
Microthread July 29, 1998 8:06 am 1
Copyright 1998, Joe Hoffert & Kenneth Goldman. Permission is granted to copy for the PLoP-98 conference.

Microthread
An Object Behavioral Pattern for Managing Object

Execution

Joe Hoffert and Kenneth Goldman
{joeh,kjg}@cs.wustl.edu

Distributed Programing Environments Group
Department of Computer Science,

Washington University, St. Louis, MO. 63130, U.S.A.

Abstract

There are times when the execution of an object needs to be suspended and later resumed
either due to the object responding to external events or processing requirements internal to the
object. The Microthread pattern simplifies the management of an object’s execution when the
object needs to start, stop, and resume its execution. This pattern has shown itself to be useful in
both stand alone and distributed applications. An example usage is shown along with the bene-
fits and liabilities of using the pattern. An implementation outline is also provided along with
some sample code. Finally, patterns related to the Microthread pattern are listed.

1.0 Intent
Allow an object to start, stop, and resume its execution. This allows an object to be contextually
sensitive to events during its execution or to quiesce while waiting for events or resources needed
to continue execution.

2.0 Also Known As
Control Message

3.0 Classification
Object Behavioral

4.0 Motivation/Example
A controller for playing audio or video files should be well encapsulated to shield a user from
having to know intricate details about how an audio or video file is played. It should also present
a fairly simple and intuitive interface for manipulating the audio or video stream. The user
should be able to specify a file and have the controller respond appropriately to relatively simple
commands such as start, stop, and resume. In order to be intuitive these controllers should mimic
hardware devices such as VCRs and cassette players. (See Figure 1.)

Microthread July 29, 1998 8:06 am 2
Copyright 1998, Joe Hoffert & Kenneth Goldman. Permission is granted to copy for the PLoP-98 conference.

When a video controller is first told to start it begins to play the specified video file. When the
controller is told to stop it must keep track of where the current playback is so that when it
resumes it will pick up where it left off. Keeping track of state information allows for greater
flexibility. If the controller is playing a video and is told to play, this event may be ignored or
may be used as a signal to fast-forward. Likewise, if a controller is stopped and is told to stop,
this may cause the controller to ignore the event, reposition the playback to the beginning of the
file, or unload the currently viewed file.

To give the controller more flexibility and performance, it may register or unregister for certain
events given its current execution state. For example, one way to have the video controller ignore
a stop event when it is already stopped is simply to unregister for stop events. It can tell an
EventDispatcher that it is no longer interested in stop events. This will increase performance
since the controller won’t have to take the time of processing a stop event simply to ignore it.

The above discussion assumes that theEventDispatcher knows specifically about the
VideoController and its different methods. To decouple this relationship, an interface is defined
that an EventDispatcher uses and to which theVideoController conforms. Now different
controllers can register or unregister themselves withEventDispatchers and the
EventDispatchers don’t need to know any details aboutControllers other than they support the
common Controller interface. AnEventDispatcher simply dispatches the current event to a
Controller by invoking theController’s handleEvent method. Initially, aController is told to run
itself. TheController can then take whatever steps it needs to prepare for events or to initiate any
other functionality.

This structure can be generalized further to support other types of interactions. A component may
start execution and then later suspend its execution either because of external events (e.g., a stop
event for a video controller) or because of internal processing logic (e.g., the object can’t
continue execution until it has received certain resources or certain responses from collaborating
components). For instance, there may be components in a distributed system that need to

FIGURE 1. Video Controller Example

FIGURE 2. Decoupled Controller Example. Controller is able to register and unregister with the
EventDispatcher for events of interest.

EventDispatcher
VideoController

start()
stop()
execution state

EventDispatcherController

handleEvent()

AudioController

handleEvent()

VideoController

handleEvent()

execution stateexecution state

addDispatching()
removeDispatching()

run()

run() run()

Microthread July 29, 1998 8:06 am 3
Copyright 1998, Joe Hoffert & Kenneth Goldman. Permission is granted to copy for the PLoP-98 conference.

negotiate functionality between themselves. Initially, when the first component is run it proposes
certain functionality between itself and another component and sends this proposal to the second
component. The first component cannot complete the functionality on its own and must wait
until it has received a reply from the second component. This reply may also specify what
negotiated functionality is actually to be implemented.

