
07/17/97 10:13 1 of 8

The Abstract Class Pattern
Bobby Woolf

Knowledge Systems Corp.
4001 Weston Pkwy, Cary, NC 27513-2303
919-677-1119 x541, bwoolf@ksccary.com

ABSTRACT CLASS Class Behavioral

Intent

Define the interface for a hierarchy of classes while deferring the implementation to subclasses.
Abstract Class lets subclasses redefine the implementation of an interface while preserving the
polymorphism of those classes.

Also Known As

Liskov Substitution Principle [LW93], Design by Contract [Meyer91], Base Class [Auer95] ,
Template Class [Woolf97]

Motivation

Consider the need to perform simple arithmetic. Every application needs to use simple numbers like
integers and floats and to perform simple arithmetic such as addition, subtraction, multiplication, and
division.

One obvious way to perform this simple math is to let the CPU do it. Any modern CPU has built in
commands to perform simple arithmetic with integers and floats. This is the most efficient way to
perform such calculations.

The problem is that not all numerical quantities can be adequately represented as the CPU’s integers
and floats. Integers have a limited range. Floats have limited precision and loose precision converting
between decimal and binary.

The number framework in a robust object-oriented system should take advantage of the CPU’s
efficiency whenever possible. However, to make the system more robust, the framework should
overcome the CPU’s limitations whenever possible. It should be able to represent a virtually limitless
range of numbers, both really huge numbers and really tiny ones. It should be able to represent a
decimal number with complete precision, at least to a specified number of decimal places. It should be
able to perform simple arithmetic without any loss of precision. It could even compute complex
equations by simplifying them first.

A robust number framework employs various classes to meet these goals: Integer and Float for
CPU numbers, LargePositiveInteger and LargeNegativeInteger for huge integer
values, FixedPoint for complete precision, Fraction for division without round off, and so on.
This way, the framework performs as much computation as possible using the CPU, but also uses
other classes to represent numbers that that the CPU cannot. The diagram below shows the classes for
this framework.

The Abstract Class Pattern Bobby Woolf

07/17/97 10:13 2 of 8

The problem with all of these number classes is that the rest of the system does not want to be aware
of them. To the rest of the system, there are just number objects and they know how to perform
arithmetic. When code somewhere in the system has a statement like “x + y,” it does not care whether
x is a Float or y is a Fraction . The code just knows that x and y are numbers and that numbers
know how to perform addition. The implication is that since some numbers know how to perform
addition, all numbers must be able to.

Thus the number framework requires more than just these various number classes. It also needs to
clearly show which classes are part of the framework. It needs to require that all classes in the
framework be able to perform a certain minimal amount of functionality, such as addition. And the
framework needs to provide all of this number functionality in a polymorphic way to hide the
complexity of the various subclasses from the rest of the system.

The framework will accomplish all of this by using a generalized superclass called Number. A
Number represents any kind of number, be it an integer, float, or whatever. It defines the minimal
functionality that any number must provide, such as addition. It does not define a number’s structure,
nor does it define the implementation of the functionality. Those details are deferred to subclasses like
Integer , Float , and so on. Applying Number as a superclass, and implementing Integer in a
similar manner, leads to the framework of classes shown below.

Object

+
-
*
/

LargePositiveInteger

+
-
*
/

Integer

+
-
*
/

Float

+
-
*
/

LargeNegativeInteger

+
-
*
/

FixedPoint

+
-
*
/

Fraction

Object

+
-
*
/

Number

Float Integer FractionFixedPoint

LargePositiveIntegerSmallIntegerLargeNegativeInteger

The Abstract Class Pattern Bobby Woolf

07/17/97 10:13 3 of 8

All number classes are now subclasses of Number. They are defined to provide basic arithmetic. A
client using a couple of number objects knows that numbers can perform basic arithmetic regardless
of which subclasses the objects are.

