
Connecting Business Objects to Relational Databases

Joseph W. Yoder

Department of Computer Science
University of Illinois at Urbana-Champaign

Urbana, IL 61801
j-yoder@uiuc.edu

Ralph E. Johnson

Department of Computer Science
University of Illinois at Urbana-Champaign

Urbana, IL 61801
johnson@cs.uiuc.edu

Quince D. Wilson

McDonnell Douglas
Technical Services Co
Springfield, IL 62704

72773.2663@compuserve.com

Abstract
These patterns describe how to implement business objects so that they can be mapped to non object-
oriented databases. There is an impedance mismatch between these technologies since objects consist of
both data and behavior while a relational database consists of tables and relations between them. Although
it is impossible to completely eliminate this impedance mismatch, you can minimize it by following the
proper patterns. The proper patterns hide persistence from the developer so that effort can be spent on
understanding the domain rather than in making objects persistent.

2

Introduction
Developers of object-oriented systems that use a relational database usually spend a lot of time making
objects persistent. This is because of a fundamental impedance mismatch1 between the two paradigms;
objects consist of both data and behavior and often have inheritance while relational databases consist of
tables, relations and basic predicate calculus functions to return desired values.

One way to avoid the impedance mismatch between objects and relations is to use an object-oriented
database. However, systems often need to store objects in a relational database. Sometimes a system needs
relational calculus or the maturity of a relational database. Other times the corporate policy is to use a
relational database rather than an object-oriented database. Whatever the reason, a system that stores
objects in a relational database needs to provide a design that reduces the impedance mismatch.

This paper only describes a part of a complete pattern language for mapping objects to relations, but it
describes the patterns that we thought were not adequately described elsewhere. An overview of the entire
pattern language can be found in [Keller 98-2]. Some of the patterns that are described well are the
patterns for designing the relational database and optimizing it [Brown 96] [Keller 97-1, 97-2, 98-1]. The
Serializer pattern [Riehle et al. 1998] discusses issues on how to serialize objects to a stream so that you can
store and retrieve objects from different backends, such as flat files, relational databases, and RPC buffers.

We have used or studied several persistent object systems (GemStone [GemStone 96], TopLink [TopLink
97-1, 97-2], and ObjectLens [OS 95]). In addition, we implemented a simple persistence framework for the
Illinois Department of Public Health (IDPH) in VisualAge [VA 98] for Smalltalk [Yoder & Wilson 98].
The patterns described here are in all these systems. The commercial systems usually take the patterns to
more extreme measures than our framework does. We would have preferred to buy a persistence
framework, but our budget could not afford the ones that were available. The applications that needed to
use the persistence framework were simple, involving only a few dozen tables. Each application managed
medical information about a patient. The applications share demographic information such as patient name
and address and information about hospitals and doctors. Each application then covers different areas like
immunizations, or blood screening for patients. Although an application could manage a lot of information
about a patient, it would only examine one patient at a time. The examples will show you how these
patterns work together to solve the problem of persisting the Name and Address objects needed for the
applications being developed by the IDPH.

These patterns flow together and work hand-in-hand to solve the problem of the impedance mismatch
described above. A Persistence Layer isolates the developer from the details of implementing persistence
and protects the application developer from changes. The Persistence Layer is a special case of building a
layer to protect yourself from changes in the application or in the database. One way to implement a
Persistence Layer is with a PersistentObject . Another way is with a Broker [BMRSS 96].
Regardless of how you implement a Persistence Layer, it must support CRUD (create, read, update, and
delete) operations. These CRUD operations must use some sort of SQL Code Description To build the
actual SQL calls to the database.

When the values are being brought in from the database or stored back to the database, the system must
perform Attribute Mapping to map between values from columns in the database and values being stored in
an object's attributes. Part of the impedance mismatch between relational and object systems is that they

1 The formula for impedance is: Z = square root of L/C. Even though the dictionary definition does not
apply, the implementation definition does. When you have an impedance mismatch as defined above
(for example 50 to 75 ohms) you have circuits that work on either size of the mismatch, but they cannot
pass along the information. In order to correct the situation (in the electronics world) you place a circuit
(caps and inductors) which will pass the signals across basically translating the signals.

When you are connecting objects to databases you have the same situation. Both circuits (objects &
database) work but they do not pass signals (information) back and forth between them. To fix this
problem, you build a circuit (the patterns being reviewed) to place between them to pass the signals
along.

3

have different types of data. While mapping attributes between objects and databases, there needs to be
support for Type Conversion in order to converts the types of values between the two technologies.

It is important to be able to save objects back to the database when they change the state of any attributes
that need to be persisted. Therefor, any system persisting objects must also keep track of which objects
have changed with some sort of Change Manager. This can allow for the system to keep track of which
objects have changed so that they are insured to be saved when needed. The Change Manager can also
help minimize database access by only creating transactions to save objects that have changed.

Since every object is unique in any object-oriented system, it is important to create unique identifiers for
new objects with an OID Manager. It is also important to support transactions so as to ensure that changes
to an object are atomic and can be rolled back through a Transaction Manager. Of course any system
accessing a RDMBS will need to provide connections to the desired databases through some sort of
Connection Manager. It is also beneficial to handle the mappings of database table and column names
through a Table Manager.

The pattern catalog in Table 1 outlines the patterns discussed in this paper. It lists each pattern’s name
along with a short description of what the pattern solves. These patterns collaborate to map domain objects
to a relational database.

Pattern Name Description

Persistent Layer Provide a layer for mapping your objects to the RDBMS or other database.

CRUD All persistent object need, at a minimum, create, read, update, and delete
operations.

SQL Code
Description

Defines the actual SQL Code that takes the values from the RDBMS or other
database and retrieves them for the object’s use and vice-versa. It is used to
generate the SQL for performing the CRUD operations.

Attribute Mapping
Methods

Maps the values between the database values and attributes. This pattern also
handles complex object mappings. Populates the object(s) with the row values.

Type Conversion Works with Map Attributes to translates values from the database to the
appropriate object types and vice-versa. Insures data integrity.

Change Manager Keeps track of when an object’s values have been changed for maintaining
consistency with the database. It determines the need to write the values to a
database table or not.

OID Manager Generates Unique Keys for the Object Ids during an insert.

Transaction Manager Provides a mechanism to handle transactions while saving objects.

Connection Manager Gets and maintains a connection to the database.

Table Manager Manages the mappings from an object to its database table(s) and column(s).

Table 1 - Pattern Catalog

4

Persistence Layer

Also Known As:
Relational Database Access Layer

Motivation:
If you build a large object-oriented business system that stores objects in a relational database, you can
spend a lot of time dealing with the problems of making your objects persistent. If you aren't careful, every
programmer has to know the details of SQL and the code can become tied to the database. It can be a lot of
work to convert your system from using Microsoft Access to using DB2, or even adding a few variables to
an object. You need to separate your domain knowledge from knowledge of how objects are stored in a
database so as to protect developers from these type of changes.

Problem:
How do you save objects in a non object-oriented storage mechanism such as a relational database?
Developers should not have to know the exact implementation.

Forces:
• Writing SQL Code is easy for programmers who are familiar with databases.
• Designing a good persistence mechanism takes time, and is not directly related to providing

features to users.
• Database access is expensive and often needs to be optimized.
• Developer should be able to solve the domain problem of an application without worrying about

how to save the values to and from the database.
• Having a common interface with template methods makes for better code reuse.
• Using a single interface will force all classes to the lowest common denominator.
• The type of persistent storage may change over the life of an application.
• The domain model will probably change frequently over the life of an application.

Solution:
Provide a Persistence Layer that can populate objects from a data storage source and can save their data
back to the data storage source. This layer should hide the developer from the details of storing objects.
This is really a special case of building a Layer [BMRSS 96] to protect yourself from changes. All
persistent objects use the standard interface of the Persistence Layer. If the data storage mechanism
changes, only the Persistence Layer needs to be changed. For example, the corporate direction may be to
start using Oracle rather than DB2 and then switch in midstream.

Another important benefit of isolating the application developer from the details of how an object saves
itself is that it makes it easier to implement domain objects. Thus, it is less work to evolve the domain
model. By encapsulating the functionality of the object persistence mechanism, a developer will effectively
be hidden from the details of saving the object.

The system needs to know how to store each object and to load it. Sometimes an object is stored in
multiple databases over multiple media. An object that is part of a more complex object needs to keep
track of which object it is a part; this is called the owning object. This owning object idea makes it easier
to write complex queries. Therefore it is important for the Persistence Layer to provide a means to
uniquely identify each object and its parent. This unique identifier and parent identifier are useful if you
implement a Proxy [GHJV 95] pattern as a place holder for component objects.

To summarize using the pattern names, this Persistence Layer provides the necessary methods to provide
the CRUD operations by building up the SQL Code, providing the Attribute Mapping Methods, Type
Converting the objects data values, accessing the Table Manager, providing access to a Transaction

5

Manager, and connecting to the database through the Connection Manager. The Persistence Layer will also
help provide proper Change Management and will collaborate with the OID Manager to provide unique
objects identifiers.

There are many ways to implement a Persistence Layer. Here are a few of them.