The dispatching of events can also be generalized to provide greater flexibility. Sometimes it is
appropriate to broadcast events. That is, the event is provided to every potentially interested
consumer. There are other times, however, when an event should only be consumed by a single
consumer. That is, when an event comes in one and only one consumer of the event is allowed.
To provide for this functionality, a potential consumer of an event can be queried as to whether
or not it is taking over the event. This indicates whether or not the event is to be passed on to
other potential consumers.

The Controllers that start, stop, and resume execution can be thought of as very lightweight
threads which we callMicrothreads. In multitasking operating systems, a process or thread runs
for a time and then stops (typically due to timeouts or I/O) and then starts up again (because time
or other resources are available). TheseMicrothreads mimic this behavior. TheMicrothread
pattern allows an object to provide this sort of functionality. It facilitates an object’s ability to
run for a time, stop, and then continue execution while providing a simple and clean interface
along with flexibility in processing events.

It is often helpful to have internal (e.g., protected or private in C++)Microthread methods to
simplify execution processing. Particularly,resume() is helpful in encapsulating how an object
will resume its execution based on its state andsuspend()/unsuspend() are useful in encapsulating
how aMicrothread interacts with theEventDispatcher(s) when stopping or resuming execution.

5.0 Applicability:

Use theMicrothread pattern when you want to:

• allow an object to start, stop, and resume execution based on external events or its own internal
logic; or

• enable functionality where objects (possibly distributed) need to interact with and wait for each
other;or

• use threads but the operating system does not support them;or

• have fine grained control of scheduling the executions of objects;or

• have objects that compete for scarce and/or non-shareable resources during their executions.
One object starts with the resource. When it is done it relinquishes the resource. This could be
noted as an event by anEventDispatcher and theEventDispatcher can pass this event to any
suspendedMicrothreads waiting for that resource;or

• process multiple negotiations simultaneously without blocking. Using theMicrothread pattern,
an application can process multiple negotiations at the same time without one of the negotia-
tions blocking all the others. AMicrothread does not need to run to completion before any
otherMicrothread is also allowed to run. Several negotiations, represented by the different
interactions of severalMicrothreads, may be ongoing concurrently.

Microthread July 29, 1998 8:06 am 4
Copyright 1998, Joe Hoffert & Kenneth Goldman. Permission is granted to copy for the PLoP-98 conference.

Do not use theMicrothread pattern if you:

• only need simple messages passed between distributed components with no replies, negotia-
tions, or coordination of events;or

• want to suspend and resume the execution of an object at arbitrary points to support multi-task-
ing or load balancing, for instance. Operating system threads are well-suited for this type of
use. TheMicrothread pattern deals with autonomous objects and their interactions. Operating
system threads deal with groups of objects or processes that are managed as a group for some
global purpose.

6.0 Structure

7.0 Participants

• Microthread (Controller)

- defines the interface for all the concreteMicrothreads.

• ConcreteMicrothread (ConcreteController)

- implements theMicrothread interface.

• EventDispatcher (EventDispatcher)

- passes events toMicrothreads so that they can process the events.

8.0 Collaborations

• ConcreteMicrothreads add themselves toEventDispatchers (via theaddDispatching
method) when they are interested in incoming events. They remove themselves from
theEventDispatchers (via theremoveDispatching method) when they are no longer
interested in incoming events.

FIGURE 3. Structure of the Microthread Pattern

ConcreteMicrothread

run()

resume()
takingOver()

execution state

EventDispatcherMicrothread
run()

resume()
takingOver()

waitingFor()
addDispatching()
removeDispatching()

use execution state to
resume execution

suspend()
unsuspend()

suspend()
unsuspend()

Microthread July 29, 1998 8:06 am 5
Copyright 1998, Joe Hoffert & Kenneth Goldman. Permission is granted to copy for the PLoP-98 conference.

