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Abstract

This work describes Tropyc, a pattern language for cryptographic software. Nine pat-
terns are described: Information Secrecy, Message Authenlicalion, Message Integrity, Sender
Authenticalion, Secrecy with Authentication, Secrecy with Signature, Secrecy with Integrily.
Signature with Appendiz, and Secrecy with Signalure with Appendiz. These patterns are clas-
sified according to four fundamental objectives of cryptography and compose a closed set of
patterns for that domain. These patterns have the same dynamic behavior and structure.
We abstracted these aspects in a generic object-oriented Cryptographic Melapattern.

Key words: cryptography, pattern language, design patterns, software archi-
tecture, object orientation.

1 Introduction

Traditionally, cryptography has been concerned with algorithms. Nowadays, cryptographic tech-
niques are been widely used in many applications, such as word processors, spreadsheets, databases,
and electronic commerce systems. The widespread use of cryptographic techniques and the present
interest and research on software architectures and patterns led to cryptographic software archi-
tectures and cryptographic patterns.

In this work we present a set of nine cryptographic patterns classified according to the objectives
of cryptography, which are described in Appendix A, and organized as a pattern language for
cryptographic software. The patterns are presented here in a simple way and our focus is on the
pattern language. This paper is targeted to software engineers who have to deal with cryptography
based security requirements of applications, but do not have much experience in cryptography.
People looking for general software architectures to their cryptographic software or components
are another group of interest. This work is organized as follows. Section 2 proposes Tropye, a
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pattern language for cryptographic software. The completeness of the set of cryptographic patterns
and their relations with other patterns are investigated in Section 3. Conclusions and future work
are in Section 4. In order to define some terms, a brief introduction to cryptography is shown in
Appendix A. Also, we provide structural and dynamic models for all patterns in Appendix B.

2 A Pattern Language for Cryptographic Software

In this Section we propose Tropyc, a pattern language for cryptographic software. Qur proposal
focuses on two goals: (7) the description of cryptographic services as patterns and (i) the or-
ganization of these cryptographic patterns as nodes of a directed acyclic graph, in which a walk
documents a sequence of design decisions. Table 2.1 summarizes all patterns, their scopes according
to cryptographic objectives, and their purposes.

We have to deal with two kinds of forces when instantiating a cryptographic pattern: (¢) the
forces produced by the trade-offs one must consider when deciding whether to use a specific cryp-
tographic service or not; and (¢¢) the forces one must consider when deciding to structure its
cryptographic software or component as an instantiation of our Cryptographic Metapattern. Thus,
we decide to present these distinct sets of forces separately, in order to highlight this distinction
of concerns: the Section “Forces” of each cryptographic pattern, except the Cryptographic Meta-
pattern, focuses on the trade-offs of whether or not a cryptographic service or a combination of
services should be used. The Cryptographic Metapattern Section “Forces” focuses on the second
type, that is, those forces acting over the instantiation of our generic structure.

Another important concern is how well Tropyc is supported by the cryptographic infrastructure
services (see Appendix A for information about cryptographic infrastructure services). The variety
of algorithms, protocols and hardwares available to these auxiliary services can result in a new
set of trade-offs and forces. We call these forces auxiliary because they do not act directly over
the choice of a cryptographic pattern, but can strongly influence its implementation. since they
are related to features available on a specific cryptographic library. In order to highlight these
auxiliary forces, some of the cryptographic patterns present them into a Section “Implementation
Factors”. Traditionally, the two ends of a communication channel are called Alice and Bob, Eve
is usually an adversary eavesdropping the channel.

2.1 Pattern Language Summary

Tropyc supports the decision making process of choosing which cryptographic services address ap-
plications requirements and user needs, offering a set of ten closely related cryptographic design
patterns. When on-line communication or exchange of information through files is used, some-
times, due to great sensitiveness of data, it is necessary to guarantee its (Information) Secrecy.
However, secrecy alone does not prevent either data modification or replacement. Particularly in
on-line communication, granting Message Integrity and (Message) Authentication is also impor-
tant. There are some contexts in which it is necessary to prevent an entity from denying her actions
or commitments. For example, some form of Sender Authentication is necessary when purchasing
electronic goods over the Internet.

