanisms. Hence, he/she has a
simpler model to work with. However, when the developer is not satisfied with the abstract behavior,
she struggles against the framework to change it, and forced to understand most of its internals

- Framework integration- The framework products become more coupled therefore less reusable in
other frameworks.

- Extensibility- If we regard the product collaboration as an architectural decision, we won’t be able to
use the framework in the cases that the collaboration is defined differently.

- Coverage - If we do not regard the product collaboration as an architectural decision. The framework
is effective in a smaller domain. The framework covers only applications that behaves similarly to the
framework. The framework does not cover application that share the same concepts but behaves
differently. See Nested Framework Pattern fore more.

Related/Advanced issues
Product classes interfaces- This pattern causes the product interfaces to be fat and unclear because
they reflect the collaboration as well. E.g. CWnd in MFC.

Developer Contracts- In order to hide the complex interfaces, the framework constructor adds
Template Methods [GoF] with primitive operations [GoF] or uses the Strategy pattern. The developers
overrides only the primitive operation [GoF] or add a strategy to customize the product. The framework
becomes more Hollywoodic: “Don’t call us. We’ll call you.”See the multiple developer contracts
pattern for more.

Nested framework- If the collaboration does affect the products interfaces, the Nested framework
Pattern can be used. The pattern supports the abstract level as the upper framework and the
collaborating framework as a deeper framework. See Nested framework pattern for more.

8

(3) ** Independent Building Blocks

Intent
Modularity is a crucial factor for reusablity and clarity. Class independence reflects modularity. In
many cases, we can achieve this modularity at the building blocks level with a reduced effort.

Problem
The frameworks building blocks are not reusable in other frameworks.

Forces
 • Ownership versus framework elements reuse- framework constructors prefer to own all

framework components in order to have control on framework evolution. However, some
components may be used in some frameworks if built to serve this purpose.

 • framework integration and understandability versus effectiveness- framework constructors
prefer to reuse standard building blocks but to promote framework effectiveness they should
customize their building blocks.

Solution
Trade effectiveness for understandability, code reuse, and framework integration. Make the building
blocks independent. Make sure the building classes do not know about the other framework classes.
E.g. string, date, matrix, point and math class.

Independent Building Blocks - Used to build product
level concepts. Also called parts.

aggregation

The
Developer
Zone

choice of implementation,
implementation reuse

Examples
java.util classes are independent.

In ACE mutexes are independent.

Anti example- In MFC we see that most of the general building blocks are not independent. List is
dependent upon the object in MFC and even string is dependent upon the archive class in MFC for
persistency.

9

Consequences
- Effectiveness- The building block is not smart enough to be integrated seamlessly within the
framework. E.g: the string objects do not serialize themselves automatically and the framework user
should remember to store them every time she uses them.

+ Simplicity - The building blocks are simple and have no side effects. It is easier to understand, use,
and debug them.

+ Code reuse inside the framework- The independent building block classes are reusable.

+ framework integration- The building blocks can be shared between frameworks because the
building blocks are not dependent upon specific framework elements. See the Nested framework
pattern.

Related/Advanced issues
Building blocks layering- Building blocks layers are often defined by the framework constructor. In
many cases, we separate between the general building blocks layer and the framework specific layer.
The separation promotes framework integration. E.g.: java.util as the general layer and java.awt.Font at
the AWT framework layer. It may be considered as a pattern for itself. See the Nested framework
pattern for more.

Virtually Independent building blocks- Button is a building block in Java AWT framework. However
it depends upon the component class from which it inherits. AWT designers would like the Button to
have no side-effects within the framework and appear like an independent component for the developer.
Virtual dependency has nothing to do with virtual method invocation mechanism. It may be considered
as a pattern for itself. There is a great risk in virtual dependency because the framework deceives its
users.

10

(4) ** Multi-Level Framework

Context
The Conceptual Layering Pattern was implemented. The developers need to refine building blocks.