• A ConcreteMicrothread indicates to theEventDispatcher whether or not it is consum-
ing an event via its return value from thetakingOver() method.

9.0 Consequences

9.1 Benefits

The Microthread pattern offers the following benefits:

Separation of Concerns: The Microthread pattern decouples events from their receivers. This
not only alleviates the overhead of binding events to specific receivers but also accommodates
multiple receivers for any one event.

It decouples the object that dispatches events (i.e.,EventDispatcher) from the object that
determines interest in events (i.e.,Microthread). Microthreads can change the type of events in
which they are interested simply by unregistering themselves with one type ofEventDispatcher
and registering with another type ofEventDispatcher. Additionally, Microthreads can register
themselves with multipleEventDispatchers if they are interested in several types of events.

Moreover, the policy of deciding howMicrothreads are notified of events is separated from the
processing of that event. TheEventDispatcher decides how theMicrothreads are notified of an
event but theMicrothread decides how to proceed with execution once the event has been
delivered. It is easy to change the policy of how messages are notified without affecting how the
event is processed.

Flexibility: TheMicrothread pattern allowsMicrothreads to suspend and resume execution any
number of times before completing their executions.

Localization of Functionality: The Microthread pattern allowsMicrothreads to have a life of
their own. They need not be managed by any other object and need not have any long-term
dependencies to any objects. All the information needed to begin, suspend, and resume execution
(including selection of pertinent events) is encapsulated within theMicrothreads.

9.2 Liabilities

The Microthread pattern has the following liabilities:

Potential Interface Bloat: TheMicrothread pattern increases the size of the interface for objects
due to the extra methods ofrun, takingOver, resume, suspend, andunsuspend.

Dangling Suspended Microthreads/Microthread “Leaks”: SuspendedMicrothreads may
never resume execution if the events for which they are interested never arrive. These
Microthreads are still queried when new events arrive which takes up processing time. Timeouts
can be used to remove “outdated” suspendedMicrothreads but there is always the issue of how
long the timeout should be.

Heavyweight Messages:Microthreads may be too heavyweight for some applications. For some
distributed applications, protocols only need simple messages passed between components. They
may not require replies or negotiations.

Microthread July 29, 1998 8:06 am 6
Copyright 1998, Joe Hoffert & Kenneth Goldman. Permission is granted to copy for the PLoP-98 conference.

10.0 Implementation

This section describes how the implementation of the Microthread pattern might look in
C++. The implementation described below is influenced by Playground [1], a distributed
programming environment, which uses the Microthread pattern to negotiate functionality
between components.

• Determine events of interest: Typically, for any application there are several different types of
events that occur. Determine which events will be of interest for theMicrothread subclasses.
Specifically, determine about which eventsMicrothreadsubclasses will want to be notified and
how the subclasses will react to these events.

• Implement the Microthread interface for the ConcreteMicrothreadsubclasses: Each appli-
cableMicrothread subclass will need to implement the methods as declared by theMicrothread
interface. Determine how each concreteMicrothread will suspend its execution - namely to
whichEventDispatcher(s) will it suspend itself. Determine what applicable state information is
needed so thatMicrothreads can resume execution appropriately.

The state information is used to determine how to resume execution once it has stopped. Each
Microthread must essentially encode its “program counter” in its state. It then saves this pro-
gram counter when it suspends itself and branches to it when its execution is resumed.

• Determine which EventDispatchers will handle which events: Once the relevant events have
been determined, the programmer needs to decide how the events will be handled. Specifically,
determine whichEventDispatchers will handle which events. There are several different
approaches.

One approach is to have a singleEventDispatcher handling all events. This may be appropriate
for applications that do not anticipate the queue of interestedMicrothreads to be very large. If
typically there are only a fewMicrothreads that are waiting for events and there are few events
being generated, this strategy probably makes the most sense.

However, if there will be severalMicrothreads waiting for events and many events being gener-
ated then having a singleEventDispatcher may create a processing bottleneck. An undesirable
amount of time may be spent in theEventDispatcher iterating through all the suspendedMicro-
threads for each incoming event. Additionally, this time is compounded with many events com-
ing in.