1. Use an Object Layer [Keller 98]. Subclass each domain object from an abstract
PersistentObject . Each object would then inherit how to perform the necessary CRUD
operations. This is the choice the example uses and the primary benefit is that it is easy to
implement. Although it requires a little code in each domain class that is database specific, this
code is segregated, and is easy to find and change. It allows optimization when necessary, though a
heavily optimized system can be hard to understand.

2. Provide a Broker that can read or write domain objects to or from the database. The broker must
know the format of each domain object, and generates the SQL to read or write it. This choice
separates the database code from the domain object class. It is the solution that scales best, though
it requires a lot of infrastructure.

3. Compose each domain object from a set of data objects that have a one to one mapping to the
database tables. Thus, whenever a domain object changes, it changes the corresponding data object
that is then saved whenever the domain object is saved. For example, a Patient’s values could
map to the Name and Address database tables. The Patient would have data objects
mapping to the Name and Address database tables. ObjectShare’s ObjectLens for VisualWorks
builds up database objects this way. The Persistence Layer is managed through these data objects.
This alternative is simple to implement and easy to understand, though it can be slow and
developers are forced to make a one-to-one mapping to database tables.

The primary decision should be made based upon the forces of the needed flexibility, scalability, and
maintainability.

Example Implementation:
There has been a lot of work done towards describing the details of building Brokers [BMRSS 96]
correctly. Because of this and because we have more experience with implementing a Layered Object, our
examples will focus around this implementation of the pattern. The other patterns described do work in the
Broker implementation and we will mention briefly how this can be done in our discussions of the other
patterns. However, all of our example code will describe the implementation as it relates to the
PersistentObject .

Figure 1 is a UML class diagram for an implementation of Persistent Layer which map domain objects to a
relational database. Note that in this example, domain objects that need to be persisted are subclasses of
the PersistentObject . The PersistentObject provides for the interface to the Persistence
Layer. The PersistentObject interacts with the Table Manager, which will provide the physical table
name for the SQL Code. During the SQL Code generation, the PersistentObject interacts with the
Connection Manger to provide the necessary database connection. If needed, the OID Manager is queried
for a new unique identifier. Thus, the PersistentObject is the central hub for any information the
domain object requires but does not contain in the instance. The PersistentObject provides the
standard interface to the Persistence Layer. Once the SQL Code has been prepared with the cooperation of
the other patterns, the SQL statement is “fired” by the Database Components. In IBM’s VisualAge for
Smalltalk these are the AbtDBM* applications.

The attributes for the PersistentObject are as follows:

• objectIdentifier – This is a unique identifier for the object and can be the database key.
• isChanged – Identifies whether or not the object “isDirty ” which tells the Persistence Layer

to write the change to the database.
• isPersisted – Identifies whether or not the object has ever been written to the database.
• owningObject – Identifies the parent object (in a complex object) and is used as a foreign key

in the database. Note that the foreign key is stored with the object not the parent object.

6

The public methods for the PersistentObject are as follows:

• save – Writes the object data to the database. It will update or insert rows as necessary.
• delete – Deletes an object data from the database.
• load: - Returns a single instance of a class with data from the database.
• loadAll – Returns a collection of instances of a class with all the data from the database for

that particular class. This is useful for retrieving data for selection lists.
• loadAllLike: - Returns a collection of instances of a class will select data from the database.

Records can be read in three ways:

• a single row (PersistentObject>>load:),
• all records (PersistentObject>>loadAll),
• or all that match a specific criteria (PersistentObject>>loadAllLike:).

The specific criteria is provided by creating a new instance of the object to load with the attributes set
needed to find a match. This functions with the PersistentObject>>load: and
PersistentObject>>loadAllLike: methods. The PersistentObject>>loadAll method
is useful for retrieving reference data from tables where you want to populate a selection list or drop down
list.

The following is example code from the PersistentObject described above. These are the public
interface methods with transaction management (described later in this paper). The read: and the
saveAsTransaction methods are described in more detail in the CRUD pattern.

-objectIdentifier
-isChanged
-isPersisted
-owningObject
+save
+delete

+loadAllLike:

PersistentObject TableManager

Name

OIDManager

ConnectionManager

Address

Maintains Table
Mappings

Generates ObjIDs
+loadAll
+load:

Database Components

Reads from and
Writes to RDBMS

Note: This is standard UML style as
presented by Fowler [98] modified by
‘:’ for noting the Smalltalk style of
methods that accept parameters

1 *has

1*

1

*

1*

Maintains DB
Connections

TypeConverter Converts DB and
Object Types

*1

PersistenceLayer

Figure 1 – Persistence Class Diagram

7

Protocol for Public Interface PersistentObject (instance)

load

"Answer a single instance of a subclasse of PersistentObjects
that matchs self.”

| oc |
oc := self loadAllLike.
^oc isEmpty ifTrue: [nil] ifFalse: [oc first]

loadAllLike

"Answer a collection of subclasses of PersistentObjects that
match self. The selectionClause method in the Domain object is
called to prepare the WHERE clause for the read method in the
PersistentObject"

^self class read: (self selectionClause)

save

“Saves self to the database wrapped in a transaction.”

self class beginTransaction.
self saveAsTransaction.
self class endTransaction.

delete

“Deletes self from the database wrapped in a transaction.”

self class beginTransaction.
self deleteAsTransaction.
self class endTransaction.

Protocol for Public Interface PersistentObject (class)

loadAll

"Answer a collection of ALL my instances from the database."

^self read: nil.

The following is example code from the Name class. Names have Addresses and therefore it will
have a component that could need to be saved. This method is overwritten for any domain objects that
have persistent components that need to be saved.

Protocol for Private Interface Name (instance)

saveComponentIfDirty

"Verifies existence of the address object and also verifies a
proxy pattern is not holding the position. The address owning
object is set to the current object and then the address object
is saved as part of the current transaction."

(self address isNil or: [self address isKindOf:
 PPLAbstractProxy])

ifTrue: [^nil].
self address owningObject: self objectIdentifier.
self address saveAsTransaction

8

Consequences:
A Persistent Layer can make it complicated and sometimes difficult to do operations that might be easy to
write in SQL Code.

Optimizations can be difficult in a Persistent Layer. A programmer should run benchmarks for different
approaches seeing what works the best for their implementations.

Database technologies can change without affecting your application code.

Changing the way an object is stored in a database can be easy since we have isolated where the changes
need to be made.

User needs to only call the save method to persist the object. The developer does not need to detect
whether or not the record already exists in the database.

 Related or Interacting Patterns:
• Relational Database Access Layers [Keller 97-2] is a similar pattern in that it describes a layer in

which your objects that need to be persisted communicates with.
• Layered Architecture [Shaw 96] described
• Layered Architecture for Information Systems [Fowler 97-1] discusses implementation details that

can be applied when developing layered systems.
• Layers [BMRSS 96] describe detail implementation details that need to be considered during the

architecture and design of a layered system.

 Known Uses:
• The GemStone OODBMS uses a Persistence Layer to hide the fact that a value is a persistent

object. Proxies use the Persistent Layer to fetch values when they are actually needed. In this
case, the storage system is not a RDBMS.

• The Caterpillar/NCSA Financial Model Framework [Yoder 97] uses a Persistence Layer which all
of the values are saved through a Query Object [Brant & Yoder 96]. In this case, the applications
are not storing arbitrary domain objects in the database, but only retrieve transactions. However,
the Persistence Layer is still used to hide details of the database and the RDBMS technology.

• ObjectShare’s VisualWorks Smalltalk ObjectLens [OS 95] uses a Persistent Layer to map data
objects to and from database tables.

• VisualAge for Smalltalk also uses a Persistence Layer with their AbtDbm* applications.
VisualAge provides GUI builders with graphical connections to provide a persistence mechanism.

• The Illinois Department of Public Health’s TOTS and NewBorn Screening projects use an
implementation very similar to the one presented in these examples.

• TopLink, MicroDoc, Sparky, and Object Extender [MicroDoc 98, Sparky 98, OE 98] each provide
a Persistence Layer for mapping object to relational databases.

9

CRUD

Also Known As:
Create, Read, Update, & Delete
Basic Persistence Operations

Motivation:
Suppose you have a Patient class with components of class Name and Address. When you read a Patient,
you must also read a Name and Address. Writing out a Patient will probably cause you to write a Name
and Address objects to the database. Should they all have the same interface for reading and writing?
Maybe some object requires a different interface to the database? Can we give them all the same interface?
If so, what should it be?

Any persisted object needs operations to read from and write to the database. Values being persisted may
also be for newly created objects. Sometimes, objects may need to be deleted from the persistence storage.
Therefore, anytime an object needs to be persistent, it is important to provide, at a minimum, create, read,
update, and delete operations.

Problem:
What minimal operations are needed for a persistent object?

Forces:
• All objects that are saved to a database need to have a mechanism for loading themselves and

saving themselves.
• Having the code for reading and writing in one place makes it easier to evolve and maintain

objects.
• It is easier to implement a set of nested classes if each of the has only to implement the same small

interface.

Solution:
Provide the basic CRUD (create, read, update, and delete) operations for persistent objects. Other
operations that may be needed are loadAllLike: or loadAll . The important point is to provide at
least enough to instantiate objects from a database and store newly created or changed objects.

If all domain objects have a common PersistentObject superclass then this class defines the CRUD
operations and all domain objects can inherit them. Subclasses can override them if necessary to increase
performance.