Problem
The Conceptual Layering Pattern does not let the developer define/refine building blocks.

Forces
Effectiveness versus simplicity- The framework may be more effective if the developer can add
his/her own building blocks. However, if the framework supports the development of both products and
building blocks we may end up with a complex framework.

Framework construction costs- The framework construction costs should be paid back by reducing
development costs. If we do not see that clearly we may end up with “White elephant frameworks”.

Solution
Create a separated framework that produces some of the building blocks for the existing framework and
let it develop by its own forces.

The product domain framework and the building blocks framework may have completely different
building blocks, conceptual dependencies, utilities and developer contracts. In most cases, the building-
blocks framework (lower level) has no conceptual collaboration.

Building Blocks
Product Concepts

confine,
design reuse

aggregation

inheritance

choice of implementation,
implementation reuse

Product Concepts

Building Blocks

confine,
design reuse

aggregation

inheritance

choice of implementation,
implementation reuse

Examples
LayoutManager in Java AWT - Layout manager is considered to be a building block when constructing
applets. However, we may need a framework to define customized layout managers.

Acceptor in ACE- Acceptor is a building block when creating an active object. But to create
customized acceptor we need a framework for dealing with network protocols, advertising, screening,
etc.

11

Consequences
+ Effectiveness- The overall frameworks become more effective because each framework can
specialize in its own field.

+/- Simplicity - Each framework is simpler but the whole system may be more complicated.

+ Framework integration- The building blocks framework may be used to support other frameworks
that uses the same building blocks. See Nested Framework Pattern for more.

- Framework construction costs not paid back

Framework coverage- No effect.

12

(5) *** Nested Framework

Intent
The abstraction level of the framework depends upon the coverage and the effectiveness we expect
from the framework. Frequently, we can identify a general framework with abstract products that
consists of more specialized frameworks. The specialized framework extends the abstract framework.

Building frameworks recursively promotes framework integration and framework coverage with no
effectiveness payoff.

Context
We have a general purpose abstract framework with a wide coverage. The Conceptual Layering Pattern
was implemented and the Collaborating Product Concepts Pattern was not implemented. An effective
specialized framework is needed. The specialized framework products are sub-concepts of the base
framework products.

Problem
How to implement an effective specialized framework?

Or, we would like some siblings frameworks to share common infrastructure that may be used as a
framework.

Forces
Effectiveness versus simplicity- The framework may be more effective if the developer can work in
both the abstract level and the concrete level. However, if the framework supports the development of
both products and building blocks we may end up with a complex framework.

Framework construction costs- The framework construction costs should be paid back by reducing
development costs. If we do not see that clearly we may end up with “White elephant frameworks”.

Solution
Build a general framework with abstract product concepts and general building blocks and build the
specialized framework inside it. The specialized framework product concepts derived from the general
framework and the general framework building blocks may be used in the specialized framework.

General Building Blocks

confine,
design reuse

aggregation

inheritance

choice of implementation,
implementation reuse

Product Concept Product Concept Product Concept

More concrete
Product Concept

Specific Building
Blocks

13

Examples
Motif is a nested framework inside the Xtoolkit framework. They share the Xlib building blocks and the
abstraction of widget is defined at the toolkit level and refined in the Motif framework.

MFC- We can identify general persistency and RTTI framework that defines high level product
concepts like object and archive. The general framework building blocks are containers and strings.
Inside the general framework there is a windowing framework that deals with document and views
which are kinds of objects and use the persistency and RTTI framework.

Consequences
+ META Effectiveness- The framework code is reusable by the framework constructor, hence, the
framework constructor becomes more effective.

+/- Simplicity - More frameworks but each framework is simpler.

+ Promoting framework integration- Some concrete frameworks may use the same general
framework and may be integrated together.

- Framework construction costs

Effectiveness- No effect.

Framework coverage- No effect.

Related/Advanced issues
Some frameworks in the same field- Some frameworks or some versions of the same framework may
live together within the same general purpose framework. However, product objects of the specialized
frameworks will not be able to collaborate with each other.

