
1

A Pattern Language of Statecharts

Sherif M. Yacoub; Hany H. Ammar

Computer Science and Electrical Engineering Department

 West Virginia University, Morgantown

West Virginia, WV26506

INTRODUCTION

Finite state machines and their extension to statecharts are widely used in reactive systems. David Harel [Harel87]

has introduced statecharts as an extension of finite state machines to describe the complex behavior of an entity. The

formalized concepts of statecharts and their specifications have been used in many applications. Here, we show how

to solve recurring design problems in implementing statechart specification of an entity in an object-oriented

application. The statecharts' patterns represent solutions to frequent design problems that are commonly thought of

by system designers, which include how to deploy hierarchy, orthogonality, and broadcasting in a statechart's object

oriented design. Since statecharts are frequently applicable to software applications, thus it is helpful for the system

designer to directly exercise the statechart pattern language in his application design.

In the next section, a quick background of statechart is presented, then a pattern map summarizes the statechart

patterns and their relation to finite state machine patterns. The rest of the sections describe the patterns themselves.

BACKGROUND

David Harel [Harel87,Harel88] introduced statecharts to extend finite state machine for complex behavior and to

describe a visual formalism. Objectcharts were then presented by Derek Coleman et.al.[CHB92] as an extension to

describe how to use statecharts in object-oriented environment to describe the lifecycle of an object. Statecharts

were used by Bran Selic [Selic98] as an implementation mechanism for Recursive Control. Alternatively, we

perceive that statecharts are frequently used as a behavior description technique and using an object-oriented design

of statechart provides flexibility at the design level and facilitates the design maintainability. We explain how to

deploy reusable design solution to frequent statecharts concepts. It is recommended that readers unfamiliar with

statechart consult the visual formalism by David Harel [Harel87,Harel88] before proceeding in reading the

following patterns, a summary of statecharts principles and properties is presented in appendix (B).

PATTERNS SUMMARY

Several articles have been presented to document solutions of recurring design problems in implementing finite state

machines. Erich Gamma et.al.[GHJV95] documented the State as a basic pattern which delegates the state-

dependent behavior of an entity to separate state classes, and encapsulates the current state object in the entity's

interface. Paul Dyson and Bruce Andreson [DA98] extended and refined this basic pattern and presented several

©Copyright 1998, Sherif M. Yacoub, and Hany H. Ammar, Permission is granted to copy for

the PLoP-98 conference.

2

patterns to solve problems of assigning data members to state classes, exposing an entity's state, implementing a

default state, and alternatives in implementing state transition mechanisms.

Alexander Ran [Ran96] discussed a family of design patterns to implement an entity with complex behavior. He

discussed how possible design decisions form a tree for models of object oriented design of states (MOODS). The

tree considered decomposition of methods and abstract states, possible implementation of state transitions using

conditions or state transition methods, and described how single and multiple inheritance can be used to compose

the entity's state classes.

As a further extension to finite state machine patterns, a set of solutions to problems encountered in implementing

statecharts is presented. The Basic Statechart translates the elements of statechart specification into an object-

oriented design. Based on the statechart hierarchy principal, the Hierarchical Statechart extends the basic pattern to

support hierarchical states in which a superstate is composed of other states. Sometimes the entity's behavior is

described using orthogonal non-contradicting behaviors by means of the statechart AND-decomposition

specification; thus the Hierarchical Statechart is extended to Orthogonal Behavior to support handling events to

orthogonal states. Using an Orthogonal Behavior may lead to the possibility of broadcasting the effect of an event

in a state to another orthogonal state, Broadcasting extends the orthogonal behavior to support event broadcasting.

Finally, the statecharts' history specification is sometimes used in the superstates of the Hierarchical pattern;

History-State addresses the problem.

Figure 1 Patterns Map

State

State Transition Mechanism

FSM

Basic Statechart

Hierarchical
Statechart

Orthogonal
Behavior

Broadcasting

History State

Basic Statechart Specification

Using Hierarchical States

Superstates with history property
Exercise independent behavior

 at the same time

Broadcast events to orthogonal states

3

The turnstyle coin machine specification discussed by Robert Martin [Martin95] is extended one step at a time to

illustrate the various patterns usage. The example is selected for its illustrative capability to show how the pattern

language is used to solve several design problems. Appendix (A) summarizes the problem/solution pairs addressed

by the statechart pattern language.