Sometimes, the cryptographic based security requirements of applications lead developers to
compositions of the basic services in order to provide Secrecy with Integrity, Secrecy with Au-
thentication, Secrecy with Signature. Cryptography is time consuming. so algorithm performance



is always important. Sender Authentication can be speeded up if a Signature with Appendiz is
used. For efficiency, it is recommended that Secrecy with Signature with Appendiz be implemented
instead of Secrecy with Signature. All of the above situations, especially those with combined
services, need a flexible and reusable software architecture. This architecture is common to all
cryptographic patterns and could be abstracted as a generic Cryptographic Metapattern.

Figure 1 is a directed acyclic graph of dependences among patterns. An edge from pattern A to
pattern B shows that pattern A generates pattern B. A pattern that is pointed at by more than one
edge has as many generators as the number of edges arriving in it. The Cryptographic Metapattern
generates the microarchitecture for the four basic patterns. All other patterns are generated
from combinations of these. Thus. all nine cryptographic patterns instantiate the Cryptographic
Metapattern. In the case of the Secrecy with Signature with Appendiz pattern, we decided to
derive it from two combined patterns, instead of using three basic patterns. because we feel a two
generator combination is more intuitive than a three generator combination. A walk on the graph
is directed by two questions: What cryptographic services should I use to address application
requirements and user needs? And how should I structure the cryptographic component to obtain
easy reuse and flexibility?

Cryptographic Metapattern

Message Information Sender Message
Authentication Secrecy Authentication Integrity
Secrecy with Secrecy with Signature Secrecy with
Authentication Signature with Appendix Integrity

Secrecy with
Signature
with Appendix

Figure 1: Cryptographic Design Patterns and Their Relationships.



Pattern Scope Purpose

Information Secrecy Secrecy keep the secrecy of information
Message Integrity Integrity avoid corruption of a message
Message Authentication Authentication | authenticate the origin of a message

Sender Authentication

Non-repudiation

avoid refusal of a message

Secrecy with Authentication | Secrecy prove the authenticity of a secret
Secrecy with Signature Secrecy prove the authorship of a secret
Secrecy with Integrity Secrecy keep the integrity of a secret

Signature with Appendix

Non-repudiation

separate message from signature

Secrecy with Signature Secrecy separate secret from signature
with Appendix
Cryptographic Metapattern | Generic Define a generic software

architecture to cryptography

Table 2.1: The Cryptographic Design Patterns and Their Purposes.

2.2 Information Secrecy
Context Alice wants to send messages to Bob. She wants to keep these messages secret from

Eve, whom Alice suspects may be trying to read her messages.

Problem How can Alice send a message to Bob in such a way that Eve cannot possibly read its
content?

Forces

e Encryption is slow. If performance is important, its use must be evaluated carefully. For
example, the cost of encrypting/decrypting messages must not be greater than the intrinsic
value of the message.

e The security of an encrypted information is in the encryption key. Thus, the cost of breaking
the cryptographic keys must be much greater than the intrinsic value of the message.

e The strength of a cryptosystem is based on the secrecy of a long key. However, the longer
the key. the slower is the algorithm.

Solution This pattern supports encryption and decryption of data. Alice and Bob previously
agree on a cryptographic engine and on a shared secret key (if public key cryptography is used,
Bob must first obtain Alice’s public key). Bob enciphers the message and sends it to Alice. Alice
deciphers the enciphered message and recovers the original message. The structural and dynamic
models for that pattern are shown in Section B.1.

Implementation Factors
e Private or secret keys must be kept protected from unauthorized copy or modification.

e An infrastructure to distribute or make public keys broadly available is necessary.



Example A common use of this pattern is in the encryption of electronic mail messages [Her97].

2.3 Message Integrity

Context Alice sends large messages to Bob. He wants to verify the integrity of received messages
that Eve may have modified or replaced. Alice and Bob do not share cryptographic keys. so
they cannot sign messages or authenticate them with Message Authentication Codes (MACs) (see
Section A.1).

Problem How can Bob determine if a message was modified or replaced after being sent and
before its arrival to him?

Forces

o Integrity of messages can be obtained by sending each message at least twice and comparing
the copies. Furthermore, sending short messages twice may be less expensive than computing
and sending a relatively large Modification Detection Code (MDC) (see Section A.1).

o [t is necessary to verify a relatively small MDC to determine whether a large amount of data
has been modified or not.

e MDCs by themselves do not guarantee the authorship of a message.

Solution Alice and Bob agree to use a MDC. Alice computes the MDC of the message and sends
both message and MDC to Bob. Bob computes the MDC of the message and compares it with that
received from Alice. If they match, the message is genuine. The structural and dynamic models
for that pattern are shown in Section B.2.