A second approach is to have oneEventDispatcher for each type of event. If there will be many
types of events that will be dispatched and many events being generated, it may make sense to
have a separateEventDispatcher for each type of event. This will speed up event dispatching
since events will only be passed toMicrothreads that are interested in that type of event.

This approach does add some complexity since the incoming events will need to be demulti-
plexed to their appropriateEventDispatchers. Additionally, information will be needed for the
incoming events to determine where they should be sent which may increase coupling and
reduce information hiding. TheReactorpattern [2] can be helpful in demultiplexing events for
distributed applications. EachEventDispatcher would be aConcreteEventHandler in this pat-
tern.

• Determine default processing for events: It may be appropriate for a component to receive
events where noMicrothread is waiting for it. For this case it makes sense to define default pro-
cessing for these events. For example, incoming events may not be meant for any suspended
Microthread but instead may be stand alone executable events. In this case, it may be appropri-
ate to run these events.EventDispatchers could have the default behavior of telling events to

Microthread July 29, 1998 8:06 am 7
Copyright 1998, Joe Hoffert & Kenneth Goldman. Permission is granted to copy for the PLoP-98 conference.

run themselves if noMicrothreads are waiting on them.EventDispatchers could also simply
return whether or not the event was consumed. Some other object could then handle default
processing.

For other components, it may never make sense to have incoming events that do not have
Microthreads waiting for them. In this case, it may be appropriate to ignore the event and
optionally report a warning or error.

Variations:

Lists for Event Types: EventDispatchers can have lists of different types of suspended
Microthreads that are only applicable for a specific type of event. This assumes certain types of
events are only applicable to certain types ofMicrothread subclasses. This can decrease
processing time at the cost of coupling theEventDispatchers with concreteMicrothread classes
since nowEventDispatchers must know about specificMicrothread subclasses.

Event Notification Without Consumption: SomeMicrothreads may want to be made aware of
an incoming event but are not interested in consuming the event. This may occur for monitoring
purposes, for example. TheseMicrothreads would be notified of the event but would leave it for
some otherMicrothread to consume. This can easily be facilitated by adding monitoring
functionality to a Microthread’s takingOver method. TheMicrothread could do whatever
bookkeeping it wanted to do with the event and thetakingOver’s return value would indicate that
the event was not consumed.

Pipelined Event Transformation: SomeMicrothreads may want to transform the event and
return it to theEventDispatcher so that it instead passes the transformed event on to subsequent
waiting Microthreads. For example, this may be desirable in the case where events are encrypted
and need to be decrypted for further processing. The decryptingMicrothread checks if the event
is decrypted. If it is, it will decrypt it and return it to theEventDispatcher to pass along in place
of the original event. This can be facilitated by changing the return value of the takingOver
method from a boolean to a pointer to an event. If the return value is a NULL pointer the event
has been consumed. Otherwise, the returned event would be passed to the remaining waiting
Microthreads.

With this approach there may need to be an ordering placed on suspendedMicrothreads in the
pipeline. Clearly in the case of aMicrothread waiting to decrypt applicable events it should be
passed any incoming events before otherMicrothreads that are expecting decrypted events.
When Microthreads suspend themselves onEventDispatchers they can pass a priority. The
EventDispatcher will then know which suspendedMicrothreads should be queried first when
new events arrive.

EventDispatcher as Broadcaster: Some applications may only need support for events being
broadcast to all interestedMicrothreads. TheEventDispatcher(s) can be configured to send all
incoming events to all interestedMicrothreads ignoring consumption of the event by any one
Microthread. This is how the Java event model works. Events are broadcast to allEventListeners
that are interested in that type of event.

Microthread July 29, 1998 8:06 am 8
Copyright 1998, Joe Hoffert & Kenneth Goldman. Permission is granted to copy for the PLoP-98 conference.