BASIC STATECHART

Context

Your application contains an entity whose behavior depends on its state. The entity's state changes according to

events in the system and the state transitions are determined from the entity specification. You are using a statechart

to specify the entity's behavior.

Problem

How do you implement the statechart specification into design?

Motivations

A statechart is a specification language which enables you to construct a model and further check it. Some case tools

allow you to generate code from your specification. Using the generated code might not be useful because it is

usually bulky and not comprehensible for the designer. Thus you want to translate the specification into design that

allows you to have a higher level of maintenance and to embed this design into your overall application design.

Solution

Implement the statechart specification into object oriented design that encapsulates the state of the entity into

separate classes which correspond to the states defined in the specification. Distinguish the events, conditions,

actions, entry and exit procedures in each state class. Figure (2) shows the design solution structure in UML notation

[UML98].

Figure 2 The structure of the basic statechart pattern

Participants

Events

The "Events " class hosts declaration of events that the entity responds to. The response to each event may differ

according to the entity's current state. Events, that are handled differently by each state, are specified as virtual

Actions Events

State1

Conditions

entry ()
exit ()
Condition_Evaluation ()

State2

Conditions

entry ()
exit ()
Condition_Evaluation ()

Object_State
Interface

Object_State : AState*

Event_Dispatcher ()
UpdateState(New_State : AState*)

Object_Ref

AState

$ Object_Ref : Interface *
Num_States : int
NextStates : AState**
$ Conditions

set_object_state (New_State : AState*)
entry ()
exit ()

**

4

methods in the event class and each state class implements the adequate functionality required in response to that

particular event. Common events, that have the same implementation for the entity's states, can be implemented in

this base class and hence its implementation is sharable by all state classes (ex. Error Handlers).

Actions

The "Actions" class contains the output methods that can be executed by the entity and affect the application

environment. Action methods are invoked by the state classes' event methods implementation. Generally, action

methods are static methods inherited by the state classes. Private actions that are only meaningful in a particular

state class context are declared within that state class scope.

AState

It is the general abstract state class that groups the actions and events, and encapsulates the state-driven transition

[DA98] mechanism, the entity's state will be changed when the "set_object_state" method is invoked, this

provides a high-level state transition procedure that is invoked from any state class. The class possesses pointers to

self "NextStates " that allows each state class to point to next possible states to be used in state transitions. The

designer can also use an owner driven transition [DA98], in this case the pointers will not be needed in the Basic

Statechart. Multiple inheritance from "Actions" and "Events" is used to build the behavior of the states, these

classes can be merged with the “AState” class, however, it is preferred to separate them for large systems where

the number of events and actions are enormous and distinction between outputs and events makes the design more

comprehensive.

States

These are the actual implementation of the entity's states, they inherit from the general "AState" class and have

the following tasks:

x Implement event methods that the state responds to and invoke appropriate actions accordingly.

x Keep knowledge of possible upcoming states and perform the state transition by invoking the

"set_object_state" method.

x Host state specific conditions which can be implemented by:

a. Using a Boolean data member of a state class. For example if we want to implement whether a link is

established between two communicating entities, we can use a simple Boolean data member

"LinkEstablished ".

b. Using data member variables of a state class. For example, a simple conditions such as [Amount>=50] can be

implemented using a data member (Amount) and a condition check statement (If (Amount> =50){..}). The

condition check statement is implemented in the event method of the state class that needs to evaluate the

condition to take action accordingly, as shown latter in the coin insertion event in the coin machine.

c. Compound conditions, which are longer expressions and require more effort in evaluation, can also be

evaluated in the same manner. But if the expression is oftenly checked then to simplify the implementation you

would rather evaluate it in a Condition _Evaluation method that returns whether the expression is true or

false and hence save the effort of repeating the code in several other methods. For example, an "IsEmpty "

5

method of a queue class can be considered a condition evaluation method that checks whether a queue is empty

or not.