Implementation Factors

e MDCs which are not themselves authentic do not provide any guarantees whether a message
has been replaced or not.

Example Two common uses of MDCs are detection of file modification caused by viruses and
generation of passphrases to produce cryptographic keys. Also, MDCs could be used as unique
identifiers of electronic coins in electronic commerce applications based on hash chains [AJSW9T].

2.4 Message Authentication

Context Alice and Bob want to exchange messages, but they cannot distinguish their own
messages from the ones Eve may have included into the communication channel. Also, they have
the ability to share secrets in a secure way.

Problem How can genuine messages be distinguished from spurious ones?



Forces

e A message can only be authenticated if an information recognized only by the communicating
parts is intrinsically associated with it. If the authentication information is a function of both
data and a secret, the replacement of messages or parts of them can be detected.

e Authorship cannot be granted since both sides can compute valid MACs.

e The value of the data must be greater than the cost of granting its authenticity.

Solution Alice and Bob agree previously on a shared secret key and a cryptographic algorithm
to generate Message Authentication Codes (MACs). Alice computes the MAC of the message and
sends both, message and MAC, to Bob. Bob computes the MAC again and compares it with the
one received from Alice. If they match, the message is genuine and must be sent by Alice, because,
other than Bob, only Alice knows the secret key and can compute the correct MAC. A bonus when
using this pattern is the implicit integrity of messages. The structural and dynamic models for
that pattern are shown in Section B.3.

Implementation Factors

e A secure means to exchange and keep a secret is necessary.

e The security of MACs is in the secrecy of the key and in the one-wayness of the cryptographic
hash function.

Example MACs could be used in the authentication of IP packages over the Internet [CGHK98].

2.5 Sender Authentication

Context Alice sends messages to Bob, but they cannot distinguish their own messages from the
ones Eve may include into the communication channel. Furthermore, Alice can later dispute the
authorship of messages actually sent by her. In such a situation, Bob cannot prove to a third party
that only Alice could have send that message. Also, Alice has a public/private key pair, or the
ability to create key pairs, and her public key is widely available.

Problem How to guarantee that messages have a genuine and authentic sender in such a way
that Alice cannot repudiate a message Bob believes was sent by her?

Forces

o Fake digital messages can be easily generated or copied. Thus, explicit measures must be
taken in order to associate a message with its legitimate sender. Digital signatures (see
Section A.l) provide the means with which one can tie the identity of an entity with a
message produced by that entity in such a way that the legitimate sender of a signed message
cannot deny its authorship.

e Signatures are usually as large as the data being signed.

e The cost of granting the authorship of a message cannot be greater than its intrinsic value.



Solution Alice and Bob agree on the use of a public key digital signature protocol and Bob has
Alice’s public key. Alice enciphers a message with her private key to sign it and sends the signed
message to Bob. He deciphers the signed message with Alice’s public key in order to verity it. If
the enciphered message makes sense to Bob, then, since only Alice’s private key could have been
used to generate a meaningful message after decipherment by Bob, it must be true that Alice is
the sender of that message. The structural and dynamic models for that pattern are shown in
Section B.4.

Implementation Factors
e Public key cryptographic algorithms are generally used to generate digital signatures.
e A secure means of storing the author’s private key is necessary.
e An infrastructure to distribute or make public keys broadly available is necessary.
e Verifying the authorship of a message is based solely on the secrecy of the author’s private

key.

Example Digital signatures are used in electronic commerce applications in the authentication of
customers and merchants [AJSW97, HY97]. Also, they could be used to guarantee the authenticity
of information obtained over the Internet [HN9Sg].

2.6 Secrecy with Authentication

Context Alice and Bob use public key cryptography to exchange encrypted messages. Eve may
intercept messages, but she cannot read their contents. However, she can replace or modify these
messages in such a way that Alice and Bob cannot detect these modifications or replacements.

Problem How can Alice authenticate an encrypted message without loss of secrecy?

Forces

e In public key cryptography, valid encrypted messages can potentially be generated by anyone
who has access to the public key.

o If Alice and Bob use secret key cryptography for encryption and they are the only ones
who share that secret, Message Authentication is redundant and useless, except for granting
integrity implicitly; but this can be obtained using Secrecy with Integrity.

o Message Authentication and encryption are independent services and providing one does not
necessarily imply the other.

o Message Authentication restricts the number of entities who can produce genuine encrypted
messages, but do not grant authorship, since usually more than one entity knows the secret
key.

o Message Authentication inserts a new step in both the encryption and decryption processes
in order to compute and verify a MAC, which can result in a decrease of performance.



e The combination of secrecy and authentication can be easily done when using a design in
which the modularity of components facilitates reuse.