11.0 Sample Code
When anEventDispatcher receives an incoming event it queries its interestedMicrothreads. The
EventDispatcher class header and the implementation ofwaitingFor might look something like
this in C++:

class EventDispatcher {
public:
 EventDispatcher();
 virtual ~EventDispatcher();

 // Check if the dispatcher is waiting for this event
 bool waitingFor(Event* event);

 // Add this microthread to the list of microthreads interested in events
 void addDispatching(Microthread* microthread);

 // Remove this microthread from the list of microthreads interested in events
 void removeDispatching(Microthread* microthread);

private:
 List<Microthread *> mtList_;
};

bool
EventDispatcher::waitingFor(Event* event)
{
 // Iterate through the list of waiting microthreads to see if one of them
 // wants to take control of the passed-in event
 for (mtList_.begin(); !mtList_.atEnd(); mtList_++) {
 if ((*mtList_)->takingOver(event)) {
 return true;
 }
 }
 return false;
}

In the code example above, theEventDispatcher does not handle an unconsumed event. Instead
it returns whether or not the event was consumed. The default behavior of an unconsumed event
is the responsibility of the calling object.

When a concreteMicrothread’s takingOver method is called to query it about an incoming event
it might handle the event in the following manner:

bool
ConcreteMicrothread::takingOver(Event* event)
{
 bool takenOver = false;

 if (interestedIn(event)) {
 // Remove dispatching for this microthread
 getEventDispatcher()->removeDispatching(this);

 // Resume running of the microthread - non-public helper method
 resume(event);

 takenOver = true;

Microthread July 29, 1998 8:06 am 9
Copyright 1998, Joe Hoffert & Kenneth Goldman. Permission is granted to copy for the PLoP-98 conference.

 }
 return takenOver;
}

When a concreteMicrothread resumes execution it can check its internal state and process the
event accordingly. Note thatMicrothreads do their work in discrete chunks. The wake-up point
(the Microthread version of a program counter) is a way of tracking the progress of the
Microthread in completing its tasks. When moving to the next task requires information from
another event, theMicrothread suspends itself waiting for that event.

void
ConcreteMicrothread::resume(Event* event)
{
 switch (internalState) {
 case INTERNALSTATE1:
 processInternalState1Event(event);
 break;
 case INTERNALSTATE2:
 processInternalState2Event(event);
 break;
 default:
 throw "Bad internal state for ConcreteMicrothread";
 break;
 }
}

In this code example, the valid execution states for theConcreteMicrothread is denoted by an enu-
meration.

12.0 Known Uses

12.1 Playground Distributed Programming Environment [1]
Often in distributed applications, protocols are used to negotiate functionality between
distributed components. As part of a protocol one component receives a request for some
distributed functionality. It will then collaborate with one or more other components to provide
the requested functionality.

Protocol negotiations may be needed, for example, to determine which options (if any) are
supported for a particular functionality. They may also be needed to determine if the
functionality can be realized between the targeted components. The interaction of components to
enable some specified functionality is illustrated in Figure 4.

One component sends a request to another component. To achieve the desired functionality the
enabling component collaborates with a third component. It sends a message to this collaborating
component saying "Here are all the options I support for the requested functionality. Which of
these do you support if any?" The collaborating component may then respond "I do not support
what you need", "There's not enough common functionality between us to do the job", or "I
support what you need but with these qualifications." The enabling component needs to wait on
the collaborating component's response to proceed.

Microthread July 29, 1998 8:06 am 10
Copyright 1998, Joe Hoffert & Kenneth Goldman. Permission is granted to copy for the PLoP-98 conference.

There may be several negotiation or collaboration stages between distributed components to
accommodate certain functionality. The distributed components may need to do some processing
on their own, send off an event to the other coordinating components, and then wait for a reply.
This cycle may occur several times before the desired capability is enabled.

Complex protocols can be simplified using theMicrothread pattern.Microthreads are created
and then sent to the appropriate components. When an initialMicrothread is received by another
component it is told to run itself (the default behavior for an event that is not consumed). The
Microthread will then execute until it needs to coordinate with another component or
components. At this point, it will suspend its execution waiting for the appropriate coordination
event. TheMicrothread determines when it will be suspended and on whichEventDispatcher(s)
it will wait for events.