You can also use static data members in the "AState " class for conditions that are common to all state classes.

x The entry and exit specification of each state are implemented in its "entry " and "exit " methods, which are

called on transitions to enter or leave a state. The "UpdateState " method in the entity's interface can invoke

the exit method of the old state and the entry method of the new one.

Interface

The “Interface” class acts as an interface to the logic encapsulated in the statechart pattern. The interface holds

the current entity's state, the "Event_Dispatcher" method receives events from the application environment

and calls the state implementation of that event accordingly. The entity's state is updated when "UpdateState"

is invoked by the "set_object_state " method.

Example

Consider the example of the turnstyle coin machine in its simplest form. The specification is shown in the following

chart. The design participants are identified as follows:

Figure 3 The turnstyle coin machine specification

1. The state classes "Locked", "Unlocked" and "Broken"

2. The events "Coin" method for coin insertion, "Pass " method for person passage, a "Failed " method for

machine failure and a "Fixed " method after being fixed.

3. Actions; the specification shows that the following actions are taken by the state machine in various states:

"Unlock " method allows a person to pass, "Lock " prevents a person from passing, a method to display a

"Thankyou " message, another to give an alarm "Alarm ", display an out-of-order message "Outoforder ",

and "Inorder " method when the machine is repaired. The "Actions " class methods implements the various

actions.

4. Implement the entry and exit specification as methods in each state class. For example, the coin machine should

keep track of the amount of coins inserted. So, in the "Locked " state the machine keeps counting the amount

inserted using "Accumulate() " method. On entering the "Locked " state the machine displays a message

telling the user to insert coins to pass, thus on the "entry() " method the message is displayed. Each time the

machine leaves the lock state it should clear the amount of accumulated amount to zero, thus the "exit() "

method clears the amount.

5. Identify the conditions in each state class. For example, the condition "Amount>= CorrectAmount " is true

whenever the accumulated sum is greater than a predefined value (CorrectAmount). Thus, in the "Locked "

Locked

Entry : InsertCoin

On Coin : Accumulate

Exit : Amount=0

Broken Locked

Unlocked

Failed/OutofOrder

Coin[Amount>=CorrectAmount]/Unlock

Coin/ThankYou

Fixed/Inorder

Coin[Amount< CorrectAmount]

Pass/Lock

Failed/OutofOrder & Locked

6

state, we declare the attribute "Amount " to hold the accumulated sum and the condition checking is

implemented in the coin insertion event ("coin()" method). If the condition is true, the person is allowed to

pass; i.e. the Unlock action method is called and the transition to "UnLocked" state is activated, otherwise the

machine will still maintain its "Locked " state.

Figure(4) shows the statechart design of the coin machine based on the basic pattern structure. Only a simplified

portion of the full design is presented for illustration purposes.

Figure 4 The coin machine design using the basic statechart pattern

Related Patterns

Basic Statechart is related to state machine patterns from a behavior perspective. Finite state machine patterns are

described by Robert Martin in the Three Level FSM [Martin95], Paul Dyson and Bruce Anderson [DA98], and

Alexander Ran [Ran96]. However, Basic Statechart focuses on some formalized elements of statecharts such as the

state exit and entry methods, and how and where to implement the conditions specification, these issues were not

addressed in finite state machine patterns. One instance of each state class will be instantiated at a time, and hence

they can be considered Singletons [GHJV95] as well.

HIERARCHICAL STATECHART

Context

You are using Basic Statechart. The application is large and your states seem to have a hierarchical nature.

Problem

How do you implement the states hierarchy in your design?

Motivations

You are using a statechart to describe an entity's behavior and you find that a flat description of states is not

illustrative because of their large number. Thus you decided to make use of the hierarchical nature of the

specifications to simplify the visual presentation and make it more understandable. The use of statecharts hierarchy

introduces superstates, which contains other simple states. Basic Statechart doesn't support the concept of hierarchy

thus you have to modify the design to allow enclosure of states inside superstates.