Solution Two previous cryptographic patterns are combined to solve this problem: Information
Secrecy and Message Authentication. The MAC must be computed over the original unencrypted
message. Both encrypted message and MAC are sent to Bob. The secret key used to compute the
MAC must be different from that used to encipher/decipher. The structural and dynamic models
for that pattern are shown in Section B.5.

Example Secrecy and authentication could be combined in order to secure IP packages over the

Internet [CGHK98].

2.7 Secrecy with Signature

Context Alice and Bob exchange encrypted messages, but they cannot grant the authorship
of an encrypted message. Furthermore, Eve can modify. replace or include messages into the
communication channel in such a way that Alice and Bob cannot detect the spurious messages.
Alice and Bob already share keys for secrecy purposes.

Problem How can Bob prove the authorship of an encrypted message without loss of secrecy in
such a way that its integrity and origin authentication is also implicitly granted?

Forces

e Anyone who can produce valid encrypted messages can potentially deny their authorship in
the future.

e Proof of authorship and secrecy are independent services. the existence of one not implying
the other’s.

o Sender Authentication can grant authorship of encrypted messages by inserting an interme-
diate step into the encryption/decryption processes, causing a loss of efficiency.

e The combination of secrecy and digital signatures can be easily done when using a design in
which the modularity of components facilitates reuse.

Solution Two previous cryptographic patterns are combined to solve this problem: Information
Secrecy and Sender Authentication. Alice signs a message with her private key. encrypts the signed
message with Bob’s public key (alternatively, the signed message could be encrypted with a shared
secret key) and sends it to Bob. Bob deciphers the encrypted message with his private key (or
a shared secret key) and verifies the signed message with Alice’s public key. The structural and
dynamic models for that pattern are shown in Section B.6.

Implementation Factors

e It is recommended that two pairs of cryptographic keys are used with this pattern. One pair
used to encryption purposes and the other used to signing and verification.



Example When sending his/her credit card number over the Internet, a user requires its secrecy.
On the other hand, a vendor upon receiving such a number, needs the assurance of non-repudiation
by the sender in the future.

2.8 Secrecy with Integrity

Context Alice and Bob exchange encrypted messages, but they cannot detect modifications or
replacements of encrypted messages possibly done by Eve. Also, they do not want to share a secret
key for authentication purposes alone.

Problem How to preserve the integrity of an encrypted message without loss of secrecy?

Forces

e Errors during transmission and malicious modifications or replacements can cause valid data
to become completely garbled, or change its meaning, after decryption.

o Keep data integrity and secrecy are independent services, the existence of one not implying
the other’s.

e The computation and verification of MDCs can grant the integrity of encrypted data, but
can also cause a decrease of performance.

e Authentication and proof of authorship of encrypted messages are not necessarily implied by
the use of secrecy and integrity.

e The combination of secrecy and integrity can be easily done when using a design in which
the modularity of components facilitates reuse.

Solution Two previous patterns are combined to solve this problem: Information Secrecy and
Message Integrity. The MDC must be computed over the original unencrypted message. Both
encrypted message and MDC are sent to Bob. This pattern only needs one public/private key
pair for encryption purposes. The structural and dynamic models for that pattern are shown in
Section B.T.

Example Secure file transfer requires file integrity and secrecy.

2.9 Signature with Appendix

Context Alice and Bob sign messages they exchange in order to prevent modifications or replace-
ment and to provide Sender Authentication. They need to manage limited storage and processing
resources. However, the messages they exchange are very large and also produce large signatures.

Problem How to reduce the storage space required for a message and its signature while in-
creasing the performance of the digital signature protocol?



Forces

e When no technique to reduce signature size is used, digital signatures are usually as large as
the data being signed. However, if messages are small, the inclusion of a new computation
step to reduce the signature size is not necessary. An important trade-off is the relation
between the impact of additional computations over performance and the ratio between the
size of messages and their signatures.

e The combination of MDC computations with Sender Authentication does not increase the
security of digital signature algorithms.

e The combination of Sender Authentication and integrity can be easily done when using a
design in which the modularity of components facilitates reuse.