When aMicrothread receives an event of interest it checks to see if it has all the information or
resources needed to continue execution. If so, it will unregister itself from theEventDispatcher
(by calling itsremoveDispatching method) and resume its execution. Otherwise, it will continue
to be suspended waiting for events. Since the current execution state of theMicrothread is kept it
knows the appropriate context when resuming execution.

Some of the protocols supported by the Playground distributed programming environment are
non-trivial and involve several different types ofMicrothreads (Figure 5). Some of the
Microthreads need to wait for replies at several different stages of their executions. For example,
in the lifetime of aProposedLinkMicrothread it can wait on up to three different kinds of events
(replies from its collaboratingNegotiatedLinkMicrothread) depending on its current execution
state. It also knows what types of responses are appropriate for its particular execution state. It

FIGURE 4. Interaction Diagram For Protocol Negotiation

Requesting Enabling Collaborating

request
proposal

negotiation/qualification

wait for status
wait for reply

setup negotiated
functionality

setup negotiated
functionality

Component Component Component

acknowledge end of setup

acknowledge end of setup

wait for
acknowledgment

request
status

process or
machine boundary

process or
machine boundary

Time

Microthread July 29, 1998 8:06 am 11
Copyright 1998, Joe Hoffert & Kenneth Goldman. Permission is granted to copy for the PLoP-98 conference.

will report an error if the response is inappropriate for a given state. Moreover, several protocol
negotiations may be occurring simultaneously.

12.2 Java Media Framework
The Java Media Framework (JMF) uses the Microthread pattern to control audio and video
players. The event dispatching in JMF appears not to be as flexible as is described in the pattern
but this flexibility may not be needed. Typically, events are broadcast to all potentially interested
Microthreads rather than querying each interestedMicrothread one at a time.

12.3 Multitasking Operating Systems
Typically, multitasking operating systems use the Microthread pattern for process management
in a non-object-oriented way. Operating systems suspend the execution of processes due to
timeout or I/O events and then resume the processes at a later point until the process has
completed its execution.

13.0 Related Patterns

The following patterns relate to the Microthread Pattern:

• TheCommand pattern [3] is used to makeMicrothreads executable. A key component of the
Microthread pattern is to extendCommands to facilitate suspension and resumption of execu-
tion.

• TheExternal Chain of Responsibility pattern [4] can be used to pass incoming events to poten-
tial receivers.

• TheStrategy pattern [3] can be used to facilitate different algorithms thatEventDispatchers
employ to dispatch events.

• TheIterator pattern [3] can be used in anEventDispatcher to iterate through the interested
Microthreads.

References

[1] K. Goldman, B. Swaminathan, P. McCartney, M. Anderson, R. Sethuraman, “The Programmers'

FIGURE 5. Playground Example

EventDispatcherMicrothread

suspend()

ProposedLinkMicrothread

suspend()

unsuspend()

unsuspend()

resume()
takingOver()

resume()
takingOver()

ConnectRequestMicrothread

suspend()
unsuspend()

resume()
takingOver()

execution stateexecution state

waitingFor()
addDispatching()
removeDispatching()

run()

run()run()

NegotiatedLinkMicrothread

suspend()
unsuspend()

resume()
takingOver()

execution state

run()

Microthread July 29, 1998 8:06 am 12
Copyright 1998, Joe Hoffert & Kenneth Goldman. Permission is granted to copy for the PLoP-98 conference.

Playground: I/O Abstraction for User-Configurable Distributed Applications”.IEEE Transactions
on Software Engineering, 21(9):735-746, September 1995.

[2] D. Schmidt, “Reactor: An Object Behavioral Pattern for Concurrent Event Demultiplexing and
Event Handler Dispatching,” inPattern Languages of Program Design (J. Coplien and D. Schmidt,
eds.), Reading, MA: Addison-Wesley, 1995

[3] E. Gamma, R. Helm, R. Johnson, and J. Vlissides,Design Patterns: Elements of Reusable Object-
Oriented Software. Reading, MA: Addison-Wesley, 1995.

[4] J. Hoffert, “Resolving Design Problems in Distributed Programming Environments”,C++ Report,
SIGS, Vol. 10, No. 7, July/August 1998