Actions

Lock ()
Unlock ()
Alarm ()
Thankyou ()
Outoforder ()
Inorder ()

Events

Pass ()
Coin ()
Failed ()
Fixed ()

Broken

Fixed ()
entry ()
exit ()

Locked

Accumulate ()
exit ()
entry ()
Pass ()
Coin ()

Unlocked

Pass ()
Coin ()
entry ()
exit ()

Object_StateInterface
Object_State : AState*

Event_Dispatcher ()
UpdateState (New _State : AState*)

Object_Ref

AState
$ Object_Ref : Interface *
Num_States : int
NextStates : AState**

set_object_state (New _State : AState*)
entry ()
exit () **

7

Solution

To implement hierarchy in your design, you have to distinguish different types of states:

x A Simple State : a state that is not part of any superstate and doesn't contain any child state. (no parent and no

children)

x A Leaf State: a state that is part of a superstate but doesn't have any child state (has a parent but has no children).

x A Top SuperState: a state that encapsulates a group of other states (children) but has no parent.

x An Intermediate SuperState: a state that encapsulates a group of other states (children) and has a parent state.

All state class types are subclassed (inherited) from "AState " class. We use two pointers to implement the

child/parent relationships, the "MySuperState " and the "CurrentState ". Figure(5) shows the extensions to

Basic Statechart to support hierarchy.

Figure 5 The Hierarchy statechart pattern

Participant

In addition to the participants of Basic Statechart, Hierarchical Statechart has:

SimpleStates

They are the "States" participants of the Basic Statechart.

IntermediateSuperState

Does the functionality of both the TopSuperState and the LeafState.

TopSuperState

x Keeps track of the current state of the group of states using "CurrentState"

x Handles event addressed to the group and dispatches them to the current state to respond accordingly.

x Produces common outputs for children states, and it can also implement the common event handling methods

on their behalf.

x Performs state-driven transitions from self to the next upcoming states.

x Implements the entry and exit methods for the whole superstate.

LeafState

Does the same functionality as a SimpleState and:

x Uses a "MySuperState " pointer to change the current active state of its parent class.

Actions Events

Simple State

Object_StateInterface

Object_State : AState*

Event_Dispatcher ()
UpdateState(New_State : AState*)

Object_Ref
*

CurrentState

TopSuperState

CurrentState : AState*

set_super_state (NewState : AState*)

IntermediateSuperState

MySuperState : AState*
CurrentState : AState*

set_super_state (NewState : AState*)

LeafState

MySuperState : AState*

AState

$ Object_Ref : Interface *
Num_States : int
NextStates : AState**

set_object_state (New_State : AState*)
set_super_state (New_State : AState*)
entry ()
exit ()

*

MySuperStateMySuperState

CurrentState

8

Example

Consider the same example of the coin machine (although the example is simple and need not be hierarchical, we

will use it for illustration), the superstate "S_Functioning " is introduced as a superstate for the "Unlocked "

and "Locked" states. Figure(6) shows the statechart of the example in which we distinguish: "Broken " as a

SimpleState class, "Locked " and "Unlocked " as LeafState classes, and "S_Functioning" as TopSuperState.

The conditions and actions are not shown.

Figure 6 Hierarchical statechart for the coin machine example

Figure 7 The coin machine design using the hierarchical statechart pattern

Related Patterns

Hierarchical Statechart can be considered a Composite pattern [GHJV95] in which a composite class (SuperState) is

composed of child classes (LeafStates or other SuperStates) of similar abstract type (AState).

Broken

Fixed

Failed

Locked

Unlocked

CoinPass

Coin

S_Functioning

Coin

Actions

Lock ()
Unlock ()
Alarm ()
Thankyou ()
Outoforder ()
Inorder ()

Events

Pass ()
Coin ()
Failed ()
Fixed ()

Broken

Fixed ()
entry ()
exit ()

Locked
Amount : unsigned int

Accumulate ()
exit ()
entry ()
Pass ()
Coin ()

Unlocked

Pass ()
Coin ()
entry ()
exit ()

// Coin() //
CurrentState->Coin()
// Failed//
set_object_state(Broken);

S_Functioning

Pass ()
Failed ()
Coin ()

MySuperState

Object_State

Interface

Object_State : AState*

Event_Dispatcher ()
UpdateState (New _State : AState*)

Object_Ref
*

LeafState
MySuperState : AState*

TopSuperState
CurrentState : AState*

set_super_state (New State : AState*)

AState

$ Object_Ref : Interface *
Num_States : int
NextStates : AState**

set_object_state (New _State : AState*)
set_super_state (New _State : AState*)
entry ()
exit ()

*

SimpleState

9

ORTHOGONAL BEHAVIOR

Context

You are using Hierarchical Statechart. Your entity has several independent behaviors that it exercises at the same

time.