Solution Two patterns are combined to solve this problem: Sender Authentication and Message
Integrity. This pattern implements a digital signature protocol over a message hash value, which
is a MDC. Alice computes a hash value of the message and signs it. Both message and signed hash
value are sent to Bob. Bob decrypts the signature and recovers the hash value. He then computes
a new hash value and compares it with the one recovered from the signature. If they match, the
signature is true. The structural and dynamic models for that pattern are shown in Section B.8.

Example When a user of an Internet application must digitally sign information, for efficiency
reasons, it is better to produce small signatures [CGHK98].

2.10 Secrecy with Signature with Appendix

Context Alice and Bob exchange encrypted signed messages to prevent modifications or re-
placement and to achieve secrecy and sender authentication. They need to manage limited storage
and processing resources. However, the messages they exchange are very large and produce large
signatures. Also, they already have a time delay due to the encryption process.

Problem How to reduce the memory necessary to store a message and its signature, while
increasing system performance, without loss of secrecy?

Forces

e The inclusion of a new processing step to reduce the signature size within a computation that
already has two processing phases, one to encrypt/decrypt data and another to compute or
verify a signature, is a difficult decision. Again small losses of performance must be negligible
in order to save a relatively large amount of space and reduce the amount of data to be
transmitted.

e The combination of Information Secrecy and Signature with Appendiz can be easily done
when using a design in which the modularity of components facilitates reuse.
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Solution Two patterns are combined to solve this problem: Secrecy of Information and Signature
with Appendiz. Alice computes a hash value of the message and signs it with her private key. She
then encrypts the original message with Bob’s public key. Both encrypted message and signed
hash value are sent to Bob. He deciphers the encrypted message with his private key and decrypts
the signed hash value with Alice’s public key. Bob computes a new hash value of the message and
compares it with that received from Alice. If they match, the signature is true. It is important to
remember that this technique is also valid if secret key cryptography is used. The structural and
dynamic models for that pattern are shown in Section B.9.

Example Electronic forms usually contain a lot of sensitive customer information which requires
secrecy and non-repudiation. This pattern could be used to increase the performance of secure
Internet applications that use large electronic forms.

2.11 Cryptographic Metapattern

Context Two objects, Alice and Bob. exchange data through messages. They need to perform
some kind of cryptographic transformations, alone or in combinations, over the data. They want a
cryptography component that is flexible and that could be easily reused with other cryptographic
transformations.

Problem How to design a flexible object-oriented microarchitecture for a cryptographic design
pattern in order to increase component reuse?

Forces

e Traditionally cryptography has been concerned with algorithms. However, all cryptographic
transformations have a common behavior that could be generalized in a flexible design.

e Cryptography is time consuming and Ad hoc implementations of cryptographic facilities could
have a better performance than well designed ones, caracterized by insertion of indirections
into the code, which slows down the execution.

e Well structured software architectures facilitate reuse and are flexible to future adaptations.
Flexible and adaptable systems with cryptographic based security requirements can be more
easily obtained when cryptographic algorithms are decoupled from their implementations,
and these two are, in turn, decoupled from the cryptographic services those systems use.

Solution Alice performs a cryptographic transformation on the data before sending it to Bob.
Bob receives the message and performs the inverse transformation to recover the data. Alice and
Bob must agree about what transformation to perform and share or distribute keys, if necessary.
The class diagram shown in Figure 2 generalizes the cryptographic transformation with an abstract
transformation interface and distinguish the Sender and Receiver roles from the Codifier and
Decodifier roles.

The Cryptographic Metapattern is a higher level abstraction for all cryptographic patterns.
All cryptographic patterns instantiate the metapattern structure and dynamics. The metapat-
tern has two template classes, Alice and Bob, and two hook classes, Codifier and Decodifier, as
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shown in Figure 2. The class Codifier has a hook method f(z), which performs a cryptographic
transformation over . The class Decodifier has a hook method g(x), which performs the reverse
transformation, @ = ¢(f(z)). The transformation and its reverse are based on the same crypto-
graphic algorithm. Figure 3 shows the metapattern dynamic behavior. All patterns presented here
assume the existence of on-line communication. However, they can be easily adapted to deal with
file storage and recovery. In such a situation, the send and receive messages could be replaced by
store and recovery ones, respectively. Also, the reference Alice has to Bob can be avoided.

Example The dynamic and structural models of all previous patterns are instantiations of the
Cryptographic Metapattern, as shown in Appendix B.

m= D.g(c)
Alice B Bob :
send() D receive() |- |
c= Cf(m) -
. B.receive(c):
C e D
Codifier Cryptographic Decodifier
f(x) Algorithm a(x)

Figure 2: Cryptographic Metapattern Structure.