Number is an example of the Abstract Class pattern. As described in Design Patterns, “An abstract
class is one whose main purpose is to define a common interface for its subclasses.” [GHJV95, page
15] Number defines a type that can be implemented several different ways, but all of these
implementations will have the same interface so that clients can use them interchangeably. This
simplifies client code by causing the code to describe what it wants done without specifying how it
should be done. The client code will even work with unknown, future implementations, as long as
those implementations fulfill the interface.

The key to the Abstract Class pattern is a superclass that defines the type for its hierarchy and
subclasses that provide various implementations of the type. An abstract class can be implemented as
pure interface such that its subclasses must implement all of its messages, but it is more useful still if
it also provides a partial implementation suitable for all of the subclasses. In this way, a subclass
inherits the partial implementation and only needs to complete it.

The superclass is called “abstract” because its implementation is incomplete so clients do not create
instances of it. The subclasses that a client can create instances of are referred to as “concrete.”
[WWW90, page 27]

Keys

A framework that incorporates the Abstract Class pattern has the following features:

x A superclass that defines a type.

x One or more subclasses that implement the type.

x Polymorphism between the subclasses because they share the interface defined by the superclass.

The framework may also include these variations on the pattern:

x The superclass may provide a partial but incomplete implementation.

x The superclass may provide a complete implementation that is a default or minimal
implementation.

x The superclass may define state as well as interface.

x The subclasses may expand the interface defined by the superclass to include additional
functionality. However, that extended interface will not be polymorphic with the other classes.

Applicability

Use the Abstract Class pattern when:

x a framework requires several classes that have the same interface or whose interfaces overlap to
form a common, core interface.

x the common interface should be defined in one place so that all of the classes know they should
adhere to this interface and so that clients know what interface they can expect.

x a hierarchy should be extensible so that future subclasses can easily be added without having to
change the existing superclass or the existing client code.

The Abstract Class Pattern Bobby Woolf

07/17/97 10:13 4 of 8

Structure

Participants

x AbstractClass (Number, Integer)

� defines the interface that all of the ConcreteClasses share.

� does not define state and implementation unless it is common to all concrete classes,
including future ones.

� may itself be a more specific subclass of another AbstractClass.

x ConcreteClass (FixedPoint , Float , Fraction , LargeNegativeInteger ,
LargePositiveInteger , SmallInteger)

� is a direct or indirect subclass of its AbstractClass.

� implements the interface inherited from AbstractClass.

� declares state necessary to implement interface.

x Client

� collaborates with ConcreteClass instances through the AbstractClass interface.

Collaborations

x Clients use the AbstractClass interface to interact with objects that may be any ConcreteClass.

x ConcreteClass relies on AbstractClass to provide the default implementations common to all
ConcreteClasses.

Consequences

The advantages of the Abstract Class pattern are:

x Class polymorphism. The ConcreteClasses are polymorphic with each other because they all
support the common interface defined by the AbstractClass. This means that a client can use any
of the ConcreteClasses without regard to which ConcreteClass it is using. Such common
interfaces make extensibility easier because client code will be able to use future ConcreteClasses
that haven’t even been written yet, as long as those future classes adhere to the interface.

x Algorithm reuse. If the AbstractClass does contain any implementation, it is usually in the form
of Template Methods [GHJV95, page 325]. This is implementation (and in some cases even
state) that is common to all of the ConcreteClasses, present and future, and so can be reused by
implementing it once in the AbstractClass.

The disadvantages of the Abstract Class pattern are:

Client

operation1
operation2

AbstractClass

operation1
operation2

ConcreteClassA

operation1
operation2

ConcreteClassB

The Abstract Class Pattern Bobby Woolf

07/17/97 10:13 5 of 8

x Abstract vs. concrete. Clients generally assume that they can create an instance of any class, but
this is not the case with abstract classes. Clients should not attempt to instantiate instances of
abstract classes, only concrete ones. The superclass is said to be “abstract” because it has an
incomplete implementation, so the client cannot or should create instances of it. Each subclass is
said to be “concrete” because its implementation is complete, so the client can create instances of
it.

x Single hierarchy. The pattern forces all of the ConcreteClasses to be gathered together into a
single class hierarchy with one common superclass, the AbstractClass. Sometimes a class seems
to belong in one hierarchy because of its type but in another hierarchy so that it can inherit some
of its implementation. In such a case, it is better to implement the class in its type hierarchy and
let it delegate to an instance from its implementation hierarchy.