Problem

How can you deploy the entity's orthogonal behaviors in your design?

Motivations

You want to simplify the behavior of an entity by explaining it as groups of independent state diagrams whose

individual behavior describes one aspect of the overall behavior. You cannot use conventional state diagrams

because they are poorly sequential as only one state can be active at a time. Therefore, you have used statechart

orthogonality principle to accomplish your task. Hierarchical Statechart doesn't support the orthogonal behavior

and hence you have to add it to the design.

Solution

Consult your statechart specification to identify those superstates that run orthogonaly and dispatch the events to

each of those states. Define a "Virtual superstate" as a collection of superstates that process the same events for the

entity. The designer groups these superstates in a virtual superstate whose event method will call all the event

method of the attached superstates. Figure (8) shows an example, virtual state "V" will receive the event "g" from

the entity interface and will dispatch it to both superstates "A" and "D". Using a virtual state class has the advantage

of giving freedom to the designer about the implementation of orthogonality. Sequential implementation can be

achieved by calling one orthogonal state at a time. Concurrent implementation can be achieved by firing events to

each state object which is running as a thread of operation (if supported by the underlying operating system). This

addresses the concern of orthogonal states and concurrent objects as discussed by Harel et.al.[HG97] and provides

flexibility in implementation. We also note that the name virtual doesn't necessarily mean that the state doesn't really

exist in the specification, it can be a meaningful superstate, however the name virtual is chosen as it is virtually

grouping the orthogonal states together. Figure(9) describes the structure of the solution.

Figure 8 Example of a virtual superstate

A

B

C

B

i

C

g h

E

F

g

D

V

10

Figure 9 The Orthogonal Statechart pattern

Example

Consider the coin machine example, we want to add a warning system that operates when the machine is broken.

The warning system may turn on a warning lamp, display a message or send notification to the operator. Thus, we

have independent behavior describing the warning operation as shown in figure (10). To map this to a design, a

virtual class called "V_CoinMachine " is created, which contains the two superstates "S_Warning " and

"S_Operation ", events received by the interface is dispatched to the "V_CoinMachine " class which dispatches

them to both the "S_Operation " and "S_Warning " classes. Figure(11) shows the class diagram, other states

such as Broken, Locked, etc. were removed from the diagram for simplicity.

Figure 10 Orthogonality in a coin machine

Related Patterns

The Orthogonal Behavior pattern can be considered a Composite pattern [GHJV95] in which a composite class

(Virtual class) is composed of several children (SuperState classes) of the same abstract type (AState).

WarningOFF WarningON

Failed

Fixed

Broken

Fixed

Failed

Locked

Unlocked

CoinPass

Coin

S_FunctioningS_Operation

S_Warning

V_CoinMachine

Coin

Actions Events

Simple State

Object_StateInterface

Object_State : AState*

Event_Dispatcher ()
UpdateState(New_State : AState*)

Object_Ref

*

CurrentState

TopSuperState

CurrentState : AState*

set_super_state (NewState : AState*)

1

IntermediateSuperState

MySuperState : AState*
CurrentState : AState*

set_super_state (NewState : AState*)

LeafState

MySuperState : AState*

1

VirtualState

IndependentStates : AState**

Add (State : AState*)

*

AState

$ Object_Ref : Interface *
Num_States : int
NextStates : AState**
$ Conditions

set_object_state (New_State : AState*)
set_super_state (New_State : AState*)
entry ()
exit ()
Add (state : AState*)

*

1

1

*

11

Figure 11 The coin machine design using the orthogonal statechart pattern

BROADCASTING

Context

You are using Orthogonal Statechart. Some events occurring in one state trigger other events in orthogonal

superstates.