Codifier Alice Bob Decodifier

f(m)

receive(c)

9(c)

Figure 3: Cryptographic Metapattern Dynamics.
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3 Completeness of the Set and Relationships with Other
Patterns

We consider our pattern language to be complete and closed into the cryptographic domain for
two reasons: (7) The nine patterns, except the cryptographic Metapattern, represent all possible
valid combinations of the four cryptographic objectives. Thus, other patterns that might emerge
will be support patterns and will not offer new services based on the cryptographic objectives.
However, variations of the cryptographic patterns other than the ones proposed here are possible.
Furthermore, auxiliary services such as key generation. key agreement and key distribution, and
auxiliary techniques such as digital certification, are not considered as cryptographic patterns,
because they do not provide general solutions as software microarchitectures to the problems ad-
dressed by the set of cryptographic objectives. Figure 4 shows, as a symmetric matrix. all possible
valid combinations of cryptographic services and the alternative ways of producing some cryp-
tographic patterns. Some combinations do not add any new features to their already generated
patterns so they are not significant; that is. each valid combination does not support repeated
cryptographic objectives; (¢17) Many generic cryptographic service APIs support this set of cryp-
tographic patterns to some extent, and all cryptographic patterns have at least one instantiation
in at least one cryptographic service API. The cryptographic patterns are widely used in many
applications and supported by many cryptographic APIs. at least implicitly. We reference just a
few [Deg97, Kal95, CSS97, HY97, AJSWOI7. Her97, CGHK98, HN9Sg].

Some well known design patterns can be used when designing a cryptographic pattern. The
Strategy [GHJV94, 315] pattern can be used to obtain algorithm independence. The Bridge
[GHJV94, 151] pattern can be used to obtain implementation independence. The Abstract Factory
[GHJV94, 87] pattern can be used in the previous negotiation step to decide which algorithm or im-
plementation to use. The Observer [GHIV94, 293]. Prozy [GHIV94, 207], and Client-Dispatcher-
Server [BMR196, 323] patterns can be used to obtain location transparency. The Forwarder-
Receiver [BMR196, 307] pattern could be combined with the cryptographic patterns in order to
offer secure and transparent interprocess communication, in such a way that Alice becomes part of
the Forwarder and Bob is incorporated into the Receiver. The State [GHJV94, 305] pattern could
also be used to provide state dependent behavior, such as turning the security of the channel on
and off. Patterns related to security aspects of applications are proposed by Yoder and Barcalow
[YB97]. These patterns are concerned with higher level application security aspects. In fact, lower
level security, such as cryptography. is not treated and a pattern to encapsulate these lower level
security aspects in a Security Access Layer [YB97. 16] is proposed.

4 Conclusions and Future Work

Cryptographic support is becoming a default feature in many applications. In order to facilitate
the design, implementation and reuse of flexible and adaptable cryptographic software, one should
consider the architectural aspects of cryptographic components and the patterns that emerge
from them. In this work, we present a pattern language for cryptographic software. This pattern
language can be used to guide the decision making process for the design of cryptographic features.
It can also be used in the design and documentation of a cryptographic object-oriented framework.
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A Basic Cryptographic Concepts

Historically associated to encipherment. modern cryptography is a broader subject, encompassing
the study and use of mathematical techniques to address information security problems, such as
confidentiality, data integrity and non-repudiation. Usually [MvOV96]. four objectives of cryptog-
raphy are considered: confidentiality, integrity. authentication, and non-repudiation. Accordingly.
there are four basic cryptographic services: (i) encipherment/decipherment to obtain secrecy or
privacy, (¢¢) MDC (Modification Detection Code) generation/verification, (¢2¢¢) MAC (Message Au-
thentication Code) generation/verification, and (iv) digital signing/verification. These four services
can be combined in specific and limited ways to produce more specialized services. Some possible
combinations of services are secrecy with authentication and secrecy with digital signatures.
The four cryptographic objectives can be stated as:

e Confidentiality is the ability to keep information secret except from authorized users.

Data integrity is used to guarantee that the information has not been modified without
permission, which includes the ability to detect unauthorized manipulation.

Data authentication can be obtained in two ways:
— Entity authentication, which is used when two parts need to achieve mutual assurance
about each other’s identity before initiating a communication.

— Information authentication, which corresponds to authentication of the origin of an
information transmitted through an insecure communication channel.

Non-repudiation is the ability to prevent an entity from denying its actions or commitments
in the future.