If the Persistence Layer is implemented using Brokers, then the Brokers implement the CRUD operations.
In either case, the Persistence Layer must generate the SQL code to read or write the domain object. Thus,
each domain objects must make available a description of the SQL code necessary for accessing the
database available for the CRUD operations. Thus CRUD works closely with a SQL Code Description for
insuring that the operations are sufficient for persisting domain objects.

Example Implementation:
The PersistentObject described above provides the standard interface to the basic set of operations
for mapping the objects to the database; save, load, etc. These methods are inherited from the
PersistentObject which access the CRUD operations. Some of these CRUD methods may need to be
overwritten by the domain object. The executeSql: method is provided by the AbtDBM* database
components in which it takes any SQL statement and returns back values from the database. The
updateRowSql and the insertRowSql are described in the SQL Code Description pattern below.

10

Protocol for CRUD PersistentObject (class)

This method takes a WHERE clause as an agent, and returns a collectin of objects tha correspond to the
rows that matches the WHERE clause.

read: aSearchString

”Returns a collection of instances populated from the database.”

| aCollection |
aCollection := OrderedCollection new.
(self resultSet: aSearchString)

do: [:aRow | aCollection add: (self new initialize: aRow)].
^aCollection

Protocol for Persistence Layer PersistentObject (instance)

These methods save or delete objects from the database. These methods make the decisions of what kind
of SQL statements (insert, update, or delete) based on the object’s values. Once the decisions have been
made the SQL statement is then fired to the database.

saveAsTransaction
"Save self to the database."

self isPersisted ifTrue: [self update] ifFalse: [self create].
self makeClean

update
"Updates aggregate classes then updates self to the database"

self saveComponentIfDirty.
self basicUpdate

create
"Inserts aggregate classes then inserts self to the database."

self saveComponentIfDirty.
self basicCreate

basicCreate

"Fires the insert SQL statement to the database"

self class executeSql: self insertRowSql.
isPersisted := true

basicUpdate

"Fires the update SQL statement to the database."

(self isKindOf: AbstractProxy) ifTrue: [^nil].
isChanged ifTrue: [self class executeSql: self updateRowSql]

deleteAsTransaction
"Delete self from the database.."

self isPersisted ifTrue: [self basicDelete].
^nil

11

basicDelete

"Fires the delete SQL statement to the database."

self class
executeSql:('DELETE FROM ',self class table,' WHERE ID_OBJ=',

 (self objectIdentifier printString)).

Consequences:
CRUD can make the application very fast or very slow depending on how it is implemented. The object
model as well as the data model must be analyzed very carefully to determine the optimum solution.

Flexibility to retrieve data based on how many rows or what kind of data (dynamic, static, or somewhere
in-between) is needed.

Simple implementation to SAVE the data to, or back to, the database. The application developer does not
have to determine whether to insert or update the object.

 Related or Interacting Patterns:
• Transaction Manager handles the transactions for these operations.
• CRUD interacts with SQL Code for generating the necessary database calls.

 Known Uses:
• Illinois Department of Public Health TOTS and NewBorn Screening projects.
• ObjectShare’s VisualWorks Smalltalk ObjectLens [OS 95] uses a CRUD in order define how to

manipulate simple data objects. VisualAge Smalltalk [REFERENCE] also uses a CRUD with their
AbtDbm* applications.

12

 SQL Code Description

Also Known As:
 Definition of code to query, update, insert, and delete
 Object Query Language (OQL) description
 Common Query Language (CQL) description
 Structured Query Language (SQL) description

 Motivation:
Somewhere the SQL Code that reads, updates, inserts, and deletes values from the database has to be
written for keeping your objects values consistent with their persistent storage. Once again look at a Patient
class with components of class Name and Address. The SQL code needs to be stored for reading and
writing values for the Patient. You must also store the SQL for Name and Address. On one hand you can
hard the SQL code for reading and writing to the database. You could store the values in a common place.
A schema map could also be developed for storing the representation of the object mappings to the
database and dynamically be generated at runtime.

 Problem:
 Where do you store the actual descriptions for generating the SQL statements necessary to perform the
CRUD operations?

 Forces:
• When accessing a relational database, SQL Code for the database access has to be supplied from

somewhere.
• The amount of SQL Code grows as the domain model grows.
• Writing efficient SQL Code requires you to understand a lot about the data model and database.
• The domain model will probably change frequently over the life of an application.
• SQL Code could be put wherever database access is needed.
• Duplication of similar SQL Code can create maintenance problems.
• Generating SQL Code from metadata can hide details of how an object accesses the framework

from the developer but can have performance and maintenance tradeoffs.

 Solution:
 Provide a place where the developer describes the SQL Code for maintaining the consistency between his
object and the persistent storage. Minimally, business objects need to know how to perform CRUD
operations (create, read, update, and delete). Somewhere, the necessary SQL Code to perform these CRUD
operations needs to be defined.

 It is important to maintain the consistency between the values from objects and the persistent storage. It is
also important to provide a means where by an embattled programmer is less likely to forget to update a
SQL statement when a domain object is modified.

 This pattern can be implemented many ways, but the key idea is that the SQL statement is encapsulated and
easy to associate with the persistent object. Thus, each object has the necessary SQL Code available to
interact with the database. With the SQL Code closely associated with the domain object, it is less likely
an embattled programmer will forget to update a SQL statement when a domain object is modified.

 One way to do this is to actually write the complete SQL Code necessary for each of the operations. Then
let the Persistence Layer read the SQL Code from the domain object, create the database connection, and
make the database call. Both Brokers and Object can generate the SQL code from the domain object.

13

 Another way to do this is to provide an Object Query Language (OQL) that is a description of the necessary
operations needed for the CRUD operations. The OQL is then interpreted for building up the necessary
calls to the database.

Another alternative is to use Metadata [Foote & Yoder 1998] to describe the CRUD operations. A CRUD
operation interprets metadata to build the appropriate SQL. Most commercial frameworks use this
approach. It would build up this structure from some sort of Schema Map [Foote & Yoder 1998]. Most of
these commercial frameworks provide a visual language for building and manipulating these queries.
Using Metadata and Schema Maps can become complicated to implement and maintain. They can also
generate non-optimal queries. However, they can make it easy for the programmer to describe the
mappings between the domain object and the database; specifically when a visual language has been
developed to assist with the process.

 If you are implementing on a larger scale where you have thousands of lines of SQL code and the dynamic
SQL isn’t fast enough, you would want to replace or modify the SQL example to call stored procedures,
pre-compiled SQL, implement a push-pull technology, or cache. This is called the Optimizing Query
pattern [Keller 97-2].

Example Implementation:
When you are using a database, you will have to produce SQL statements for retrieving, inserting,
updating, and deleting records. These statements in their simplest form:

SELECT * FROM table_name.
INSERT INTO table_name (column_name) VALUES (values).
UPDATE table_name SET column_name = xyz WHERE key_value.
DELETE FROM table_name.

These seem simple enough, but how do you get the values from an object into the statement.

You can use a stream to place the “fixed” portions of the statement and the attributes from the object onto
or you can define the columns you want to retrieve.

aStream nextPutAll: ‘SELECT’;
nextPutAll: column_names ;
nextPutAll: ‘FROM ‘;
nextPutAll: table_name.

or:

aStream nextPutAll: ‘INSERT INTO ‘;
nextPutAll: table_name;
nextPutAll: (column_names);
nextPutAll: ‘VALUES ‘;
nextPutAll: (values).

Below are examples from the Name class instance methods. The Name class is a domain object in our
example. Names and addresses are common in most, if not all, administrative type applications. This is a
simple example to demonstrate the Persistence Layer with a very small complex object. As stated above
the SQL statements do not have to be hard coded. If your database and your object model are very similar
then they could be generated from a schema.

Protocol for SQLCODE (instance)

These methods provide the Persistence Layer with the actual SQL statement that is to be sent to the
database. The SQL statement is built on a stream and then passed to the Persistence Layer for execution.
This example shows the use of the Type Converter and Table Manager patterns described later in this
document.

These methods build the actual SQL statement that is going to be sent to the database. A write stream is
used instead of concatenation for performance reasons.

14

insertRowSql

"Returns a sql insert statement with values from the object."

| aStream |
aStream := WriteStream on:(String new).
aStream nextPutAll: 'INSERT INTO ';

nextPutAll: self class table;
nextPutAll:' (ID_OBJ,

ID_OBJ_OWN,
NAM_FST,
NAM_LST,
NAM_MID,
EML_ADR,
ORG_NAM,
NUM_PHO)
VALUES (';

nextPutAll: (self typeConverter prepForSql:
(objectIdentifier:= (self getKeyValue)));

nextPut: $,;
nextPutAll: (self typeConverter prepForSql:self

owningObject);
nextPut: $,;
nextPutAll: (self typeConverter prepForSql:(self first

asUppercase));
nextPut: $,;
nextPutAll: (self typeConverter prepForSql:(self last

asUppercase));
nextPut: $,;
nextPutAll: (self typeConverter prepForSql:(self middle

asUppercase));
nextPut: $,;
nextPutAll: (self typeConverter prepForSql:(self email));
nextPut: $,;
nextPutAll: (self typeConverter prepForSql:(self

organization));
nextPut: $,;
nextPutAll: (self typeConverter prepForSql:(self phone));
nextPutAll: ')'.