Problem

How do you broadcast the produced event to the listener state?

Motivations

The orthogonal behaviors of the entity are still logically related to each other because they describe the behavior of

one entity. When you use the orthogonality of statecharts, you sometimes find that the actions generated in one

superstate stimulates an event in another superstate. None of the previous statechart patterns explicitly deals with

this situation, however you can make use of their solution structure to broadcast the stimulated event to the

orthogonal superstate.

Solution

When a new event is stimulated, the broadcasting state would inject the event directly to the entity interface to

handle it. The event propagates though virtual superstates and hence it reaches the orthogonal superstate of the

broadcasting state. The structure of Orthogonal Behavior is used and only those state that need to broadcast event

calls the "Interface " entity with the new event.

Actions Events

Simple State

Object_State
Interface

Object_State : AState*

Event_Dispatcher ()
UpdateState(New_State : AState*)

Object_Ref

*

CurrentState

TopSuperState

CurrentState : AState*

set_super_state (NewState :

1

IntermediateSuperState

MySuperState : AState*
CurrentState : AState*

set_super_state (NewState : AState*)

LeafState

MySuperState : AState*

1

VirtualState

IndependentStates : AState**

Add (State : AState*)

*

AState

$ Object_Ref : Interface *
Num_States : int
NextStates : AState**
$ Conditions

set_object_state (New_State : AState*)
set_super_state (New_State : AState*)
entry ()
exit ()
Add (state : AState*)

*

1

1

*

V_CoinMachine

Failed ()
Fixed ()

// Failed //
for all independent states s in
V_CoinMachine
s->Failed()

S_Operation

Fixed ()
Failed ()

S_Warning

Fixed ()
Failed ()

12

Example

Figure 12 Coin machine statechart with broadcasting

In the example of the coin machine, assume that the "Fixed " event will stimulate another event "Warning_OFF "

which will turn the superstate "S_Warning " from being in "WarningON " to "WarningOFF " state. In this case,

the design structure will be the same as Orthogonal Behavior, but the "S_Warning " state will not implement the

"Fixed " event but it will implement a "Warning_OFF " event. The "Fixed " method of the "Broken " state will

broadcast the "Warning_OFF" event by calling the entity interface that would look like:

void Broken::Fixed(){

{ //….

Object_Ref->Event_Dispatcher(Warning_OFF);

}

Discussion

You use Broadcasting to transfer the events to orthogonal superstates. The source of event generation differs, some

events are generated as actions of a former event, some are due to a condition becoming true in one state that affect

the orthogonal state, and some events are due to being in a new state (In(mode) event). We only discussed one

example and one solution, however other solutions such as queuing the new event until the current transition is done

can be accommodated in the pattern.

HISTORY-STATE

Context

You are using Hierarchical Statechart and you find that a superstate should have memory of which active state it

was last in just before exiting the whole superstate.

Problem

How do you keep the history of a superstate in your design?

Motivations

When you transition from a superstate to another (super)state and then back to the original superstate, you may want

to reenter the original superstate with its previous state rather than its default state. So, you use the history property

of the statechart specification but when you implement it, you will need to keep the superstate object knowledgeable

of its last state object. Without history, the entry of a superstate will initialize its "CurrentState " pointer to the

default internal state object which would look like:

WarningOFF WarningON

[In broken]

WarningOFF

Broken

Fixed/Warning_OFF

Failed Unlocked

CoinPass

Coin

S_FunctioningS_Operation

S_Warning

Locked

Coin

13

Void superstate ::entry()

{ CurrentState = DefaultState;

}

And the default state is initialized on the superstate constructor method. Using this for superstates with history

removes the knowledge of a superstate of its latest internal state.

Solution

Initialize the "CurrentState " pointer of a superstate class once on creation, do not reinitialize it on the superstate

"entry() " method. This will keep the value of the pointer on entry as that of the last exit.