A.1 Cryptographic Services

Secret or symmetric key cryptography is the set of cryptographic techniques in which a single key is
used both to encrypt and decrypt data. The key is a shared secret between two entities. In public
key cryptography, a pair of different keys is used, one key for encryption, the other for decryption.
The encryption key is publicly known, so it is called the public key. The corresponding decryption
key is a secret known only to the key pair owner. so it is called the private key. One fundamental
feature of public key cryptography is that it is computationally infeasible to deduce the private
key from the knowledge of the public key.

Figure 5 shows a typical cryptosystem. Traditionally, the two ends of a communication channel
are called Alice and Bob. Eve is an adversary eavesdropping the channel. Alice wants to send an
encrypted message to Bob; she encrypts message m, the plain text, with an encryption key k1 and
sends the encrypted message ¢, the cipher text, to Bob. Bob receives the encrypted message and
deciphers it with a decryption key k2 to recover m. If public-key cryptography is used, Alice uses
Bob’s public key to encrypt messages to Bob, and Bob uses his private key to decrypt messages
sent from anyone who used his public key. However, if symmetric-key cryptography is used, Alice
and Bob share a secret key used to encrypt and decrypt messages they send to each other. That
is, k1 = k2. Two good sources of information about cryptography are [MvOV96, Sch96].
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Figure 5: A Typical Cryptosystem.

A hash function is a mathematical function that takes as input a stream of variable length and
returns as a result a stream of fixed length, usually much shorter than the input. One-way hash
functions are hash functions in which it is computationally easy to compute the hash value of an
input stream, but it is computationally difficult to determine any input stream corresponding to
a known hash value. A cryptographic hash function is a one-way collision-resistant hash function;
that is, it is computationally difficult to find two input streams that result in the same hash value.
Hash values produced by cryptographic hash functions are also called Modification Detection Codes
(MDCs for short) and are used to guarantee data integrity. Message Authentication Codes (MACs
for short) are usually implemented as hash values generated by cryptographic hash functions
which take as input a secret key as well as the usual input stream. MACs are used to provide data
authentication and integrity implicitly.

Digital Signatures are electronic analogs of traditional handwritten signatures of a document,
which serve as the signer’s agreement to the information it contains, and also as evidence that
could be shown to a third party in case of repudiation. A basic protocol of digital signatures based
on public key cryptography is:

1. Alice encrypts a message with her private key to sign it.

2. Alice sends the signed message to Bob.

3. Bob decrypts the received message with Alice’s public key to verify the signature.
Digital signatures must provide the following features:

e They are authentic. When Bob verifies a message with Alice’s public key, he knows she
signed it.

e They are unforgeable. Only Alice knows her private key.

e They are not reusable. The signature is a function of the data being signed, so it cannot be
used with other data.

e They cannot be repudiated. Bob does not need Alice help in order to prove she signed a
message.

e The signed data is unalterable. Any modification of the data invalidates the signature veri-
fication.
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A.2 Common Attacks

Eve can attack a cryptosystem in four ways:

1. She can eavesdrop the channel. Eavesdropping an open channel is easy. However, in order to
understand eavesdropped messages of a cryptographically secured channel, the key (or keys)
being used by Alice and Bob are required.

2. She can re-send old messages. This attack is possible if messages do not have temporal
uniqueness, which can be obtained using timestamps or by changing keys periodically.

3. She can impersonate one of the communicating ends of the channel. In such a case, Eve
plays the role of Alice or Bob, either by: (i) deducing a secret key or (i¢) by successfully
substituting her public key for Alice’s (Bob’s) without Alice’s (Bob’s) knowledge.

4. She can play the role of the man-in-the-middle. In order to perform the man-in-the-middle
attack successfully, Eve must: (i) have obtained the private keys or the secret shared key of
Alice and Bob, (i¢) impersonate both Alice and Bob. In such a situation, Eve can intercept
encrypted messages from Alice (Bob) to Bob (Alice), decrypts them with Alice’s (Bob’s)
decryption key and re-encrypting them with her own encryption key before re-sending.

Furthermore, if Eve could, using a brute-force attack or some other method, obtain the private
key of Alice or Bob (or their secret shared key), all of the above attacks could be easily performed.
In a brute-force attack, Eve tests all possible valid keys to decrypt a cipher text of a known plain
text in order to find out the correct key.