14

(6) ** Developer Contract

Context
The Collaborating Product Concepts Pattern was implemented. The developer must implement
primitive operations [see template method in GoF] or override some methods. The framework
constructor is not sure about the primitive operations which are useful to the user.

Problem
The developer does not have clear interfaces to work with. The framework parameters of variation
should be well defined.

Forces
Understandability versus coverage- Clear developer contracts may promote understandability but
being overly precise may confine the developer, hence reducing framework coverage.

Framework construction costs- We would like to avoid the “white elephant” syndrome. The
framework should pay back its construction costs.

Effectiveness- The developer contract should reflect the developer’s needs and not the open part of the
concept collaboration.

Solution
Analyze users and developer needs. Define partial (half baked) implementation classes which adhere to
the pre-defined collaborating behavior and externalize a useful interface to the developer. The
developer should inherit from these class.

The developer interface can be defined by primitive operations using the template method pattern
[GoF] or using the strategy pattern [GoF].

confine,
design reuseinheritance

Abstract Product Concept

Partially defined

Developer Contract

Examples
MFC Views- To define a view, the developer can use CFormView and he/she should only add a dialog
box the defines the form.

Java Image Filter (java.awt.image) - To define an image filter the developer can use the RGB image
filter and he/she should only define the color translation table.

15

Consequences
+ Effectiveness- The framework becomes more effective because the contracts are aimed to help the
developer.

+ Simplicity - The developer contracts are well defined. Hence, the developer role becomes clearer.

- Framework construction costs- More effort is put in the framework construction phase. In many
cases we would prefer iterative definition of developer contracts.

Framework integration- No real effect.

Framework coverage- No real effect.

Related/Advanced issues
White box versus black box contracts [Johnson]- The developer contract may be well defined when
using the strategy pattern or documenting the primitive operation by defining their responsibility
clearly. But when the framework constructor is not sure about the contract, he/she can use the white box
approach, letting the developer to explore the base class and override open method opens. Johnson says
that the white box approach should be used in early stages of framework construction, while we have no
idea about the needed developer contracts. However, white box contract means in most cases that the
developer should be aware of the collaboration between the product classes.

Declarative developer contracts and profiles- In addition to primitive operations and strategy pattern,
the developer contract can be define as a set of open parameters, and the developer may declaratively
assign values to the open parameters. A set of values is called a profile. The developer can use profiles
to define sub-concepts in the product domain. Profiles can inherit from each other and aggregate each
other. For more details about profiles see [The TGP methodology].

16

(7) *** Multiple Developer Contracts

Context

The Developer Contract Pattern was implemented.

Problem
The developer has only one contract to specialize a product concept. He/She does not have the ability to
choose an adequate contract when defining his/her product concept.

Forces
Effectiveness versus framework construction costs- Many developer contracts may promote
effectiveness but may lead to a fat framework that does not pay itself back. We would like to avoid the
“white elephant” syndrome.

Solution
Define the product domain interface as a base class (preferably only the interface). Define some
partially defined (half baked) implementation classes, each of them should adhere to the pre-defined
collaborating behavior and externalize a different interface to the developer. See the Developer
Contract Pattern for contract definition details.

confine,
design reuseinheritance of choice

Abstract Product Concept

Partially defined 1 Partially defined 2 Partially defined 3

Developer Contract 1
Developer Contract 2

Developer Contract 3

Examples
MFC Views- To define a view, the developer can choose between CFormView or CCTRLView
according to his/her needs. The developer contract is defined using the constructor and overridables
methods (primitive operations) in each base class.

Java Image Filter (java.awt.image) - To define an image filter, the developer may choose to override
RGB image filter or Replicate image filter. Both classes defines the developer contract with primitive
operations.

Consequences
+ Effectiveness- The framework become more effective because the developer can choose the most
suitable contract. The framework can give both simple contracts for frequent needs and complicated,

17

powerful contracts. The pattern enables the framework constructor to enhance framework effectiveness
with no pay on simplicity or coverage.