^aStream contents.

updateRowSql

"Returns the update sql statement with values from the object.”

| aStream |
aStream := WriteStream on:(String new).
aStream nextPutAll: 'UPDATE ';
 nextPutAll: self class table;

 nextPutAll: ' SET NAM_FST=';
 nextPutAll: (self typeConverter prepForSql:(self first

asUppercase));
 nextPutAll: ', NAM_LST=';
 nextPutAll: (self typeConverter prepForSql:(self last

asUppercase));
 nextPutAll: ', NAM_MID=';
 nextPutAll: (self typeConverter prepForSql:(self middle

asUppercase));

15

 nextPutAll: ', EML_ADR=';
 nextPutAll: (self typeConverter prepForSql:(self email));
 nextPutAll: ', ORG_NAM=';
 nextPutAll: (self typeConverter prepForSql:(self

organization));
 nextPutAll: ', NUM_PHO=';
 nextPutAll: (self typeConverter prepForSql:(self phone));
 nextPutAll: ' WHERE ID_OBJ=';
 nextPutAll: (self typeConverter prepForSql:self

objectIdentifier).
^aStream contents.

This method provides the where condition for SQL select statement. Each class has this method to
determine what can be used in the where clause of the select statement.

selectionClause

"Answer a string representation of a where clause.”

| aStream app|
aStream:= WriteStream on:(String new).
(self objectIdentifier isNil)
ifFalse: [aStream nextPutAll: 'ID_OBJ=';
 nextPutAll: (self class typeConverter prepForSql:

 self objectIdentifier).
 ^aStream contents].

(self owningObject isNil)
ifFalse: [aStream nextPutAll: 'ID_OBJ_OWN= ';
 nextPutAll: (self typeConverter prepForSql: self owningObject)].
^aStream contents.

Protocol for SQLCODE (class)

These methods provide table name for the above methods and define which columns will be returned from
the database with the where clause produced above.

table

"Returns the table name from the Table Manager. "

^TableManager getTable: 'EXAMPLE'

buildSqlStatement: aString

"Returns the read SQL statement for the object”

| aStream |
aStream := WriteStream on:(String new).
aStream nextPutAll: 'SELECT

ID_OBJ,
ID_OBJ_OWN,
NAM_FST,
NAM_LST,
NAM_MID,
EML_ADR,
ORG_NAM,
NUM_PHO FROM ';

 nextPutAll: self table.

16

((aString isNil) or:[aString trimBlanks isEmpty])
ifFalse:[aStream setToEnd;

nextPutAll: ' WHERE ';
nextPutAll: aString].

^aStream contents.

Protocol for SQL Code PersistentObject (instance)

Each object is required to provide the SQL Code Desciption to the Persistence Layer. If the object does
not require part of the SQL code then it should return “shouldNotImplement ”.

insertRowSql
^self subclassResponsibility

selectionClause
^self subclassResponsibility

updateRowSql
^self subclassResponsibility

Consequences:
Flexibility, only the required set is returned. Also the SQL statement could be replaced with calls for
various forms of stored or compiles queries.

The performance of the SQL statement is easily determined with DB tools.

 Related or Interacting Patterns:
• SQL Code Description uses an Interpreter [GHJV 95] for producing the language for the database.
• SQL Code Description uses the Builder [GHJV 95] pattern to provide the same process for

different objects.
• SQL Code Description could use Metadata [Foote & Yoder 98] to produce the SQL statement.
• SQL Code Description needs to know the Schema [Foote & Yoder 98] in order to produce the

statement correctly.
• SQL Code Description is the code generated for the CRUD operations in the Persistence Layer.
• SQL Code Description is generated with values from the Attribue Mapping Methods.

 Known Uses:
• Illinois Department of Public Health TOTS and NewBorn Screening projects.
• ObjectShare’s VisualWorks Smalltalk [OS 95] uses a SQL Code Description in order to define

how to perform CRUD operations for simple data objects. VisualAge Smalltalk also uses a SQL
Code Desciption with their AbtDbm* applications.

• In the GemStone GemConnect [GemConn 98], SQL Code Description is used for getting values to
and from a relational database into objects.

17

 Attribute Mapping Methods

Also Known As:
 Mapping DB Values to Objects
 Mapping Objects to DB Values

 Motivation:
 When a record is brought in from the database, each value returned from a database column must be
mapped to an attribute or a set of attributes in the object. Similarly, when saving values back to the
database, an object’s attributes must some how be mapped to database column(s). Consider the Patient
example. A Patient could have the patient’s name and sex associated with it. This could be read in
from a patient table in the database. Also, Patient’s could have an address associated with them.
These values might have foreign keys that reference other objects such as Address . Thus when reading
in a Patient object, the attribute mapping would have to map the column holding the name and sex
values with the Patient’s name and sex attributes respectively. Also, an Address object needs to be
created and mapped to the Patient’s address attribute.

 Problem:
 Where and how does the developer describe the mappings between database values and attributes?

 Forces:
• Objects store values in attribute variables while databases store their values in columns.
• There is not always a one-to-one mapping from an object’s attributes to the columns in a database

table.
• Some objects require their values from multiple databases, multiple database tables and/or are

complex objects.
• Non object-oriented databases do not always represent hierarchies or object types very well.

 Solution:
For every domain object that needs to be persistent, write a method that maps the database values to the
object’s attributes and write a method that maps the values from the object back to the database. The
Persistent Layer will use the first method to take the returned values from the database and stored them in
the appropriate object attribute. Similarly, when the PersistentObject is being saved, the Persistent
Layer will use the second method for taking values from the object and putting them out to the database.
The PersistentObject maps data while it is generating the SQL code.

These methods take a returned row from the database and fill in the appropriate object attributes.
Sometimes a few columns may map to a single attribute. These methods must also take an object’s
attribute values and map them to the appropriate database columns during a database write routine. Usually
a single attribute maps to one or more database column but sometimes multiple attributes may map to a
single database column. In some cases, attributes may have to be populated from different databases on
different platforms. In this case, the aggregate class would load from the other database and return the
object to be assigned to the current attribute.

There are usually at least two sets of Attribute Mapping Methods. One set is used for reading values from
the database and the other set is used for writing values back to the database. While values are being
mapped to and from the database, Attribute Mapping Methods need to provide calls to the Type
Conversions.

Metadata could be used either with or without a Schema to define the attribute mappings. In this case, an
Interpreter would be used to generate the attribute mappings. A visual language could also be provided for

18

describing the mappings. This solution is usually harder to implement and maintain. However, once
implemented, it could be much easier for a programmer to map an object’s attributes.

When an attribute is being mapped to another domain object, Proxies are often used for lazy initialization.
Take the Patient example mentioned above. Since you may seldom need the address information for a
patient, a proxy could be initialized for the address attribute. Then, whenever the patient’s address
needs to be accessed, the patient’s address information can be read in from the database and an Address
object can be created. In this case, the address attribute would also be updated to point to the newly
created Address object.

Example Implementation:
Once the data has been retrieved from the database it needs to be moved from the returned row into the
objects attributes. The returned row (in VisualAge) is a dictionary so it can be accessed by:

aRow at: keyValue.

Next, you would assign the value to the attribute:

attribute := (aRow at: keyValue).

Or, if the attribute is to contain an instance of another class:

attribute := ((Class new) owningObject:
 objectIdentifier; youself) load.

This will load an instance of the Address class from the database and assign it to the attribute. If the
database containing the address information was in a different database or on a different platform, the
Address class would load from the alternate database.

Below are the Attribute Mapping Methods from the Name class that shows how to map from the database
row to the object and apply Type Conversion in the process. The SQL Code Description pattern shows how
to map from the object back to the database.

Protocol for Map Attributes (instance)

These methods accept aRow (a single record) from the PersistentObject>>read: method. Each
row from the table is passed to a new instance (initialzed by the PersistentObject) and each element
from the row has Type Conversion applied as necessary before assignment to the attribute takes place. In
the case of a complex object, the attribute is assigned the value returned from sending a
PersistentObject>>load: (PersistentObject>>loadAllLike: if a collection is needed)
to the attribute class type with an instance for the SQL Code Description to provide the conditioned SQL
statement. For example, in the Name class, you would send the loadAllLike: message to the
Address class with the objectIdentifier as a parameter. This would load all Addresses that
have the owningObject identitifier the same as the Name class.

initialize: aRow (Name class)

"Initializes an instance from the database row."

objectIdentifier := self typeConverter convertToNumber:
 (aRow at: 'ID_OBJ').

owningObject := aRow at: 'ID_OBJ_OWN'.
isPersisted := true.
first := self typeConverter convertToUpperString: (aRow at:

'NAM_FST').
middle := self typeConverter convertToUpperString: (aRow

at: 'NAM_MID').
last := self typeConverter convertToUpperString: (aRow at:

'NAM_LST').
email := self typeConverter convertToString: (aRow at:

'EML_ADR').

19

organization := self typeConverter convertToUpperString:
(aRow at: 'ORG_NAM').

phone := self typeConverter convertToNumber: (aRow at:
'NUM_PHO').

address := ((Address new)
owningObject: objectIdentifier;yourself) load

Consequences:
There is a single point of change when the DB structures changes.

The attribute name and the table column name do not have to be the same.

Developers new to the project can easily cross match table column names to attribute names.