A.3 Auxiliary Services

An important issue of cryptographic services is whether they are supported by an infrastructure
which provides a strong and secure set of auxiliary services such as generation, agreement, distri-
bution and storage of cryptographic keys. Usually, key generation algorithms are based on random
number generators. Public keys are usually distributed together with their digital certificates,
which are packages of information attesting the ownership and validity of a cryptographic key.
These certificates are usually signed by a trust third party, called a Certification Authority (CA).

A private or secret key must be kept protected from unauthorized copy and modification; this
can be done in two ways: (¢) it can be stored in a tamper-proof hardware, (¢7) it can be stored in
an encrypted and authentic form in general purpose hardware, such as random access memories,
magnetic disks and tapes. This requires a Key Encryption Key (KEK for short) which, in turn,
must be protected.
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B Structure and Dynamics of Cryptographic Patterns

B.1 Information Secrecy Structure and Dynamics

Bob A Alice

sendMsg() | receiveMsg) |-

Msgczc.encipher(Msgj“é
. AreceiveMsg(Msge)

c D
Cipher Cryptographic Decipher
encipher() Algorithm decipher()
EncipherKey DecipherKey

Figure 6: Information Secrecy Structure.

Cipher Bob Alice Decipher

encipher(Msg)

Msgc

receiveM sg(Msgc)

decipher(Msgc)

Msg

Figure 7: Information Secrecy Dynamics.
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B.2 Message Integrity Structure and Dynamics

Alice Bob
sendMsg() receiveMsg()
- sendMDC() receiveMDC() -
C D
Codifier Cryptographic Decodifier
calcMDC() Algorithm verifyMDC()
.~ MDC = C.calcMDC(Msg) Ok =D.verifyMDC(MsgMDC)
. B.receiveMDC(MDC) . Return(Ok) |

Figure 8: Message Integrity Structure.
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calcMDC(Msg)

MDC

receiveMDC(MDC)

verifyMDC(MDC,Msg)
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Figure 9: Message Integrity Dynamics.
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" MAC = C.calcMAC(Msg)

B.3 Message Authentication Structure and Dynamics

Ok = D.verifyMAC(Msg,MAC)
. B.receiveMAC(MAC) . Return(Ok) 1
Alice Bob
- | sendMsg() receiveMsg() ;
1 sendMAC() receiveMAC() |-
C D
Codifier Cryptographic Decodifier
cacMAC() Algorithm verifyMAC()
SecretKey SecretKey

Figure 10: Message Authentication Structure.

Codifier Alice Bob Decodifier

cacMAC(Msg)

MAC

receiveMAC(MAC)

verifyMAC(MAC,Msg)

Ok

Figure 11: Message Authentication Dynamics.
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B.4 Sender Authentication Structure and Dynamics

Ok = V.verify(Sgn)

Rewrn(Ok)
Alice B Bob
sendMsg() peeeeee : receiveMsg() :
receiveSgn() --{----
Sgn=A.sign(Msg)
B.receiveSgn(Sgn)
A \Y,
Signer Cryptographic Verifier
sign() Algorithm verify()
DecipherKey EncipherKey

Figure 12: Sender Authentication Structure.

Signer Alice Bob Verifier
sign(Msg)
Sgn
receiveSign(Sgn)
verifySign(Sgn)
Ok

Figure 13: Sender Authentication Dynamics.
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B.5 Secrecy with Authentication Structure and Dynamics

'MAC=Co.cacMAC(MSG) - . - Ok=D.verifyMAC(MSG, MAC)
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Figure 14: Secrecy with Authentication Structure.
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verifyMAC(MAC,MSG)
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Figure 15: Secrecy with Authentication Dynamics.
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B.6 Secrecy with Signature Structure and Dynamics

' SGN=Ssign(MSG) | :
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Figure 16: Secrecy with Signature Structure.
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Figure 17: Secrecy with Signature Dynamics.
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B.7 Secrecy with Integrity Structure and Dynamics

'MDC=Co.calcMDC(MSG) | Ok=D verifyMDC(MSG,MDC) -
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Figure 18: Secrecy with Integrity Structure.
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Figure 19: Secrecy with Integrity Dynamics.
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B.8 Signature with Appendix Structure and Dynamics

‘MDC=C.cacMDC(MSG) ' MDC=S.verify(MDCs)
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Figure 20: Signature with Appendix Structure.
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Figure 21: Signature with Appendix Dynamics.
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B.9 Secrecy with Signature
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Figure 22: Secrecy with Signature with Appendix Structure.
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Figure 23: Secrecy with Signature with Appendix Dynamics.
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