Another way this problem can occur is when disparate classes need to implement the same
operation. The default implementation for this operation is usually defined in the first superclass
they all have in common. This in effect makes that superclass an AbstractClass for those
subclasses. However, it also makes the class an AbstractClass for all of the other subclasses, even
though they don’t need the operation. Thus it becomes clear that inheritance is not the best way
to define this operation and reuse its implementation. The classes that need the operation would
be better of delegating to an object that has the operation.

x Overly specific interface. Sometimes a ConcreteClass is not prepared to implement all of the
operations that an AbstractClass specifies. For example, the Collection abstract class in
Smalltalk specifies add: and remove: operations, but the Array subclass cannot implement
them. When possible, the AbstractClass should not specify an operation unless all of its
ConcreteClasses will be able to implement it. When this cannot be avoided, the ConcreteClass
must implement the operation anyway, usually to issue an error.

Implementation

There are several issues to consider when implementing the Abstract Class pattern:

1. Separate classes. A object is often implemented using a single class that defines both the object’s
interface and its implementation. This makes the abstraction that the class represents difficult to
reuse. The Abstract Class pattern suggests that the object should be implemented with two
classes, an abstract one that defines its interface and a concrete one that implements the interface.

2. No state. The AbstractClass usually does not declare any state variables. If it did, all of its
ConcreteClasses would be forced to inherit those variables. This would be inefficient for a
ConcreteClass whose implementation did not require those variables. However, if all of the
ConcreteClasses require a variable, and if future ConcreteClasses would also probably require
that variable, then it can be declared in the AbstractClass.

3. Implementation through Template Methods. An AbstractClass is usually implemented as a
collection of Template Methods [GHJV95, page 325]. An AbstractClass is said to define an
interface but leave its implementation to the ConcreteClasses. However, when a message has a
default implementation that is appropriate for all ConcreteClasses, that implementation can be
made in the AbstractClass. Such an implementation is often either a template method or a
primitive operation method.

4. No private messages. The AbstractClass defines the hierarchy’s interface. These are the public
messages that the subclasses will implement. The AbstractClass does not need to define private
messages and usually does not do so. However, it may define private messages that are primitive
operations of the class’ template methods.

The Abstract Class Pattern Bobby Woolf

07/17/97 10:13 6 of 8

Sample Code

The Magnitude hierarchy in Smalltalk is an excellent example of the Abstract Class pattern. It
includes the Number hierarchy discussed in the Motivation because numbers are magnitudes.

A Magnitude understands six main messages: equal-to (=), not-equal-to (~=), less-than (<),
greater-than (>), less-than-or-equal-to (<=), and greater-than-or-equal-to (>=). Some examples of
Magnitude s include Number, Timestamp , and Character . All of these are subclasses of
Magnitude and understand the Magnitude messages, as shown below.

Four of the messages are implemented as Template Methods: not-equal-to, greater-than, less-than-or-
equal-to, and greater-than-or-equal-to. They are implemented in terms of two primitive operations:
equal-to and less-than. The primitive operations are deferred to subclasses.

Magnitude>>= aMagnitude
^self subclassResponsibility

Magnitude>>~= aMagnitude
^(self = aMagnitude) not

Magnitude>>< aMagnitude
^self subclassResponsibility

Magnitude>>> aMagnitude
^(self <= aMagnitude) not

Magnitude>><= aMagnitude
^(self = aMagnitude) or: [self < aMagnitude]

Magnitude>>>= aMagnitude
^(self < aMagnitude) not

So a subclass of Magnitude need only implement the two primitive operations and it gets the other
four operations for free. For example, Character assumes that characters are ASCII and so sorts
them into ASCII order. To do this, it uses a message that returns a character’s ASCII value, such as
asciiValue .