This attribute mapping method needs to be maintained as the database and domain object evolves.

 Related or Interacting Patterns:
• Type Conversion needs to be done while mapping values to and from the database.
• When a call to the Persistence Layer is made to read or write values to the database, SQL code

will be generated which will need to have Attribute Mapping Methods.
• Metadata could be used with a Schema for defining the attribute mappings. This would probably

use an Interpreter to generate the actual mappings.

 Known Uses:
• Illinois Department of Public Health TOTS and NewBorn Screening projects.
• ParcPlace’s VisualWorks Smalltalk [PP 95] uses Attribute Mapping Methods in order define how

to perform attributes map to and from data objects. VisualAge Smalltalk [] also uses Attribute
Mapping Methods with their AbtDbm* applications.

• The ResultSet class in JDBC is a row and methods such as getInt(), getString(),
getDate() are those work as attribute mappings and type conversion for getters. For mapping
back to the database in JDBC, the PreparedStatement class builds up the SQL statement
with ‘?” as placeholders for parameters. These are set with setInt(), setString(),
setDate() and so forth.

• GemStone GemConnect maps attributes from database columns to object attributes.

20

Type Conversion

Also Known As:
Data conversion
Type translation

Motivation:
The values in a database do not always map directly into object types. For example, a boolean value may
be saved as a “T” or “F” in a database. In the Patient example, the sex could be stored as an attribute in
which there is a class called Sex, which has certain behavior associated with male instances and different
behavior with female instances. The database might store the values as “M” and “F”. When the values are
read in from the database, the “M” would need to be converted to a male instance of the Sex class and the
“F” would need to be converted to a female instance of the Sex class. Type Conversion allows for object
values to be converted to and from database values.

Problem:
How do we take objects that may not have a database type and allow for them to map to a database type
and vice-versa?

Forces:
• Values represented in a database may not map to the desired object type.
• There is an impedance mismatch from object types to database types.
• Values used in an application may be edited and stored in a database from many other

applications.
• Object attributes and database column values could all be stored as strings or numbers, thus

minimizing the impedance mismatch.

Solution:
Have all values convert their respective types through a Type Conversion object. This object knows how to
handle nils and other mappings of objects to and from database values. When objects are persisted from
large multi-application database the data formats can vary. This pattern ensures the data retrieved from the
database is appropriate for the object.

It is important that we ensure the data read from the database will work with our object. It is also important
that the data written to the database will comply with the database’s rules and maintain data integrity.

Each object attribute is passed through the appropriate Type Converter to apply the data rules necessary for
proper application or DBM use. Applying the data rules at the domain level is much more efficient that at
the interface level. This is usually because all domain objects will follow a common set of Type
Conversions.

When considering that some legacy databases do not understand the concept of nil (NULL), they could
actually save a blank string for a “No Data” condition. When the value is read back it would result in an
empty string which could mean “Blank Data” to the application. It is dependent upon the database and the
application to what rules are defined.

This Type Conversion can be done directly in the mapping code. The data types will be converted to
appropriate object types or vice-versa. Quite often, a common set of conversions can be abstracted out.
For example, a Boolean object might map to ‘T’ or ‘F’ in the database, Timestamps could map to
Strings , and NULLS might map to an empty string. When you have these types of common
conversions, then an appropriate routine can be called to preprocess the types for conversion. These
conversion routines could become part of a Strategy [GHJV 95].

21

Implementations can vary dependent on your needs. The example that follows places all the conversion
methods in a single object. This keeps the methods localized to one area and allows the conversion object
to be dynamically switched, if necessary. Thus, you could have a Strategy that applies different conversion
algorithms for different databases. If the converters are not needed by the rest of the application this is a
“cleaner” approach.

Another option would be to extend each base class affected or used and place the methods there. Each
object would know how to convert itself into a format necessary for the database. If you were using
multiple databases then each of these methods would have to accommodate the differences in the formats.

Yet another approach would be to put all of your conversion routines in PersistentObject thus
isolating the place where you would have to change the code if you need to map to a new database or the
conversion evolves. These methods would then be available to any object that inherits from
PersistentObject. A similar situation occurs, as in the previous option, when you have multiple
databases.

All of the above mentioned solutions will work regardless of the persistence mechanism chosen.

Example Implementation:
When you are populating the attributes from a database where you have the database row values in a
dictionary you could simply use:

 attribute := (aRow at: key).

This will accomplish the task, however, if the database value is not guaranteed to meet the object’s need
then your code might fail during use of the attribute. When you apply Type Conversion, such as:

attribute := self typeConverter convertToUpperString:
 (aRow at: key).

The attribute value will be what the application needs. This will first retrieve the class responsible for
conversion and then pass the database value to the method to ensure the attribute is populated with an upper
case string.

A similar scenario occurs when preparing the object’s attribute values to be stored in a database. You
could simply place the attribute value on a stream.

nextPutAll: (attribute) printString.

This also accomplished the task, however, if (self first) happens to be an object that does not understand
printString then the code will fail. Should the database require NULL for nil or an empty string for
nil then every statement would a conditional statement. When you apply Type Conversion, such as:

nextPutAll: (self typeConverter prepForSql: (attribute
 asUppercase)).

The attribute will be converted to the proper format. As above, the class responsible for conversion will be
retrieved and the attribute will be converted.

Type Conversion methods are accessed through the PersistentObject as the values are either being
prepared for being saved or when the returned database rows are being mapped to an object’s attributes.
The initialize: and insertRowSql : methods (in each domain object) show examples of Type
Conversion.

Protocol for Type Conversion PersistentObject (instance)

This method determines which class is responsible for converting (translating) type between table types and
object types. This method could be expanded to determine, at run time, which database is in use or which
class to use for the conversions.

22

typeConverter
"Returns the class responsible for Type Conversion”

^TypeConverter

Protocol for Type Conversion TypeConverter (class)

These methods provide the PersistentObject with consistently formatted data values. When
converting from the object to the database (TypeConverter>>prepForSql:), the type can be
determined and formatted based on what the database requires. When converting values from the database
to an object, the type in the database may not be the type the object/application wants. In the Mapping
Attributes Methods, each attribute is Type Converted to ensure the data values are correct. In some cases a
default value is provided for when the database does not contain data. When several applications use the
same database for diverse implementations, the data rules may not be able to be enforced at the database
level.

convertToBooleanFalse: aString

"Returns a boolean from a string character. False is the default
 value."

^'t' = aString asString trimBlanks asLowercase

convertToString: aString

"Returns a string from a db string or character. Default returns
a new string."

^aString asString trimBlanks

convertToNumber: aNumber

"Returns a number from a db number. Default returns zero."

^aNumber isNumber ifTrue: [aNumber asInteger] ifFalse: [0]

This method converts an object into the correct database format to be placed on a stream. The object is
tested for what type it is and the appropriate format is returned to be placed on the stream for the SQL
Code. This provides the Persistence Layer a common format for data types. The default date format in this
example is assumed to be (Locale current lcTime dFmt: '%m/%d/%Y'). If you do not want to use a full
date format the date formating should be changed to match your database. Note: These formating types
are supported for IBM DB2 UDB V5.0.

prepForSql: anObject

“Returns anObject in an appropriate format for a stream.”

anObject isNil ifTrue: [^'NULL'].
anObject isString

ifTrue:
[anObject isEmpty

ifTrue: [^'NULL']
ifFalse: [^anObject trimBlanks printString]].

anObject isNumber ifTrue: [^anObject printString].
anObject abtCanBeDate ifTrue: [^anObject printString

 printString].
anObject abtCanBeBoolean
 ifTrue: [anObject ifTrue: [^'T' printString]

 ifFalse: [^'F' printString]].

23

anObject abtCanBeTime
ifTrue:

[^self databaseConnection databaseMgr
sQLStringForTime: anObject].

(anObject isKindOf: PPLPersistentObject)
ifTrue:

[anObject objectIdentifier isNil
ifTrue: [^'NULL']
ifFalse: [^anObject objectIdentifier

 printString]]

Consequences:
Can help insure data consistency.

Object types can vary regardless of the database types.

Default values can be assigned for empty values from the database.

Prevents “Undefined object does not understand” errors.

Provides increased RMA for the applications. (Reliability, Maintainability, and Accessibility).

It can be time consuming to convert types, especially when reading in many values from a database.

 Related or Interacting Patterns:
• Strategy [GHJV 95] could be used to implement this pattern.
• Attribute Mapping Methods calls Type Conversion while the SQL code is being built.
• SQL Code Description might embed calls for Type Conversion.

 Known Uses:
• Illinois Department of Public Health TOTS and NewBorn Screening projects.
• ObjectShare’s VisualWorks Smalltalk [OS 95] uses Type Conversion in convert to and from

database and object types. VisualAge for Smalltalk also uses Type Conversion with their
AbtDbm* applications.

• GemStone GemConnect converts between database types and object types.
• TopLink also provides for Type Conversion.

24

 Change Manager

Also Known As:
 HasChanged
 IsDirty
 Laundry List
 Object Manager

 Motivation:
 The usual way to use a patient management system is to call up the record for the patient and add a record
for the latest visit. But sometimes the patient's address has changed. The system should only write back
the patient's address if it has actually changed.