Example

Figure 13 The coin machine with history property

In the coin machine example, let us assume that the machine can be turned on and off and reserves its previous state,

thus it should return to "Broken " if it was last out of order and should return to "S_Functioning " if it was

operating correctly before shutting down. In this case, the "entry()" method as "S_Operation " superstate

will not initialize its "CurrentState " pointer as would be the case in the default state implementation in

Hierarchical Statechart.

GENERAL DISCUSSION

The design of finite state machines is a common problem addressed by system designers. They are often used in

communication systems in which the status of the link between two or more communicating entities limits the

behavior of the above application layers. FSMs are widely used in control systems such as motion control system of

automated trains, elevators control, and automated train door control. Gamma et.al.[GHJV95] have pointed some

known uses in graphical user interfaces. Dyson et.al. [DA98] have also pointed out their usage in library

applications. Automated Teller Machines are one of the most known and frequently used illustrative examples for an

application whose state plays a major role in the flow of operations.

Several patterns for finite state machines were previously presented in the literature [DA98,Martin95,Ran96], some

of which are also applicable to statecharts as they both share some common properties. For example, the Default

State, Exposed State and Pure State patterns described by Paul Dyson and Bruce Anderson [DA98] might also be

applicable to state classes in statecharts. An integrative work of State pattern [GHJV95,DA98], Finite State

Machine patterns [Martin95,Ran96], and Statechart patterns would provide a comprehensive pattern language to

solve problems in implementing an entity's behavior.

WarningOFF WarningON

[In Broken]

Warning_OFF

Broken

Fixed/Warning_OFF

Failed

Locked

Unlocked

CoinPass

Coin

H

OFF

TurnedOFF

TurnedON

ON
S_Operatio

S_Warning

S_Functioning

14

ACKNOWLEDGEMENT

We would like to thank Dennis DeBruler, our PLoP shepherd, for his valuable comments and extensive help in

revising the patterns and improving their quality.

REFERENCES

[GHJV95] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides, “Design Patterns: Elements of
Reusable Object-Oriented Software” Addison-Wesley 1995

[DA98] Paul Dyson and Bruce Anderson, "State Patterns". In Robert Martin, Dirk Riehle, and Frank Buschmann
(edt.) Pattern Languages of Program Design 3, Addison Wesely Longman Inc 1998, chapter 9, pp125

[UML98] UML Resource Center. http://www.rational.com/uml/documentation.html

[Martin95] Robert Martin, "THREE-LEVEL FSM". In James Coplien, Douglas Schmidt, (edt.), Pattern Languages
of Program Design. Addison-Wesely,1995, chapter 19, pp383

[CHB92] Derek Coleman, Fiona Hayes, and Stephen Bear, "Introducing Objectcharts or How to Use Statecharts in
Object-Oriented Designs," IEEE Transactions on Software Engineering, Vol 18, No. 1, January 1992.

[Harel87] David Harel, "Statecharts: a Visual Formalism for Complex Systems," Science Computer Program, Vol
8, pp 231-274, 1987

[Harel88] David Harel, "On Visual Formalism", Communications of the ACM, Vol 31, No 5, May 1988

[Selic98] Bran Selic, "Recursive Control". In Robert Martin, Dirk Riehle, and Frank Buschmann (edt.) "Pattern
Languages of Program Design 3", Addison Wesely Longman Inc 1998, chapter 10, pp147

[HG97] David Harel and Eran Gery, "Executable Object Modeling with Statecharts", IEEE Computer magazine,
July 1997, pp31-42

[Ran96] Alexander Ran, "MOODS: Models for Object-Oriented Design of State", In John M. Vlissides, James O.
Coplien, and Norman L. Kerth (edt.) Pattern Languages of Program Design 2, Addison Wesely Longman Inc 1996,
Chapter 8, pp119-142

15

APPENDIX (A): SUMMARY OF STATECHART PATTERNS

Pattern Name Problem Solution

Basic

Statechart

Your application contains an entity

whose behavior depends on its state. You

have decided to use statechart's

specifications to specify the entity's

behavior. How do you implement the

statechart specification into design?

Use an object oriented design that encapsulates the

state of the entity into separate classes which

correspond to the states defined in the specification.