Character>>= aCharacter
^(self asciiValue) = (aCharacter asciiValue)

Character>>< aCharacter
^(self asciiValue) < (aCharacter asciiValue)

Character

Object

=
~=
<
>
<=
>=

Magnitude

TimestampNumber

The Abstract Class Pattern Bobby Woolf

07/17/97 10:13 7 of 8

Thus the AbstractClass, Magnitude , greatly simplifies the implementation of the various
ConcreteClasses. In the sample operations shown here, implementing two messages gives the class
four more messages for free.

The AbstractClass also simplifies the interface that client code must understand. The client must
know that it is comparing two objects of the same subtype: two Character s or two Numbers, etc.
However, it need not care which subtype they are, because they all behave same. They all understand
the same six comparison messages.

One example of why this is useful is the way SortedCollection works. A Sorted-
Collection is a Collection that sorts its elements into order. By default, it assumes that its
elements are Magnitude s (of the same subtype) and it uses <= to sort them into order. Thus it does
not care whether the elements are Character s, Numbers, or Timestamp s; since they are all
Magnitude s, they will all work correctly.

Known Uses

Abstract Classes are so fundamental that they can be found in almost any multilevel class hierarchy.
In such a hierarchy, the superclasses are usually abstract; the leaf classes must be concrete. Object ,
the root class for the entire Smalltalk hierarchy, is the ultimate Abstract Class in that language. In
Java, java.lang.Object serves the same purpose. When a class hierarchy is known by the class
at the root of the hierarchy (such as Number, Collection, Stream, Window, etc.), that class is almost
always an abstract class.

Almost every documented design pattern, such as those in Design Patterns [GHJV95], features one or
more Abstract Classes. Often the pattern suggests the creation of an Abstract Class if there isn’t one
already. For example, Composite [GHJV95, page 163] uses the Component abstract class to define
the interface for both the Leaf and Composite classes. To apply Proxy [GHJV95, page 207] to a
RealSubject class, the developer should use the abstract class Subject to define the interface that the
RealSubject and its Proxy will share. When a pattern talks about a participant that “defines an
interface” [“State,” GHJV95, page 306] or “declares an interface” [“Strategy,” GHJV95, page 317]
for several subclasses, it is describing an Abstract Class.

Auer discusses how to develop class hierarchies that are reusable and extensible [Auer95]. He
suggests using a base class to define and interface and subclasses to implement state.

Related Patterns

Most design-level patterns employ abstract classes. Of the twenty-three patterns in Design Patterns,
twenty of them suggest implementing abstract classes (Singleton, Facade, and Memento do not).
[GHJV95]

An Abstract Class is usually implemented using Template Methods [GHJV95, page 325].

Auer walks the reader through the process of developing a hierarchy whose interface is defined by an
abstract class. [Auer95]

References

[Auer95] Ken Auer. “Reusability Through Self-Encapsulation.” Pattern Languages of Program
Design. Edited by James Coplien and Douglas Schmidt. Addison-Wesley, 1995.

[GHJV95] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley, 1995.

[LW93] Barbara Liskov and Jeannette Wing. “A New Definition of the Subtype Relation.”
ECOOP ’93, Lecture Notes on Computer Science 707. Berlin, Heidelberg: Springer-
Verlag, 1993, pp. 118-141.

The Abstract Class Pattern Bobby Woolf

07/17/97 10:13 8 of 8

[Meyer91] Bertrand Meyer. “Design by Contract.” Advances in Object-Oriented Software
Engineering. Edited by Dino Mandrioli and Bertrand Meyer. Prentice-Hall, 1991, pp.
1-50.

[WWW90] Rebecca Wirfs-Brock, Brian Wilkerson, and Lauren Wiener. Designing Object-
Oriented Software. Prentice Hall, 1990.

[Woolf97] Bobby Woolf. “Polymorphic Hierarchy.” The Smalltalk Report. January, 1997. 6(4).

Acknowledgments

I would like to thank Dana Anthony and Steve Berzcuk for their help in improving this paper.