 One way to implement this is to provide a separate screen for changing the address with a separate update
button that causes the address to be written back. This is awkward and requires a lot of code maintenance.
It would be better to let the user of the patient management system edit the address when necessary and for
the system to only write back changes to the address object and other values of a patient when the user
deciedes.

In general, a Persistence Layer should keep track of all PersistentObjects that have changed state,
and should make sure that they are all written back to the database.

 Problem:
 How to tell that an object has changed and needs to be saved to the database? It is important to prevent
unnecessary access to the database and to ensure that the user knows when some values has changed and
not saved before they exit the program?

 Forces:
• Most objects that are read never get modified.
• It is a waste of time to save unchanged objects.
• Developers often forget to save an object when it changes. Users are worse.
• It a write to the database is made every time an object changes, then another write or rollback

would be required for cancellation requests by the user.
• Complex objects might only have one of their components changed, thus not requiring a complete

write of all values to the database.
• Writing back objects that have not changed can make it hard to audit who actually last changed the

object.

 Solution:
 Set up a Change Manager that keeps track of any PersistentObject that changes one of its persistent
attributes. This Change Manager will be used whenever any requests to saving objects is needed.

 One way to do this is by inheriting from a PersistentObject , which has a dirty bit that gets set
whenever one of the attributes that maps to the database changes. This dirty bit is usually an instance
variable with a boolean value which indicates when an objects values have changed. When the boolean
value is set, the PersistentObject will save the new values to the database when a request to save it
is invoked. If the boolean value is not set, the PersistentObject will bypass the write to the
database.

 Laundry List is a pattern that can also be used for persisting data. This works by storing the changes in a
laundry basket. Then you can control what you want to do with them. Another thing it to keep track of
which attributes have changed and then only save back the dirty attributes. Thus if one application changes

25

a few of the columns of the tables and another application changes the others, you can be sure to only
update what you are changing. It can also help with concurrent applications changing the table.

 Dependent upon the class hierarchy the implementation can vary. One solution is to modify the setter
methods to either set the flag whenever an object’s values are changed (as in the example) or by adding the
object to the laundry list of changed objects. This is a very simple but effective solution. Another
alternative would be to use something similar to method wrappers [Brant, Foote, Johnson, & Roberts 1998]
for doing the same during any set of the method. Yet another alternative would be to initialize persistent
attributes as a dependency mechanism. Once an attribute value changes, either set the dirty bit or add the
object to the laundry list and then remove the dependency; once dirty, always dirty. Another way to
implement this could be by using Metadata that describes all persistent attributes. Whenever the state of
any object changes it can use the Metadata to decide if the object has become dirty or not. Method
wrappers could use this Metadata to provide a similar service.

 Data access is generally very expensive and should be used sparingly. By being able to identify that an
object does or does not need to be written to the database can increase performance drastically. In addition
to performance considerations, the user interface can benefit by being able to prompt the user to save
before exiting. This ability adds to the user accepting your application by knowing that if they forget to
save the changed information, the system will prompt them to save it. The user can come to the conclusion
that the application is useless very quickly if they have to reenter the same data more than once.

 Another feature that the Change Manager can provide is that of remembering original state or changed state
of an object. This could be implemented by using a Memento [GHJV 95]. If the user of your system needs
to be able to revert back to original state, the Change Manager could keep around the original values so that
an undo call could be invoked. Also, you might want to provide your system with the ability to have
multiple undos.

 If you have an object with one of it attributes as an ordered collection of other objects, (in the example the
Name attribute address could be an OrderedCollection of Addresses) and you remove one of the
instances of Address , how does the database get notified to delete the row? One way is to set key values
of the instance to nil . Then the domain object provides an isValid method that will then delete the
row. This works but the application programmer has to handle all the nil instances with specialized code.
A better approach is to use a Deletion Manger that the application programmer will set the instance to when
the user presses the delete button (or other mechanism). Because each object knows how to delete itself,
the instance is removed from the collection and from the database. The Deletion Manager is a Singleton
[GHJV 95] that holds on to the deleted instances as until a save or cancel is issues by the user.

Example Implementation:
The example will show how an accessor method for the first name attribute in the Name class sets the dirty
bit whenever the attributes changes its value. The accessor is the default generated by VisualAge with the
addition of the makeDirty call, which sets the inherited attribute of isChanged to be true.

first: aString

"Save the value of first."

self makeDirty.
first := aString.
self signalEvent: #first

 with: aString.

Protocol for Change Manager PersistentObject (instance)

These methods provide the Persistence Layer with the ability to change the dirty flag. This saves the
Persistence Layer from having to write data to the database that has not changed. It also provides the GUI
programmer a way to see test the object in order to provide the user a message to save their data or not.

26

makeDirty

"Indicates an object needs to be saved to the db. This method
can be called from the ‘setter’ method as in the example above.”

isChanged:=true.

makeClean
"Indicates that the object does not need to be saved to the db or

 that no changes have affected the object"

isChanged:=false.

Consequences:
The user will more readily accept the application.

Better performance by not writing object that has not changed back to the database.

When merging data between databases the flag can be set so the record will be inserted to the new database
as necessary.

 Related or Interacting Patterns:
• State [GHJV 95] is an alternative to using boolean flags.
• Mementos could be used for undo support by the Change Manager.
• Launcry Lists can keep track of all changed objects.
• A Deletion Manager could be used for assisting with the deletion of parts of a complex object.
• ObjectManager [Keller 98-2] is a very similar pattern.

 Known Uses:
• Operating Systems uses the dirty bit for virtual memory.
• Most DBMS’s use a dirty bit with cache [Keller 98-1].
• Caches are common to using dirty bits.
• Illinois Department of Public Health TOTS and NewBorn Screening projects.
• In the GemStone OODBMS a Change Manager is used for keeping track of when an object has

changed thus knowing when the object needs to be saved back to the server.
• ObjectShare’s VisualWorks Smalltalk [OS 95] uses a Change Manager in order to designate when

a persistent object has changed its values. VisualAge Smalltalk also uses a Change Manager with
their AbtDbm* applications. VisualAge provides GUI builders with graphical connections to
provide a persistence mechanism.

27

Transaction Manager

Also Known As:
Unit of Work
Transaction Object

Motivation:
When saving objects, it is important to allow for objects to be stored in such a way that if some values are
not stored properly, previously stored objects can be rolled back. In the patient example, you not only want
to store the attributes of the Patient object, but you also want to store any changes to the address
objects that it contains. If trying to save any one of the Patient’s Address objects fails, you want to
rollback any other writes to the database that was made for saving the patient information. A Transaction
Manager provides support for beginning transactions, committing transactions, and rolling back
transactions.

Problem:
How do we group together the saving of multiple objects in such a way that if the saving of one object fails,
then we want the other objects to not be saved?

Forces:
• Objects are usually related in such a manner that if one object doesn’t save correctly, then you do

not want it’s related object to save.
• There is an impedance mismatch of knowing which messages are transactions and which are not.
• Every write to the database could be setup as an individual transaction.
• Complex objects could build up a complicated SQL statement that takes care of transactions as a

single unit of work.

Solution:
Build a Transaction Manager that works similar to other transactions managers. This manager allows for
the beginning of transactions, the ending of transactions, the committing of transactions, and the rollback
of transactions. The transaction manager usually maps to the RDBMS’s Transaction Manager if it provides
one. All modern day databases have them built in so it is best to use what is provided.

It might be preferable to cache values for performance reasons. When this is the case, it is important for
part of the Transaction Manager to include a way to commit and rollback cached values. If the data store
that you are mapping to doesn’t include a Transaction Manager then it is necessary for original state of
objects to be saved at the beginnings of transactions so that if a rollback is requested, the original values
can be written out to the data store.

Example Implementation:
Without transaction management you could use something like:

anObject save.

This would commit each SQL statement as it is sent to the database. If there was any kind of failure in the
middle of saving anObject you may end up with half anObject in the database, especially if
anObject is a complex object.

When you apply transaction management you basically wrap up all the SQL statements built for
anObject and tell the database to either save the bundle or forget the whole thing. This could look
something like:

28

beginTransaction
anObject save
anotherObject save
endTransaction

This would ensure that both save commands executed successfully prior to committing the changes to the
database. When your object are complex object where each object knows how to save its aggregate objects
you want to make sure have a complete object written to the database.

The following code is from excerpts from the PersistentObject . These show the wrapper effect for
implementing transaction management. The code (self class beginTranaction) tells the
database to start and stop a transaction will be dependant on which database you are using and what
language you are developing in. You may need to extend transactions to handle your specific
implementation. Also, if the database you are saving to (maybe a flat file) doesn’t support transactions,
you are going to have to develop a complete Transaction Manager to support the needs of your users. This
example wraps all saves and deletes to an object with a beginTransaction and an
endTransaction . The class methods make the call to the database connection class. This is where
VisualAge has provided the support for committing and rolling back transactions to its supported databases.

Protocol for Public Interface PersistentObject (instance)

save

self class beginTransaction.
self saveAsTransaction.
self class endTransaction.

delete

self class beginTransaction.
self deleteAsTransaction.
self class endTransaction.

Protocol for Public Interface PersistentObject (class)

beginTransaction

self databaseConnection beginUnitOfWorkIfError:
 [self databaseConnection rollbackUnitOfWork]

endTransaction

self databaseConnection commitUnitOfWork

rollBackTransaction

self databaseConnection rollbackUnitOfWork

Consequences:
Complex objects are save completely or not at all.