- Extensibility- In the partial classes implementation we adhere and depend upon the abstract product
collaboration. Doing that we make it harder to change the product collaboration.

+ Simplicity - The developer contracts are well defined. Hence, the developer role becomes clearer.
The framework can support incremental learning by introducing more complicated developers contracts
when needed.

- Simplicity- If the developer contracts are similar in content, it may confuse the developer and she/he
will not know what contract to use.

- Framework construction costs- More effort is put in the framework construction phase. Half baked
classes are expensive in terms of development costs. The framework constructor should be careful not
to build non-useful contracts.

Framework integration & Framework coverage- No real effect.

18

(8) ** Framework Utilities

Intent
A framework is not only the set of classes. To be complete, most frameworks should have utilities like
specialized code generator, debugger, test and help.

Problem
Classes alone do not deliver the speed up factor. The developer needs a fully supported environment
that knows the framework.

Forces
Effectiveness versus “white elephant” framework- Utilities may promote effectiveness but if we put
too much effort in them we may put a lot of effort in never-used utilities.

Solution
Add utilities to the framework that certainly enhance developer effectiveness. Utilities are products
which are given to the developer but will not be installed or used in the end user site.

Building Blocks

confine,
design reuse

aggregation

Utilities:
Debuggers,
Testers,
Code generators,
Builders,
etc.

The
Developer
Zone

inheritance

choice of implementation,
implementation reuse

support

Product Concepts (interfaces, base-classes)

in terna l cont ract A
internal
cont rac t

B

Examples
The classical utilities are:

 • Code generator

 • Debugger

 • Sensitive Editors

19

 • Browser

 • Testers

 • Integrated Help system

 • Integrated Tutorial and cookbooks

In MFC (Visual C++) there are the following utilities:

 • application wizard as framework sensitive code generator and cookbooks.

 • Spy as a specialized windows application debugger.

 • Class editor sensitive to framework overridables. Dialog Box editor.

 • Test framework.

 • framework tutorial.

Consequences
+ Effectiveness- Code generators, debuggers and editors are built to promote developer effectiveness
with no real side effects.

+ Simplicity - The learning curve become less steep with integrated help & tutorials. Code generators
can also help to improve understandability.

- Coverage in practice - Putting many tools in the developer environment may cause him/her to treat
the framework differently. Culturally, they may reject direct use of classes and hence it will reduce
framework coverage in practice.

- Framework development costs

framework integration- No effect.

Acknowledgments
Many thanks to James O. Coplien and Paul Dyson who shepherd me in EuroPLOP 97. Special thanks to
my wife Ayelet who gave me inspiration from other fields.

References
 [1] GoF - Design Patterns. GHJV. Addison Wesley 95.
 [2] POSA - Pattern Oriented Software Architecture. BMRSS. Wiley 96.
 [3] Pattern Languages of Program Design I,II. Addison Wesley 1995,96.
 [4] Reusability through self encapsulation. K. Auer. PLOP1 95. Pg. 505.
 [5] Design patterns for OO software development. W. Pree. ACM 95.
 [6] Object Oriented Application Frameworks. Ted Lewis, editor. 95
 [7] Software Architecture. M. Shaw. D. Garlan. PH 96.
 [8] MFC Internals. G. Shepherd. S. Wingo. Addison Wesley 96.
 [9] Tricks of the Java Programming Gurus. G. Vanderburg. SAMS NET 96.
 [10] The TGP Methodology. S. Ben-Yehuda. http:\\www.sela.co.il\~shai\tgp.ps
 [11] Evolving Frameworks: A Pattern Language for Developing Object-Oriented Frameworks.

Ralph Johnson, Don Roberts. University of Illinois.
 [12] Patterns for Abstract Design. Paul Dyson.

http://vasawww.essex.ac.uk/~pdyson/Study/Pad/pad.html.