Distinguish the events, conditions, actions, entry and

exit activities in each state class as methods and

attributes of the state classes.

Hierarchical

Statechart

You are using the Basic Statechart. The

application is large and your states seem

to have a hierarchical nature. How do you

implement the states hierarchy in your

design?

Use superstates classes that are inherited from the

abstract state class. Use the Composite pattern

[GHJV95] to allow the superstate to contain other

states. Keep the superstate knowledgeable of the

current active state and dispatch events to it.

Orthogonal

Behavior

You are using the Hierarchical

Statechart. Your entity has several

independent behaviors that it exercises at

the same time. How do you deploy the

entity's orthogonal behaviors in your

design?

Identify the superstates that run independently in your

specification, then define a "Virtual superstate" as a

collection of superstates that process the same events,

dispatch the events to each state.

Broadcasting You are using the Orthogonal Behavior.

How can you broadcast a stimulated

event produced from another event

occurring in an orthogonal state?

When a new event is stimulated, make the

broadcasting state inject the event directly to the entity

interface which dispatches it to the virtual superstate.

Eventually, the virtual supertate dispatches the event to

all of its orthogonal states.

History-state If one of the superstates has a history

property, how do you keep its history in

your design?

Initialize the current active state class pointer of the

superstate object once on creation, use it throughout

the entity's lifetime, do not reinitialize it on the

superstate entry method.

16

APPENDIX (B): PRINCIPLES OF STATECHARTS

Statecharts Elements

States : Describes an entity's behavior in a given state. They are the static elements of statecharts. States have entry

and exit procedures, and process events as they occur in the state.

Triggers: They are the dynamic elements of the statecharts that cause state transitions or state reactions. Events,

conditions or both can be triggers

Events: Events occur at specified instances of time. They can be generated internally in the statechart or externally.

Conditions: Boolean expressions, valued TRUE or FALSE. Conditions can be primitive elements or compound

elements that express a set of boolean operations such as ANDs or ORs.

Actions: Operations performed as a result of events in the statecharts.

Activities: Operations that are performed by the entity in a given state.

State Entry: Special event type that describes what the entity should do on entering a particular state.

State Exit: Special event type that describes what the entity should do on exiting a particular state.

Statecharts Principles

Statecharts extends finite state machines to support the following basic principles:

Hierarchy

The hierarchy principle introduces a more global state, referred to as a superstate, that includes other entity's states.

It is sometimes called "Depth" principal as well as the "XOR-Decomposition" because only one state of the

superstate describes its behavior at a time. As an example, figure (14), an entity in superstate "A" can be in either

simple state "B" or "C".

Figure 14 Hierarchy Principle of Statecharts

Orthogonality

This is the principle of Statecharts that allows several behaviors to be experienced at the same time. An event may

cause a state transition in several superstates at the same time. This Principle is sometimes referred to as the "AND-

Decomposition" principle as changes may occur in several superstates. As an example, figure (15), an event "g"

will cause the entity's behavior in superstate "A" to change from "C" to "B" and the entity's behavior in superstate

"D" to change from "F" to "E" as well.

A

B

C

D
B

i

C

g h

e

f

17

Figure 15 The Orthogonality Principle of Statecharts

Broadcasting

A state transition inside a superstate may cause another event, which in turn triggers state transition in another

superstate. As an example, figure (16), the event "g" will produce output event "k" which will change the state in

superstate "A" from "C" to "B"

Figure 16 Broadcasting Principle of Statecharts

History

After transition from a superstate to another (super)state and the return back to the original superstate, it is

sometimes required to return to the previous state of the original superstate rather than the default state. As an

example, figure (17), assume that the current state is "B" and the event "m" causes the transition to state "E". Then

event "p" occurs, in default state situation the current state will be "C", but since superstate "A" has history of its last

internal state then the current state will be "B"

Figure 17 History Principle of Statecharts

Thus; Statecharts = State Machine + Depth + Orthogonality + Broadcasting + History

A

B

C

B

i

C

g h

E

F

g

D

E

F

g/k

D

B

C

k h

A

E

B

C

k h

AH

p

m