Referential integrity is maintained no half objects.

All other applications writing to the database have to use the Transaction Manager. You may have to add
checks to see if anyone else has changed the database values that you are saving.

Unless there is support built in from the database, writing a complete transaction manager is hard.

29

 Related or Interacting Patterns:
• Transaction Manager is similar to Transactions and Accounts [Johnson] in that you want the

entire job done.
• Transaction Manager is very similar to a Transaction Object [Keller 98-2]. Transaction Objects

encapsulate transactions by building objects out of them. These Transaction Objects provide a
operations for begin, commit, and rollback.

 Known Uses:
• Most all database type applications provide a similar function or definition for a unit of work.
• Illinois Department of Public Health TOTS and NewBorn Screening projects.
• VisualWorks provides a transaction manager in their ObjectLens.
• VisualAge also provides support for transactions through the ABTDbm* classes.
• GemStone GemConnect provides transaction management for database objects.

30

 Connection Manager

Also Known As:
 Current Connection
 Database Session

 Motivation:
 Whenever a persisted object is being read in or written out to the database, a connection to the database
must be made. The information typically needed during a database transaction is the name of the database,
the name of the user, and the user’s password. This information could be queried from the user each time
access is made. This would make for a frustrated user and most users will not know the database name or
alias. You could also capture the username and password on startup and build up the connection
information and pass it around throughout the code. This makes for a lot of extra information being passed
around when it is not needed. The best way is to build a Connection Manager that stores this global
information and is used whenever access to the database is needed.

 Problem:
 How does the persistent manager keep track of the database to connect to and what user is currently
connected?

 Forces:
• All database connections need to have access to the where the connection is being made

somewhere.
• Referencing global variables can keep code clean and straightforward.
• Maintaining the current database session rather than creating a new one for every transaction is

more efficient and can make debugging easier.
• Providing a single place to maintain necessary connection information and operations can make

code easier to understand and maintain.

 Solution:
 Create a Connection Manager object, which holds all of the values that need to be used for the database
connection. The common values are usually the database session, the current user logged into the system,
and any other global information used for auditing, transactions, and the like.

 When an application needs to keep one copy of some information around, it could use the Singleton pattern
[GHJV 95] or a single active instance as described in the Design Patterns Smalltalk Companion [MORE
HERE 98] and a Session [Yoder & Barcalow 97]. The Singleton is usually stored in a single global
location, such as a class variable or as a class itself. Unfortunately, this pattern sometimes breaks down
when an application is multi-threaded, multi-user, or distributed. In some situations a true Singleton may
be needed. In other situations, each thread or each distributed process can be viewed as an independent
application, each needing its own private Singleton. But when the applications share a common global
environment, the single global location cannot be shared. A mechanism is needed to allow multiple
Singletons, one for each application. Therefore, the Connection Manager is the Singleton that manages any
and all database Sessions.

 The Connection Manager is what the Persistence Layer interacts with to get the currently needed database
connection. The Connection Manager also interacts with the Table Manager to get any needed database
table names for any connection that is being made. Thus, once again, a Strategy [GHJV 95] could be used
for choosing the appropriate database and table mappings. Imagine you had the possibilities to save your
values out to five databases and you chose the one with the least activity for speed. The values could all
synch up with a primary database in a batch process. This distributed database system could be accessed
through a Strategy thus insuring users a way to get good performance.

31

Example Implementation:
The Connection Manager establishes the connection to the database based on information from the Table
Manager. When the Persistence Layer requests a connection the Connection Manager uses the Database
Components to provide an interface to the database via ODBC, CLI, or what ever else is available. Should
the connection be unavailable at the time, or drop in the middle, the Connection Manager has provided the
error block to execute and the Error Collector records the error and recovers if possible.

In a nut shell, when a domain object says:

self databaseConnection

the connection is returned from the Connection Manager. The type of connection and which connection (if
multiple connections are used) is determined by the Connection Manager.

In our example, either a local or remote database is chosen. We have revealed how you would interact with
the ABTDbm* classes from VisualAge to get the needed connection for the local database.

Protocol for Public Interface ConnectionManager (class)

databaseConnection
"Checks the local variable to see which connection to make or

 test for and returns the connection."

^self getLocal
ifTrue: [self localConnection]
ifFalse: [self remoteConnection]

localConnection
"Answer a connection to the PPLPersistentObject. The alias name

 is checked to see if a connection is already open, if not one is
 created with error blocks to trap errors that occur during
 connection and while the connection is open."

| connection |
(connection :=
 AbtDbmSystem activeDatabaseConnectionWithAlias: 'Example') isNil

ifTrue:
[connection :=
 ((AbtDatabaseConnectionSpec

forDbmClass: #AbtOdbcDatabaseManager
databaseName: 'Example')
promptEnabled: false;
connectUsingAlias: 'Example'
logonSpec: (AbtDatabaseLogonSpec

id: ''
password: ''
server: '')

ifError: [:error | PPLErrorCollector dbConnectionError])
 autoCommit: false;
yourself].

32

"If the environment is development no error block is used so the
 debugger will appear. During runtime the error block is set to
 invoke the error collector. This is for the manager and will
 trap all dbm type errors. The error block above is specific to
 the connection."

connection databaseMgr
errorBlock: (System startUpClass isRuntime
ifTrue: [[:error | PPLErrorCollector dbmError: error]]
ifFalse: [nil]).

^connection

Consequences:
The Connecion Manager provides the connection information for all persisted objects.

This makes for a single place of change when the connection information changes.

This provides for a way to support multiple connections which can be used for an object to load from the
database or when you want to distribute your database load.

 Related or Interacting Patterns:
• Connection Manager is an alternative to a Singleton [GHJV 95] in a multi-threaded, multi-user, or

distributed environment.
• Connection Manager is similar to a Session in that the Connection Manager maintains the Session

to the database and the needed global information related to the database connection.
• Connection Manager can use a Strategy for choosing the current connection.

 Known Uses:
• For VisualWorks, the Lens framework for Oracle and GemBuilder for GemStone have

OracleSession and GbsSession classes respectively. Each keeps information such as the
transaction state and the database connection. The Connection Manager is then referenced by any
object within the same database context.

• The Caterpillar/NCSA Financial Model Framework has a FMState class [Yoder], which serves
as a Session and maintains the Connection Manager.

• VisualAge has AbtDbmSystem , which maintains track of the active connection. Connection
Manager makes calls to the VA classes that in turn control the physical connections.

• Illinois Department of Public Health TOTS and NewBorn Screening projects.

33

Table Manager

Also Known As:
Data Dictionary
Table Mappings

Motivation:
The persistent storage that objects map to may evolve over time, or there may be multiple stores for
objects. A Table Manager describes the mappings of databases to tables and columns, thus keeping the
details away from the developer. This allows for changes to the database naming schema to not affect the
application developer.

Problem:
How does an object know what table and columns name(s) to use especially when multiple tables are
needed to save the object? This magnitude of the problem increases when multiple databases are used.

Forces:
• Mapping objects to relational databases ultimately requires mapping values to database tables.
• Developers want to be able to quickly change the table names as an application grows and

changes.
• Mapping objects from identical tables or views with different names at different locations.
• Ability to switch from one database to another easily.
• Hard coding table names and column names where SQL code is described is very straightforward.

Solution:
Provide a place to retrieve the necessary table and column name(s) needed for objects to persist
themselves. When an object is being stored, have it look up its table names in a Table Manager. By having
the string that defines the name in only one-place, modifications and testing the changes becomes very
quick and efficient.

This pattern uses a Singleton [GHJV 95] to return to the domain object the table or column name(s) it
needs. The instance contains dictionaries to store the names and when the object sends a message
requesting the name, the instance methods will check with the Connection Manager to decide which
dictionary to address. This provides the ability for the object to send the same message regardless of which
database it must access.

When retrieving data from multiple sources, this pattern provides the ability to dynamically change which
database or table is accessed. This flexibility alleviates the necessity to write the same SQL Code
Description over and over for the same tables in multiple databases and still accesses it sequentially.

The Table Manager in a sense holds on to Metadata for the table mappings. This Metadata is used
whenever a table name is needed. It could be used for dynamically generating database queries. Basically,
a Schema describing the mappings is used whenever access to the database is needed.

Example Implementation:
The Table Manager stores the table names in dictionaries to provide to the SQL Code when requested.
When the Table Manger is initialized the dictionaries are initialized with the table names. Then according
to the Connection Manager the appropriate dictionary is accessed and the table name is returned.

34

When a domain object says:

self class table,

the TableManager will return the name of the table for the class.

Consequences:
One advantage for using Table Manager is that when a table name changes there is only one place to make
the change in the code.

Another advantage, multiple databases can be accesses with the same table or view having a different
name.

Writing a table manager involves creating a way to interpret the table and column mappings isn’t always
easy to develop or maintain.

 Related or Interacting Patterns:
• The Persistence Layer and the Connection Manager call the Table Manager whenever database

access is needed.
• The SQL Code Description will use the Table Manager in order to isolate the developer from

changes to the database.
• The Table Manager is a Singleton.
• The Table Manager is really just a way of using Metadata to describe the Schema of the database.
• The Table Manager could use an Interpreter for complicated mappings or for dynamic systems

using Metadata.

 Known Uses:
• Illinois Department of Public Health TOTS and NewBorn Screening projects.
• Data Dictionaries are used in many database systems.
• VisualWorks ObjectLens uses a Spec [Foote & Yoder 98] in conjunction with a Schema to

provide the table mappings.

35

Putting It All Together
Now that you have seen all of the patterns, you might be asking, “how do I fit it all together?” All of these
patterns collaborate together to provide a mechanism for mapping persistent objects to a database. Figure 2
shows how the patterns interact with one another. The Persistence Layer provides the standard interface
for the CRUD (create, read, update, and delete) operations needed to persist domain objects. The
Persistence Layer builds the calls to the database by using the SQL Code Description provided by the
domain objects. During the generation of the SQL code, the Persistence Layer interacts with the Table
Manager to get the correct database table and column names. When values are being returned from the
database or written back to the database, attributes values must be mapped to database column names and
vice-versa. This is done with Attribute Mapping Methods. Attribute Mapping Methods do some Type
Conversions while the SQL code is being generated. Attribute Mappings and Type Conversions can also
happen while the Persistence Layer instantiates a new object. The Persistence Layer saves objects to the
database through the Connection Manager only when an object’s value has changed. This change is
managed by the Change Manager. The Connection Manager could interact with the Table Manager to
decide on which database to use. The Persistence Layer provides access to a Transaction Manager
whenever transaction processing is needed.

A class scenario graph (as seen in Figure 3) shows how the objects we used for our example code interact
while loading values in from the database. A Name class can be asked to load . This message will be
forwarded to its superclass, which is PersistentObject . This in return will get a connection from the
ConnectionManager . The PersistentObject will then generate the SQL. In order to do this it
will have to ask Name for the SQL and get any table name mappings from the TableManager . Once the
SQL has been generated, a call to the Database Component will be made to get the resulting set of
values. Then, for each returned row from the database, a new Name object will be created and for each
attribute for that row, it will be assigned to the specific object attribute. During the mapping of the

Connection Manager

Table ManagerPersistence LayerType Conversion

SQL Code

Attribute Mapping
Methods

uses maps values
with provides for

transactions with

creates

might use

manages
changes with

connects with

generates
keys with

CRUD

provides

Change Manager

OID Manager

Transaction Manager

gets table names
with

gets table names
with

Figure 2 - Pattern Interaction Diagram

36

database value to the object attribute, the database types will be converted to the corresponding object type.
Once this is complete, PersistentObject will return a collection of all Names that were created.

Acknowledgments
We are grateful to the members of Professor Johnson's Patterns seminar: John Brant, Ian Chai, Brian Foote,
Peter Hatch, Lewis Muir, Dragos Manolescu, and Aiji Nabika and Don Roberts; designers of the
infrastructure projects at Caterpillar: Rhett Barnes, Anjali Sharma, Daniel Long, and Imad Zorob; analysts
from the Illinois Department of Public Health: Rick Kirchgesner, Twyla Hulskotter, Sree Nair, John Loftus,
Keith Hogan, and Sandy Sanders; our shepherd, Wolfgang Keller; our program committee member Bob
Hamner; who reviewed earlier drafts and provided valuable feedback.

Persistence

getConnection

getTableMappings

Database
Components

Name

 load
aConnection

generateSQL
getSQL

SQLString

Table Mappings

getDatabaseValues
ResultingSetofDBValues

Map Attribues
new

aName

aName

convertType
convertedType

Manager
Connection

Converter
Type

Manager
Table

Figure 3 - Class Interaction Diagram

37

References

[Amber 97] Scott W. Amber. Mapping Object to Relational Databases. URL:
http:// www.AmbySoft.com/mappingObjects.pdf

[Beck 97] Kent Beck. SMALLTALK Best Practice Patterns, Prentice Hall PTR, Upper Saddle
River, NJ, 1997.

[Brant &
Yoder 96]

John Brant and Joseph Yoder. "Reports," Collected papers from the PLoP '96 and
EuroPLoP '96 Conference, Technical Report #wucs-97-07, Dept. of Computer Science,
Washington University Department of Computer Science, February 1997. URL:
http://www.cs.wustl.edu/~schmidt/PLoP-96/yoder.ps.gz.

[BMRSS 96] Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad, Michael
Stal. Pattern-Oriented Software Architecture: A System of Patterns, John Wiley and
Sons Ltd., Chichester, UK, 1996.

[Foote &
Yoder 96]

Brian Foote & Joseph Yoder. “Evolution, Architecture, and Metamorphosis,” Pattern
Languages of Program Design 2, John M. Vlissides, James O. Coplien, and Norman L.
Kerth, eds., Addison-Wesley, Reading, MA., 1996.

[Brown &
Whitenack 96]

Kyle Brown & Bruce Whitenack. “Crossing Chasms: A Pattern Language for Object-
RDBMS Integration,” Pattern Languages of Program Design 2, John M. Vlissides,
James O. Coplien, and Norman L. Kerth, eds., Addison-Wesley, Reading, MA., 1996.

[Foote &
Yoder 98]

Brian Foote & Joseph Yoder. “Metadata,” Submitted to PLoP ’98. URL: http://www-
cat.ncsa.uiuc.edu/~yoder/Research/metadata.

[Fowler 97-1] Martin Fowler. Analysis Patterns: Reusable Object Models, Addison Wesley, 1997.

[Fowler 97-2] Martin Fowler. Dealing with Roles, Proceedings of PLoP ’97, Monticello, IL, October
1997. URL: http://www.aw.com/cp/roles2-1.html.

[GHJV 95] Eric Gamma, Richard Helm, Ralph Johnson, John Vlissides. Design Patterns:
Elements of Reusable Object-Oriented Software, Addison-Wesley, Reading, MA, 1995.

[GemStone 96] Gemstone Systems, Inc. GemBuilder for VisualWorks, Version 5. July 1996. URL:
http://www.gemstone.com/Products/gbs.htm.

[GemConn 96] Gemstone Systems, Inc. GemConnect for VisualWorks, Version 5. July 1996. URL:
http://www.gemstone.com/Products/gbs.htm.

[Keller 97-1] Wolfgang Keller: Mapping Objects to Tables: A Pattern Language, in “Proceedings of
the 1997 European Pattern Languages of Programming Conference,” Irrsee, Germany,
Siemens Technical Report 120/SW1/FB 1997.

[Keller 97-2] Wolfgang Keller, Jens Coldewey: Relational Database Access Layers: A Pattern
Language, in “Collected Papers from the PLoP’96 and EuroPLoP’96 Conferences”
Washington University, Department of Computer Science, Technical Report WUCS 97-
07, February 1997.

[Keller 98-1] Wolfgang Keller, Jens Coldewey: Accessing Relational Databases: A Pattern
Language, in Robert Martin, Dirk Riehle, Frank Buschmann (Eds.): Pattern Languages
of Program Design 3. Addison-Wesley 1998.

[Keller 98-2] Wolfgang Keller. “Object/Relational Access Layers - A Roadmap, Missing Links and
More Patterns,” Submitted to EPLoP ’98.

[OE 98] IBM, Corporation . Object Extender for VisualAge. 1998.
URL: http://www.software.ibm.com/ad/smalltalk/about/persfact.html.

38

[Orfali &
Harkey 98]

Robert Orfali & Dan Harkey. Client/Server Programming with Java and {CORBA},
2nd Edition, John Wiley & Sons, 1998.

[OS 95] ObjectShare, Inc. VisualWorks User’s Guide. 1998.
URL: http://www.objectshare.com/vw30abt.htm.

[RSBMZ 98] Dirk Riehle, Wolf Siberski, Dirk Baeumer, Daniel Megert, & Heinz Zuellighoven.
Serializer, in Robert Martin, Dirk Riehle, Frank Buschmann (Eds.): Pattern Languages
of Program Design 3. Addison-Wesley 1998.

[TopLink 97-1] The Object People Inc.: TOPLink Version 4.0 - A White Paper, 1997.
URL: http://www.objectpeople.com/.

[TopLink 97-2] The Object People Inc.: TOPLink Version 4.0 - User Manual, 1997.

[VA 98] IBM, Corporation . VisualAge Smalltalk. 1998.
URL: http://www.software.ibm.com/ad/smalltalk.

[Yoder &
Barcalow 97]

Joseph Yoder & Jeffrey Barcalow. "Security," Fourth Conference on Patterns
Languages of Programs (PLoP '97) Monticello, Illinois, September 1997. Technical
report #wucs-97-34, Dept. of Computer Science, Washington University Department of
Computer Science, September 1997.
URL: http://www-cat.ncsa.uiuc.edu/~yoder/papers/patterns/#YoderBarcalow1997.

[Yoder 97] Joseph Yoder. A Framework to Build Financial Models.
URL: http://www-cat.ncsa.uiuc.edu/~yoder/financial_framework.

[Yoder &
Wilson 98]

Joseph Yoder & Quince Wilson. A Framework for Persisting Objects to Relational
Databases. URL: http://www-cat.ncsa.uiuc.edu/~yoder/Research/objectmappings.

[You+ 95] Joseph Yoder & Quince Wilson. Mainstream Objects, An Analyusis.
URL: http://www-cat.ncsa.uiuc.edu/~yoder/Research/objectmappings.

